
Journal of the Egyptian Mathematical Society (2012) 20, 64–71
Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems
ORIGINAL ARTICLE
Recognition of logically related regions based

heap abstraction
Mohamed A. El-Zawawy
College of Computer and Information Sciences, Al-Imam M.I.-S.I. University, Riyadh 11432, Saudi Arabia
Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
Received 30 April 2011; revised 30 January 2012
Available online 28 September 2012
E-mail address: maelzawawy@

Peer review under responsibilit

Production an

1110-256X ª 2012 Egyptian M

http://dx.doi.org/10.1016/j.joem
cu.edu.eg

y of Egy

d hostin

athemat

s.2012.0
Abstract This paper presents a novel set of algorithms for heap abstraction, identifying logically

related regions of the heap. The targeted regions include objects that are part of the same compo-

nent structure (recursive data structure). The result of the technique outlined in this paper has the

form of a compact normal form (an abstract model) that boosts the efficiency of the static analysis

via speeding its convergence. The result of heap abstraction, together with some properties of data

structures, can be used to enable program optimizations like static deallocation, pool allocation,

region-based garbage collection, and object co-location.

More precisely, this paper proposes algorithms for abstracting heap components with the layout

of a singly linked list, a binary tree, a cycle, and a directed acyclic graph. The termination and cor-

rectness of these algorithms are studied in the paper. Towards presenting the algorithms the paper

also presents concrete and abstract models for heap representations.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

This paper presents an efficient technique for heap abstraction

which takes the form of identifying and grouping logically re-
lated regions of heaps. The result of heap abstraction is a nor-
mal form for the program heap. The normal form is necessary

for abstractly modeling programs and it boosts the efficiency
ptian Mathematical Society.

g by Elsevier

ical Society. Production and hostin

8.009
of the static data flow analysis via assisting the analysis to
converge faster. The information provided by the normal form
can also be used by client optimization applications to achieve

the analyses of object co-location, pool allocation [1], static
deallocation [2], etc.

The concept of heap abstraction emerges naturally in the

course of research on object allocation and memory layout
where techniques like pool allocation and object co-location
use the heap abstraction to improve object locality. The effi-

ciency of garbage collection [3] is also boosted using heap
abstraction by the means of other techniques. Applications that
statically deallocate data-structures or regions use heap abstrac-

tions more directly than others. In the course of abstraction, by
restricting the grouping process to regions of heap that are
expected to contain dead objects, the abstracting information
g by Elsevier B.V. Open access under CC BY-NC-ND license.

mailto:maelzawawy@cu.edu.eg
http://dx.doi.org/10.1016/j.joems.2012.08.009
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2012.08.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Recognition of logically related regions based heap abstraction 65
can be used to delay times of garbage collection. Parallel garbage
collection can also be treated by other approaches that use heap
write/read information to statically find regions of heap that can

be securely grouped without burden for the mutator.
Various techniques for heap abstraction [4–6] are used by

the approaches referred to above to get region information

used later in the optimization stage. The simplest of these ap-
proaches groups the heap objects based on the result of a poin-
ter analysis like Steensgaard analysis [7]. Most of these

techniques do not conveniently model object-oriented proper-
ties of data structures because the techniques are based on
pointer analysis or other analyses that are flow/context insen-
sitive. This paper presents a technique which is much more pre-

cise than these techniques. Moreover, our technique can be
used as a tool to optimize the heap, which results in boosting
the efficiency of memory regions.

Additionally, our proposed technique is useful to improve
the efficiency of a range of static analysis approaches. This is
accomplished via using the heap abstraction to normalize ab-

stract models [8] which in turn results in reducing the height
of the abstract lattice. Therefore this normalization process
can be realized as a widening operation that turn domains of

infinite height into ones of finite height. The normalization
mentioned here has two aspects. One aspect is the compactifi-
cation of recursive structures of possibly infinite size into finite
structures. The other aspect is the using of a similarity relation

to group objects, making up composite data structures.
Although the idea of heap abstraction (normalization) has

already appeared in existing research, the algorithms presented

in this paper achieving heap abstraction are more general, pre-
cise, and reliable (their correctness are proved) than those that
have been developed in previous works. Precisely, our ap-

proach applies to a variety of recursive data structures such
as singly linked lists, binary trees, cycles, and acyclic directed
graphs. The technique presented in this paper can appropri-

ately handle multi-component structures which could not be
handled by most existing works.

