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Abstract In this paper we are concerned with Banach A1-module M over admissible Banach

A1-algebra A. We give some properties of admissible modules and algebras. We study the coho-

mology of the complex C1(A,M). We show that the vanishing of cohomology of this complex in

certain dimensions implies to the existence of the A1-module structure.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.
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1. Introduction

Kadeishvili [3] defined A1-module over A1-algebra, homoto-
py between two morphisms and homotopy equivalence be-
tween two modules. In [4] Simirnov and others described the

cohomology of Banach and siminormed algebras using
A1-structures of Stasheff [1]. They also proved that If A is
allowable differential Banach algebra, then its homology

H*(A) has the structure of a graded A1-algebra. Lodoshkii
[6] has studied over where algebras over field. Lapin [8] has
studied multiplicative-structure in term of spectral sequences.

The present work is concerned with the Banach A1-module
over admissible Banach A1-algebra and its cohomology
m
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group. First of all we recall some necessary definitions and

facts about admissible Banach module, admissible Banach
algebra and there properties useful in the sequel. The main
references are [4,5,7,2].

Definition 1. For a givenBanachalgebraA, a differential Banach
module M over A is a pair (M,d), where M= {Mn}, n 2 Z is a
family of Banach modules over Banach algebra A, equipped
with a differential d= {dn}:Mn fi Mn�1 such that d2 = 0.

Definition 2. A Banach module M over Banach algebra A is
called admissible if there exists a family of continuous opera-
tors d = {Sn}:Mn�1 fi Mn, satisfying the relation d�s�d= d.

Proposition 3. The tensor product of admissible Banach modules

is admissible.

Proof 1. Suppose admissible Banach modules (M0,d0,S0),
(M00,d00,S00). Define the operator S:M0 �M00 fi M0 �M00 such
that

S ¼ S0 � 1þ 1� S00 � ðd0 � S0 þ S0 � d0Þ � S00

The direct calculation shows that d�s�d = d. h
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Definition 4. Let A be Banach algebra, then the complex

BA= ((BA)n ,d), is called B-construction over A, where
(BA)n = A�n, if n P 1, (BA)n = 0, if n < 1, A�n =
A � . . . � A (n times), and differential d is given by:
dða1 � . . .� anÞ ¼
Xn�1
i¼1
ð�1Þiþ1½a1 � . . .� pðai � aiþ1Þ � . . .� an�:
Definition 5. Banach algebra is admissible if the complex BA is
admissible.

Note that :

� Any finite Banach algebra is admissible.

� An example of infinite admissible Banach algebra is
A= ‘1, the space of all absolute convergent seriesP1

n¼1an with the multiplication

X1
n¼1

an �
X1
n¼1

bn ¼
X1
n¼2

Xn�1
k¼1

an � bn�k

 !
:

Definition 6. A differential admissible Banach algebra is the

triple (M,d,p), such that (M,d) is admissible Banach module
M over Banach algebra A and p:A � A fi A such that
p(1 � p) = p(p � 1).

Note that [5] if A is admissible Banach algebra, then its
homology H*(A) is graded Banach algebra.

Definition 7. Two maps f, g:A fi B of differential admissible

Banach algebras are called homotopic (denoted f . g), if there
exists a map h:A fi B of dimension 1, satisfying the relation
dh+ hd = g � f.

It is easy to see that the homotopy relation is an equivalence
relation. The differential Banach algebras A and B are called

homotopy equivalent (Denoted by A . B) if there are chain
maps f:A fi B, g:B fi A such that g� f= idA, f�g = i dB.

The differential Banach module is contractible if it is

homotopy equivalent to zero.
Some properties of admissible Banach algebra [4]:

Proposition 8. Let A be admissible Banach complex, then the
homology H* (A), which is Banach complex with zero

differential, satisfies the following isomorphism H*(A) . A.

Proposition 9. For the admissible Banach complexesA and B,
then the following holds H*(A � B) . H*(A) � H*(B).