1.1. Motivating example

Figs. 1, 3, 5, and 7 present motivating examples for our work.
Suppose that we have a heap whose cells have the shape of
four components; the singly linked list, the binary tree, the cy-

cle, and the DAG (abbreviation for directed acyclic graph) on
the left-hand side of Figs. 1, 3, 5, and 7, respectively. We note
that some cells like

1. the nodes pointed to by variables s and e in the linked list,
the cycle, and the DAG.

2. the second last node of the linked list, and

3. the root of the binary tree and the third and fourth (from
left to right) nodes of the third level of the binary tree

are interesting and contain additional information as com-
pared to the remaining cells. Other cells of the heap, like the
Figure 1 Aconcrete singly linked list togetherwith its abstraction.
second and third nodes of the linked list, are ordinary and car-
ries no extra information. It is wise and helpful to abstract
such heap into one that consists of the four components on

the right hand side of Figs. 1, 3, 5, and 7. The meant abstrac-
tion here is that of grouping logically related cells of the heap.

Remark 1. Self edges in abstracted components of the heap of

our example have different meanings depending on the
component layout.

1.2. Contributions

Contributions of this paper are the following:

1. A new technique for heap abstraction; novel algorithms for
identifying and grouping logically related cells in singly

linked lists, binary trees, cycles, and directed acyclic graphs.
The termination and correctness of these algorithms are
studied.

2. New concrete and abstract models for heap representa-

tions; a formal concept (valid abstraction) capturing the
relationship between a concrete model and its abstraction.

1.3. Organization

The rest of the paper is organized as follows: Section 2 presents

the parametrically labeled storage shape graph models (con-
crete and abstract) that we use to describe our new technique
for heap abstraction. Sections 3–6 present new algorithms
for identifying and grouping logically related cells in singly

linked lists, binary trees, cycles, and directed acyclic graphs,
respectively. The algorithm that abstracts heaps and that calls
other introduced algorithms is presented in Section 7. Related

work is briefly reviewed in Section 8.

2. Concrete and abstract heap models

This section introduces heap models that the work presented
herein builds on. Graphs are basic components of our models.
Similar models are used in related work [6,9] towards shape

and sharing analysis of Java programs. It is worth mentioning
that concepts of this paper are applicable in other techniques
based on separation logic [10–12].

As usual, our semantics of memory is defined using pairs of
stacks and heaps. The stack assigns values to variables and the
heap assigns values to memory addresses. Each pair of a stack
and a heap is called a concrete component. The concept of con-

crete heap denotes a finite set of concrete components. A con-
crete component is represented by a labeled directed graph
which has a layout attribute that captures the layout of the

memory cells represented by the component. The precise defi-
nition is the following:

Definition 1. A concrete heap is a finite set of disjoint labeled
directed graphs (called concrete components) C1, . . . , Cn each

of which has a layout attribute that can have one of four
values; singly linked list (SLL), tree (T), cycle (C), and directed
acyclic graph (DAG). The layout of a component, Ci, is

denoted by Ci.layout. More precisely, Ci = (Vi,Ai,Pi), where:

66 M.A. El-Zawawy
1. Vi is a finite set of variables; Vi ˝ Var.

2. Ai is a finite set of memory addresses; Ai ˝ Addrs.
3. When Ci.layout = SLL, DAG, or C, Pi is a set of pointers

defined by Pi ˝ (Vi · Ai) [(Ai · Ai).