Proposition 10. Let A be admissible Banach complex, then the

homology H*(A) is graded Banach algebra and the following
multiplication holds p* = H*(A) � H*(A) fi H*(A), where
p* = g�p�(n � n), n:H*(A) fi A, g:A fi H*(A), p:A �
A fi A.
2. Banach A‘-module over admissible Banach A‘-algebra and

Hochschild cohomology

Definition 11. A Banach A1-algebra (A,pi,d) is a Banach
graded module (A,d) with the multiplication pi:A

�i+2 fi A,
such that:
Xn
e

i¼0
ð�1Þ pið1� . . .� pn�i � . . .� 1Þ ¼ 0; e ¼ nkþ ikþ k
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Definition 12. For given a Banach A1-algebra (A,pi), a
Banach A1-module (M,Pi) over Banach A1-algebra (A,pi) is
graded module M, equipped with multiplication
{Pi:A

�i �M fi M}, i P 1 such that: Piðð: A�i �MÞÞq �M
qþi�1

0; i P 1 and

X
j

ð�1Þkðjþ1ÞþiPi�jþ1ð1� . . .� 1� pj � . . .� 1Þ

þ
X
ð�1Þði�þ1Þðj�1ÞPi�jð1� . . .� 1� PjÞ ¼ 0 ð1Þ

The relation (1) is called Stasheff relation for Banach
A1-module over Banach A1-algebra [1].

The morphism between Banach A1-modules (M,Pi) and
M0;P0i
� �

over Banach A1-algebras (A,pi) and A0; p0i
� �

, respec-
tively, is a family of morphisms {fi:A fi A0}, {gi:A

�i �
M fi M}, i P 0, where fi are morphisms between A1-algebras
and giððA�i �MÞÞq �M0

q�i.
Satisfy the following identity:X

j

ð�1Þkðj�1Þþigi�jþ1ð1� . . .� 1� pj � . . .� 1Þ

þ
X
ð�1Þjði�þ1Þðj�1Þgi�jð1� . . .� 1� PjÞ

þ
X

K1þ::þKt¼iþ1
ð�1ÞK2þK4þ...

PtðfK1
� . . .� fKt�1 � gfKtÞ ¼ 0 ð2Þ
Definition 13. Banach A1-algebra A is called admissible if the
Banach graded module is admissible.

Definition 14. [4] TheB-constructorBM of BanachA1-module

M over Banach A1-algebra A is given by the tensor product
A�i �M such that:

deg ða1 � . . .� ak� bÞ ¼ deg ða1Þ þ . . .þ degðakÞ þ degðbÞ þ k:

The B-constructor BM of Banach A1-module M over
Banach A1-algebra A is given by the tensor product A�i �M

such that:

deg ða1 � . . .� ak� bÞ ¼ deg ða1Þ þ . . .þ degðakÞ þ degðbÞ þ k:

The complex C= (Hom(BM,M), d) is the Hochschild com-

plex for Banach A1-module M over Banach A1-algebra A
and denoted by C1(A,M), such that :

d¼
X
i

ð�1Þiþnþ1fð1� . . .�1�pj� . . .�1Þ

þ
Xn
i¼1
ð�1Þiþ1pið1� . . .�1� fÞþ

Xn
i¼1

f ð1� . . .�1�pj1Þ ð3Þ

where
d : HomnðBM;MÞ ! Homn�1ðBM;MÞ;

f 2 HomnðBM;MÞ; f ¼ ffg : ðA�i �MÞq !Mqþnþi�1 ! Aiþn:

Note that:

� The first summation in (3) is given in all possible place

of pi.
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� If the module M is trivial, then the differential in coin-

cides with an ordinary differential d in Hochschild
complex C1(A,M) for module over algebra.
Theorem 15. The map d in (3) is differential, that is d(df) = 0.

Proof 2.

dðdfÞ ¼
X
i

ð�1Þiþnþ1dfð1� . . .� 1� pj � . . .� 1Þ

þ
Xn
i¼1
ð�1Þiþ1pið1� . . .� 1� dfÞ þ

Xn
i¼1

dfð1� . . .

� 1� pj1Þ � ð4Þ

Definition 16. Note that the summation in (4) is given in all
possible place of pj and all components of a map f. The direct
calculation of (4) using the relation (3) and the Stasheff rela-

tions for A1-algebra [1], show that d(df) = 0 and hence the
operator d is differential.