4. When Ci.layout = T, Pi ˝ (Vi · Ai) [(Ai · Ai · {l, r}).

Regions in heaps, edges of regions, edges entering regions,
and edges leaving regions are defined as follows:

Definition 2. A set R is said to be a region in a concrete
component C= (V,A,P) if R ˝ A. Moreover,

1. P(R) = {(a1,a2,nx), (a1,a2) 2 PŒa1,a2 2 R},
2. Pin(R) = {(a1,a2,nx), (a1,a2) 2 PŒa1 2 AnR, a2 2 R}, and

3. Pout(R) = {(a1,a2,nx), (a1,a2) 2 PŒa1 2 R, a2 2 AnR}.

Our concept of abstract heap is inspired by the technique of
storage shape graph presented in [13,6]. The concept of con-
crete component is abstracted by that of abstract component

which is a labeled directed graph ð bV; bN; bPÞ, where (a) bV is a
set of nodes correspond to variables, (b) bN is a set of nodes
each of which corresponds to (abstracts) a region of a concrete
component, and (c) bP is a set of graph edges, each of which

corresponds to (abstracts) a set of pointers. Analogously to
concrete component, each abstract component has a layout
attribute. More precisely abstract heaps and abstract compo-

nents are defined as follows:

Definition 3. An abstract heap is a finite set of disjoint labeled
directed graphs (called abstract components) bC1; . . . ; bCn each
of which has a layout attribute that is SLL, T, C, or DAG.

More precisely, bCi ¼ ð bVi; bNi; bPiÞ where:

1. bV i # Var.
2. bN i is a finite set of node identifiers (each represents a region

of the heap).
3. When bCi:layout ¼ SLL;DAG; or C; P i is a set of pointers

defined by bP i # ðbV i � NiÞ [ðN i � NiÞ.
4. When bCi:layout ¼ T ; P i # ðbV i � NiÞ [ðN i � Ni � fl; rgÞ.

Regions in abstract components are defined analogously as
sets of nodes identifiers.

Remark 2. Every concrete heap is an abstract one.

Now we introduce the concept of abstraction. An abstract

component bC is described as a valid abstraction of another
one bC0, if (a) they have the same layout and same sets of vari-
ables and (b) there are two maps; a map from nodes of bC to

nodes of bC0 and a map from edges of bC to edges of bC 0 such
that these maps preserve the connectivity of the components.

Definition 4. An abstract component bC1 ¼ ð bV1; bN1; bP1Þ is a
valid abstraction of another abstract componentbC2 ¼ ð bV2; bN2; bP2Þ if bC1:layout ¼ bC2:layout; bV1 ¼ bV2, and
there are two onto maps fN : bN1 ! bN2 and fP : bP1 ! bP2 such
that:

1. 8ðv; n2Þ 2 bP 2: f �1P ððv; n2ÞÞ# fðv; n1Þ 2 bP 1jn1 2 f �1N ðn2Þg.
2. 8 n2;n02
� �

2 bP 2: f �1P ððn2;n02ÞÞ# n1;n01
� �

2 bP 1jn1 2 f �1N ðn2Þ^
n

n01 2 f �1N n02
� �
g.

3. 8 n2; n02; nx
� �

2 bP 2:f �1P n2; n02; nx
� �� �

n1; n01; nx
� �

2
�

bP 1jn1 2 f �1N ðn2Þ ^ n01 2 f �1N n02
� �
g.

The pair (fN, fP) is called the witness of the valid
abstraction.

Lemma 1. The valid-abstraction relation on abstract

components is transitive.

Proof. Suppose bC2 is a valid abstraction of bC1 with witness
(fN,fP) and bC3 is a valid abstraction of bC2 with witness
f0N; f

0
P

� �
. Then, it is easy to see that f0N � fN; f0P � fP

� �
witnesses

that bC3 is a valid abstraction of bC1. h

Definition 5. An abstract heap ð bC1; . . . ; bCnÞ is a valid abstrac-
tion of a concrete heap (C1, . . . , Cn) if for every

1 6 i 6 n; bCiis a valid abstraction of Ci.

Remark 3. Every concrete heap is a valid abstraction of itself.

3. Abstracting singly linked lists

This section presents a novel algorithm for abstracting heap

components whose layouts are singly linked list. Fig. 1 presents
a linked list of length 8 (left) together with its abstracted rep-
resentation (right) which is a list of length 4. Clearly, some

nodes of the concrete list are grouped into regions. We note
that nodes h0 and h7 are special nodes as they are pointed to
by two variables s and e, respectively. The node h6 is also spe-
cial as it shares a back edge with the node h7. These special

nodes are not grouped in the abstracted version of the list.
The nodes h1 up to the node h5 are ordinary nodes; there is
nothing special about them. These ordinary nodes are grouped

into the node (region) i1 in the abstracted version. The
self-edge of i1 captures the phenomenon that i1 represents a
region of the concrete component.

Various properties of lists are captured by partitioning the
list nodes into two classes; ordinary and special nodes. First,
the compressed representation of the list in the abstracted ver-

sion substantially boosts the efficiency of the analysis. Next,
the first and last nodes, pointed to by variables s and e respec-
tively, and the second-to-last node are kept separate. This sup-
ports the analysis to conveniently simulate the semantics of

later program commands. Although ordinary nodes of each
list in the program are grouped into a single node in the ab-
stracted version of the list, unrelated lists of the program are

kept separate. In other words, separate lists in the concrete
heap are kept separate in the abstract model while nodes in
the same lists are grouped together. This helps in preserving

the information required by many optimization techniques.
The formal definition of special and ordinary nodes of singly
linked lists is as follows:

Definition 6. Let bC ¼ ð bV; bN; bPÞ be an abstract component

whose layout is SLL. Then, a node n 2 bN is special if either:

1. for some v̂ 2 bV ; ðv̂; nÞ 2 bP , or
2. there exists ða; bÞ 2 bP such that a; b 2 bN ; depthðaÞ >

depthðbÞ, and n 2 {a,b}; i.e., n contributes to a back edge.

Recognition of logically related regions based heap abstraction 67
A node is ordinary if it is not special.

Fig. 2 outlines a novel algorithm for abstracting singly
linked lists. The algorithm first collects ordinary nodes of the

input linked list in a set M. Then, the algorithm merges any
pair of nodes in M that shares an edge. The merging process
includes adding self-edges. The algorithm supposes that there

exists a function remove-node that removes a node from a
linked list.

The termination and correctness of Abstract-SLL are

proved as follow:

Theorem 1. The algorithm Abstract-SLL always terminates.

Proof. We note that M is finite because M# bN and bN is finite.
If the cardinality of M is m, then the while loop in the second

step iterates at most m � 1 times. h

Theorem 2. Suppose that bC ¼ ð bV; bN; bPÞ is an abstract compo-
nent whose layout is SLL and bC0 ¼ Abstract� SLLð bCÞ. Then,bC0 is a valid abstraction of bC.

Proof. We note that there two kinds of operations that
occur throughout the algorithm; removing nodes and adding
self-edges. Since both of these actions do not affect the lay-
out of the component, the layout of the output component

is guaranteed to remain SLL. By induction on the cardinal-
ity of M, we complete the proof that bC 0 is a valid abstrac-
tion of bC. For the induction base, for ŒMŒ = 0 and for

ŒMŒ = 1, the required result is trivial. For the inductive
hypothesis, we assume that the required result is true for
any finite set N with ŒNŒ = n for some positive integer n.

For the inductive step, we prove the required result holds
for a finite set M with ŒMŒ = n + 1 as follows. We assume
that (a,b) is the edge picked at the first iteration of the loop

(if there are none, then the algorithm terminates and the
output is clearly correct). Clearly bC is a valid abstraction
of itself with the identity witness (IN, IP). Now the compo-
nent obtained after the first iteration of the loop, denoted

by bC00, is a valid abstraction of bC with witness
w00 = (IN[a ´ b], IP[(a,b) ´ (a,a)]). The running of the rest
of the algorithm on bC is equivalent of that on bC00. Clearly
ŒMŒ = n for the run of bC00. Therefore, by induction hypoth-
esis bC0 is a valid abstraction of bC 00 with some witness w0. By
Lemma 1, bC 0 is a valid abstraction of bC with witness

w = w0�w00. h
Figure 2 The algorit
4. Trees abstraction

In this section, we present a new algorithm for abstracting heap
components whose layout are tree. Fig. 3 presents a binary tree

(left) of size 15 and height 3 together with its abstracted repre-
sentation (right) of size 8 and height 3. We note that node h0 is
special because it is pointed to by the variable R. Also nodes

h5 and h6 are special as they share a horizonal edge of the tree.
The special nodes are not grouped in the abstracted version of
the tree. We also note that there is nothing special about the left
subtree. Therefore, the left subtree is grouped in the node i1 of

the compact tree. The self-edges of i1 model the fact that i1 rep-
resents a full binary subtree.