Definition 17. The homology of Hochschild complex

C1(A,M) is the Hochschild homology of Banach A1-module
M over admissible Banach A1-algebra A and denoted by
H(C1(A,M)).

Theorem 18. [5]Let A be admissible Banach A1-algebra, then

the homology group A* =H*(A) has graded A1-algebra’s struc-
ture and the homotopy equivalent of A1-algebras A . A* induces
the homotopy equivalent of differential coalgebras BA . BA*.

Definition 19. [2] On Hochschild complex C(A,A) the follow-

ing operators [, [1 can be defined as follows :

[ : ðCðA;AÞ � CðA;AÞÞi ! ðCðA;AÞÞi

[1 : ðCðA;AÞ � CðA;AÞÞi ! ðCðA;AÞÞiþ1

, such that:

f [ g : pðf� gÞ
f[1g :

X
k

fð1� . . .� 1� g� 1� . . .� 1Þ; f; g 2 CmðA;AÞ

Similarly for Hochschild complex C1(A,M) we have

[ : C1ðA;MÞ � CðA;AÞ ! ðC1ðA;AÞ
[1 : C1ðA;MÞ � CðA;AÞ ! ðC1ðA;AÞ

of degree (�1) such that:

f [ g : pðf� gÞ : ð�1Þðnþm�2Þðm�1Þfð1� . . .� 1� gÞ ð5Þ

f[1g :
X
i

ð�1Þiðn�1Þþmþn�3fð1� . . .� 1� g� . . .� 1Þ ð6Þ

Note that:

� If A1-module is trivial, then the action of [1 on Hochschild

complex coincides with the action of [ in Hochschild com-
plex for module.
� For a given a Banach Hochschild complex C1(A,M) of

Banach A1-module M over Banach A1-algebra the opera-
tions [, [1 are easily defined.
Proposition 20. Let the maps f, g, h 2 C1(A,M), then the fol-

lowing holds

ðf [ gÞ[1h ¼ ð�1Þmf [ ðg[1hÞ þ ðf[1hÞ [ g ð7Þ

Proof 3. From relations (5) and (6) the left hand side of rela-

tion (7) is given by:
ðf [ gÞ[1h ¼
X
i;k

ð�1Þiðn�1Þþmþkþn�1þmðk�1Þfð1� . . .� h� . . .

� gÞ þ
X
i;k

ð�1Þiðn�1Þþmþkþn�1þmðk�1Þfð1� . . .� gð1

� . . .� h� . . .� 1ÞÞ �

Definition 21. The RHS of relation (7) by means of (5) and (6)
is given by:

ð�1Þmf [ ðg[1hÞ ¼ ð�1Þm
X
i;k

ð�1ÞðiþmÞðn�1Þþkþn�1þmðk�1Þfð1� . . .

� gð1� . . .� h� . . .� 1ÞÞ

and

ðf[1gÞ[h¼
X
i;k

ð�1Þiðn�1Þþmþkþn�1þmðk�1Þfð1� . . .�h� . . .�gÞ

Hence (f [ g) [ 1h= (�1)mf [ (g [ 1h) + (f [ 1h) [ g.
The following assertion gives the relation between an

operator and differential d.

Theorem 22. An operator [1 satisfies the Leibniz condition:

dðf[1gÞ ¼ �df[1gþ ð�1Þnf[1dg ð8Þ

Proof 4. The left hand side of (8) by considering the relation
(6) can be written in the form:

dðf[1gÞ ¼
X
ð�1Þiþnþmþ1ðf�1gÞð1� . . .� pi � . . .� 1Þ

þ ð�1Þnþmþ1pið1� . . .� f�1gÞ þ f[1gð1� . . .� piÞÞ

¼
X
ð�1Þiþnþ mþðnþm�3Þðm�1Þ

fð1� . . .� gÞð1� . . .� pi

� . . .� 1Þ þ ð�1ÞðnþmÞþðnþm�3Þðm�1Þpið1� fð1� . . .

� gÞ þ ð�1Þðnþm�3Þðm�1Þfð1� . . .� gð1� . . .� piÞ:

The summation in last relation is given in all possible place

of i and all components of a maps f and g.

The first and second parts of the right hand side of (8) by
considering the relation (6) are given by:

ð�1Þdðf[1gÞ ¼
X
ð�1Þðnþm�2Þðm�1Þþiþn�2fð1� . . .� . . .

� 1� p� 1� . . .� gÞ þ ð�1Þ

	 ð�1Þðnþm�1Þðm�1Þfð1� . . .� pið1� gÞ

þ ð�1Þð�1Þðnþm�2Þðm�1Þþnpið1� fð1� gÞÞ: ð9Þ

and



56 Y. Gh. Gouda
ð�1Þdðf[1gÞ ¼ ð�1Þnð�1Þðnþm�2Þ m
fð1� . . .� dgÞ

¼
X
ð�1Þðnþm�2Þðm�1Þþiþn�2fð1� . . .� . . .

� 1� p� 1� . . .� gÞ þ ð�1Þ

	 ð�1Þðnþm�2Þmþmþ1fð1� . . .� pið1� gÞÞ

þ ð�1Þnð�1Þðnþm�2Þ m
fð1� . . .� gð1

� . . .� piÞÞ: ð10Þ

From (11) and (12) we have d(f [ 1g) = � d f [ 1g +

(�1)nf [ 1dg.

Following [2], For a given module M over algebra A, the
twisted cochain in Hochschild complex C(A,M) (in the case of
Banach module M over admissible Banach algebra A) is
defined as follows: h

Definition 23. The twisted cochain in Hochschild complex
C(A,M) is an element a = a3 + a4 + � � �+ ai + � � �, where
ai 2 Ci(A,M), such that da= a [ 1a, since [1 is multiplication

in the Hochschild complex for algebra. The set of Twisted
cochains is denoted by TW(A,M).

Definition 24. Two twisted cochains a and a0 are equivalent if
there exist an element P = P2 + P3 + . . . + Pi, Pi 2 Ci(A,M)

such that

a� a0 ¼ dPþ P[1aþ a0[1ðP� PÞ þ a0[1ðP� P� PÞ þ . . .

The set TW(A,M)/
, where 
 is equivalent relation, is
denoted by D(A,M).

Theorem 25. According to [2] the vanishing of Hochschild

cohomology Hn(A,A) = 0 for n > 0, leads to the vanishing of
the set D(A,A).

We define on the Hochschild complex C1(A,M), instead of
Hochschild complex C(A,M), the concept of twisted cochain
for Banach module M over admissible Banach A1-algebra.

Definition 26. An element h in C�21 ðA;MÞ is twisted cochain, if

:
1: hi ¼ 0; if i < nþ 1:

2: dh ¼ h[1h: ð11Þ

Theorem 27. where [1 is defined above.

The set of all twisted cochain in Hochschild complex
C1(A,M) for Banach module over admissible Banach algebra,

is denoted by TW(C1(A,M)).

Definition 28. Two twisted cochain h and h0 of Hochschild
complex C1(A,M) of Banach module M over admissible
Banach A1-algebra are equivalent h 
 h0, if there is an element

‘ 2 C�11 ðA;MÞ, such that:

1: ‘1 ¼ Id:

2: d‘ ¼ ‘[1hþ h0[1‘ ¼ 0:

Theorem 29. The relation defined in Definition 28 is equivalent
relations.

Proof 5. See [6]

The following theorems study the twisted cochain in Banach
Hochschild complex C1(A,M) for Banach A1-moduleM over

admissible Banach A1-algebra A and its relation with the
cohomology of Banach Hochschild for these modules. The
proof of these theorems analog to the cases of cohomology of
pure A1-module over A1-algebra [see [6]]. h

Theorem 30. Let h 2 TW(C1(A,M)) be an arbitrary twisted
cochain and ‘ 2 ðC�11 ðA;MÞÞ, such that ‘1 = Id, ‘i = 0, for
i> n + 1, then there exist twisted cochain �h such that:

1: hi ¼ �hi; i < Kþ 1; k > n

2: �hkþ1 ¼ hkþ1 þ ðdfÞkþ1; �h 
 h: ð12Þ

Theorem 31. Let H�2(C1(A,M)) = 0, then D(A,M) = 0.
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