Definition 7. Let ð bV; bN; bPÞ be an abstract component whose

layout is T. Then, a node n 2 bN is special if

1. for some v̂ 2 bV ; ðv̂; nÞ 2 bP , or
2. there exists ða; b; Þ 2 bP such that a–b; a; b 2 bN ;

depthðaÞP depthðbÞ, and n 2 {a,b}; i.e., n contributes to a
horizontal or a back edge.

A node is ordinary if it is not special.

Fig. 4 presents a new algorithm for abstracting trees. The

algorithm first collects ordinary nodes of the input tree in a
setM. Then, the algorithm traverses the tree bottom-up, merg-
ing ordinary nodes. The merging process includes adding self-

edges. The algorithm supposes that there is a function remove-
nodes that removes a couple of nodes from a tree.

The proofs of the following two theorems run along similar

lines as those of Theorems 1 and 2, respectively.

Theorem 3. The algorithm Abstract-T always terminates.

Theorem 4. Suppose that bC ¼ ð bV; bN; bPÞ is an abstract compo-
nent whose layout is T and bC0 ¼ Abstract� Tð bCÞ. Then, bC 0 is a
valid abstraction of bC.
5. Cycles abstraction

The new algorithm presented in this section takes care of
abstracting heap components whose layout is a cycle. Fig. 5

presents a cycle (left) of size 8 together with its abstracted rep-
resentation (right) of size 4. We note that node h0 is special be-
hm Abstract-SLL.

Figure 3 A concrete binary tree together with its abstraction.

Figure 4 The algorithm Abstract-T.

Figure 5 A concrete cycle together with its abstraction.

68 M.A. El-Zawawy
cause it is pointed to by the variable S. Also nodes h7 and h1
are special because there are more than one edge leaving and

entering, respectively, the nodes. As it should happen, the spe-
cial nodes are not grouped in the abstracted version of the cy-
cle. We also note that there is nothing special about nodes h2
up to node h6. Therefore, these nodes are grouped in the node
i2 of the compressed cycle. The self-edge of i2 models the fact
that i2 represents a sequence of arbitrary length of the cycle.

Special and ordinary nodes of cycles are defined as follows:

Definition 8. Let ð bV; bN; bPÞ be an abstract component whose
layout is C. Then, a node n 2 bN is special if

– for some v̂ 2 bV ; ðv̂; nÞ 2 bP , or
– ŒPin({n})Œ > 1, or
– ŒPout({n})Œ > 1.

A node is ordinary if it is not special.

Fig. 6 presents an original algorithm, Abstract-C, for cycle
abstraction. Similar to the algorithms presented so far, the first
step of the algorithm is to collect ordinary nodes of the cycle.

The algorithm then repeatedly picks a pair of ordinary nodes
that share a direct edge. The algorithm removes one of the
two nodes with its edges and adds a self-node to the remaining

node.
The proofs of the following two theorems, which address

termination and correctness of the algorithm Abstract-C, are
similar to proofs of Theorems 1 and 2, respectively.

Theorem 5. The algorithm Abstract-C always terminates.

Theorem 6. Suppose that bC ¼ ð bV; bN; bPÞ is an abstract compo-

nent whose layout is C and bC0 ¼ Abstract� Cð bCÞ. Then, bC0 is a
valid abstraction of bC.
6. DAG abstraction

This section presents a novel way to abstract heap compo-

nents whose layout are DAG. Fig. 7 presents a DAG (left)
of size 8 together with its abstracted representation (right)
of size 4. Node h0 is special because it is pointed to by

the variable S. This special node is kept separate in the ab-
stracted version of the DAG. There is nothing special about
nodes h2 up to node h6. Therefore, these nodes are grouped

in the node i2 of the compressed DAG. The self-edge of i2
models the fact that i2 represents a set of nodes that is ref-
erence similar. Two distinct nodes of a DAG are reference

similar if they are not connected by an edge, point to the
same set of nodes, and are pointed to by the same set of
nodes. A set of nodes is reference similar if every distinct
pair of its elements are reference similar. The following def-

initions formally introduce concepts of special nodes, ordin-
ary nodes, and reference similarity.

Definition 9. Let ð bV; bN; bPÞ be an abstract component

whose layout is DAG. Then, a node n 2 bN is special if
for some v̂ 2 bV; ðv̂; nÞ 2 bP. A node is ordinary if it is not
special.

Figure 6 The algorithm Abstract-C.

Figure 7 A concrete DAG together with its abstraction.

Recognition of logically related regions based heap abstraction 69
Definition 10. Let bC ¼ ð bV; bN; bPÞ be an abstract component
such that bC:layout ¼ DAG. Two distinct nodes a; b 2 bN are

reference similar with respect to bC if

1. ða; bÞ R bP and ðb; aÞ R bP ,
2. fc 2 bN jðc; aÞ 2 bP g ¼ fc 2 bN jðc; bÞ 2 bP g, and
3. fc 2 bN jða; cÞ 2 bP g ¼ fc 2 bN jðb; cÞ 2 bP g.

A set of nodes A# bN is reference similar with respect to bC if
every pair of distinct elements in A is reference similar with re-
spect to bC.

Fig. 8 presents the algorithm Abstract-DAG that abstracts
heap components with DAG layout. The algorithm calls the

algorithm Ref-similar-DAG, Fig. 9, that for a given heap com-
ponent calculates a set of reference similar sets.

The first step of the algorithm Abstract-DAG is to calculate
a set, G0, of reference similar sets. The singleton elements of G0

are filtered out to obtain the set G. For every set A in G, the
algorithm groups elements of A into a single node of the ab-
stracted DAG with a self-edge. The algorithm Ref-similar-

DAG first initializes G to the empty set. Secondly, the algo-
rithm stores the ordinary nodes of the input component in
the set M. The third step is to partition the set of ordinary ele-
Figure 8 The algorith
ments, M, into reference similar sets. This is done via picking
an element a 2M and adding all elements that are reference
similar to a to the partition of a.

The proof of the following theorem is similar to that of
Theorem 1.

Theorem 7. The algorithm Ref-similar-DAG always terminates.

The proof of the following theorem is by induction on the
cardinality of M.

Theorem 8. Suppose that bC ¼ ð bV; bN; bPÞ is an abstract compo-

nent and G ¼ Ref� similar�DAGð bCÞ. Then, every element of
G is reference similar with respect to bC.

Theorem 9. The algorithm Abstract-DAG always terminates.

Theorem 10. Suppose that bC ¼ ð bV; bN; bPÞ is an abstract compo-

nent whose layout is DAG and bC 0 ¼Abstract-DAGð bCÞ. Then, bC 0
is a valid abstraction of bC.
7. Heap abstraction

This section presents our basic algorithm, Heap-Abstract, for
heap abstraction. For a given abstract heap of n components,
the algorithm checks the layout of each component and calls
the appropriate algorithm for abstracting the component in

hand. The algorithm is outlined in Fig. 10. The termination
and correctness of the algorithm are inherited from those of
algorithms presented so far.

Theorem 11. The algorithm Heap-Abstract always terminates.
m Abstract-DAG.

Figure 9 The algorithm Ref-similar-DAG.

Figure 10 The algorithm Heap-Abstract.

70 M.A. El-Zawawy
Theorem 12. Suppose that h is a concrete heap and
ĥ ¼ Heap� AbstractðhÞ. Then, ĥ is a valid abstraction of h.
8. Related work

The area of statically improving heap allocation, abstraction,

and layout for object oriented programs is rich in literature
[4,14,5,6,15,16,1]. These techniques are conveniently applicable
to large programs and use results of pointer analysis to calcu-

late static partitions that are required to compute region infor-
mation. However, there are common drawbacks to these
techniques; (a) they have a limited capability to conveniently

analyze programs that rearrange regions and (b) they have a
limited capability to conveniently explore components of large
complex structures. These deficiencies are caused by impreci-

sion of determined partitioning and flow insensitivity. Our
algorithms for heap optimization presented in this paper over-
come these drawbacks.

Other techniques that are based on separation logic [10,17]

simulates destructive updates of heaps and how these updates
modify heap layout [18,12,19,11,20–25]. These techniques pre-
cisely simulate complicated heap operations but the limitations

imposed by them render these techniques inappropriate for re-
gion analysis. This drawback is witnessed by the fact that most
of these approaches are formulated to analyze programs that

handle only lists or trees. A future direction of research is to ex-
tend the techniques of these papers in the spirit of our present
paper. This is huge potential in this direction by virtue of gen-

erality of separation logic as a general-purpose framework.
Mathematical domains and maps between domains can

be used to mathematically represent programs and data
structures. This representation is called denotational seman-

tics of programs. One of our directions for future research
is to translate heap concepts to the side of denotational
semantics [26,27]. Doing so provide a good tool to mathe-
matically study in deep heap concepts. Then obtained re-

sults can be translated back to the side of programs and
data structures.

References

[1] Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew, On

improving heap memory layout by dynamic pool allocation,

in: Andreas Moshovos, J. Gregory Steffan, Kim M. Hazelwood,

David R. Kaeli (Eds.), CGO, ACM, 2010, pp. 92–100.

[2] Javier de Dios, Manuel Montenegro, Ricardo Pena, Certified

absence of dangling pointers in a language with explicit

deallocation, in: Dominique Mery, Stephan Merz (Eds.), IFM,

Lecture Notes in Computer Science, vol. 6396, Springer, 2010,

pp. 305–319.

[3] Martin Schoeberl, Wolfgang Puffitsch, Nonblocking real-time

garbage collection, ACM Transactions om Embedded

Computation Systems 10 (1) (2010) 91–101.

[4] Sigmund Cherem, Radu Rugina, Compile-time deallocation of

individual objects, in: Erez Petrank, J. Eliot, B. Moss (Eds.),

ISMM, ACM, 2006, pp. 138–149.

[5] Stephen Magill, Ming-Hsien Tsai, Peter Lee, Yih-Kuen Tsay,

Automatic numeric abstractions for heap-manipulating

programs, in: Manuel V. Hermenegildo, Jens Palsberg (Eds.),

POPL, ACM, 2010, pp. 211–222.

[6] Mark Marron, Deepak Kapur, Manuel V. Hermenegildo,

Identification of logically related heap regions, in: Hillel

Kolodner,GuyL. Steele Jr., (Eds.), ISMM,ACM,2009, pp. 89–98.

[7] Bjarne Steensgaard, Points-to analysis in almost linear time, in:

POPL, 1996, pp. 32–41.

Recognition of logically related regions based heap abstraction 71
[8] Maurice H. Ter Beek, Alessandro Fantechi, Stefania Gnesi,

Franco Mazzanti, A state/event-based model-checking

approach for the analysis of abstract system properties,

Science of Computer Programming 76 (2) (2011) 119–135.

[9] Mark Marron, Mario Mendez-Lojo, Manuel V. Hermenegildo,

Darko Stefanovic, Deepak Kapur, Sharing analysis of arrays,

collections, and recursive structures. in: Shriram Krishnamurthi,

Michal Young (Eds.), PASTE, ACM, 2008, pp. 43–49.

[10] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano,

Peter W. OHearn, ThomasWies, Hongseok Yang, Shape

analysis for composite data structures, in: Werner Damm,

Holger Hermanns (Eds.), CAV, Lecture Notes in Computer

Science, vol. 4590, Springer, 2007, pp. 178–192.

[11] Bertrand Jeannet, Alexey Loginov, Thomas W. Reps, Mooly

Sagiv, A relational approach to interprocedural shape analysis,

ACM Transactions on Programming Languages and Systems 32

(2) (2010) 72–83.

[12] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano

Calcagno, Byron Cook, Dino Distefano, Peter W. OHearn,

Scalable shape analysis for systems code, in: Aarti Gupta,

Sharad Malik (Eds.), CAV, Lecture Notes in Computer Science,

vol. 5123, Springer, 2008, pp. 385–398.

[13] David R. Chase, Mark N. Wegman, F. Kenneth Zadeck,

Analysis of pointers and structures, in: PLDI, 1990, pp. 296–310.

[14] Isil Dillig, Thomas Dillig, Alex Aiken, Symbolic heap

abstraction with demand-driven axiomatization of memory

invariants, in: William R. Cook, Siobhan Clarke, Martin C.

Rinard (Eds.), OOPSLA, ACM, 2010, pp. 397–410.

[15] Wolfgang Puffitsch, Benedikt Huber, Martin Schoeberl, Worst-

case analysis of heap allocations, in: Tiziana Margaria,

Bernhard Steffen (Eds.), ISoLA (2), Lecture Notes in

Computer Science, vol. 6416, Springer, 2010, pp. 464–478.

[16] Mohsen Vakilian, Danny Dig, Robert L. Bocchino Jr., Jeffrey

Overbey, Vikram S. Adve, Ralph E. Johnson, Inferring method

effect summaries for nested heap regions, in: ASE, IEEE

Computer Society, 2009, pp. 421–432.
[17] Bolei Guo, Neil Vachharajani, David I. August, Shape analysis

with inductive recursion synthesis, in: Jeanne Ferrante, Kathryn

S. McKinley (Eds)., PLDI, ACM, 2007, pp. 256–265.

[18] Reinhard Wilhelm, Shmuel Sagiv, Thomas W. Reps, Shape

analysis, in: David A. Watt (Ed.), CC, Lecture Notes in

Computer Science, vol. 1781, Springer, 2000, pp. 1–17.

[19] Dirk Beyer, Thomas A. Henzinger, Gregory Theoduloz, Damien

Zufferey, Shape refinement through explicit heap analysis, in:

David S. Rosenblum, Gabriele Taentzer (Eds.), FASE, Lecture

Notes in Computer Science, vol. 6013, Springer, 2010, pp. 263–277.

[20] Mohamed El-Zawawy, Nagwan Daoud, New error-recovery

techniques for faulty-calls of functions, Computer and

Information Science 4 (3) (2012).

[21] Mohamed A. El-Zawawy, Program optimization based pointer

analysis and live stack-heap analysis, International Journal of

Computer Science Issues 8 (2) (2011) 98–107.

[22] Mohamed A. El-Zawawy, Flow sensitive-insensitive pointer

analysis based memory safety for multithreaded programs, in:

Beniamino Murgante, Osvaldo Gervasi, Andres Iglesias, David

Taniar, Bernady O. Apduhan (Eds.), ICCSA (5), Lecture Notes

in Computer Science, vol. 6786, Springer, 2011, pp. 355–369.

[23] Mohamed A. El-Zawawy, Probabilistic pointer analysis for

multithreaded programs, ScienceAsia 37 (4) (2011).

[24] Mohamed A. El-Zawawy, Dead code elimination based pointer

analysis for multithreaded programs, Journal of the Egyptian

Mathematical Society (2012), http://dx.doi.org/10.1016/

j.joems.2011.12.011.

[25] Mohamed A. El-Zawawy, Hamada A. Nayel, Partial

redundancy elimination for multi-threaded programs, IJCSNS

International Journal of Computer Science and Network

Security 11 (10) (2011).

[26] Mohamed A. El-Zawawy, Achim Jung, Priestley duality for

strong proximity lattices, Electronic Notes in Theoretical

Computer Science 158 (2006) 199–217.

[27] Mohamed A. El-Zawawy, Semantic Spaces in Priestley Form.

PhD thesis, University of Birmingham, UK, January 2007.

http://dx.doi.org/10.1016/j.joems.2011.12.011
http://dx.doi.org/10.1016/j.joems.2011.12.011

	Recognition of logically related regions based heap abstraction
	1 Introduction
	1.1 Motivating example
	1.2 Contributions
	1.3 Organization

	2 Concrete and abstract heap models
	3 Abstracting singly linked lists
	4 Trees abstraction
	5 Cycles abstraction
	6 DAG abstraction
	7 Heap abstraction
	8 Related work
	References

