

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org [www.elsevier.com/locate/joems](http://www.sciencedirect.com/science/journal/1110256X)

SHORT COMMUNICATION

Normalizing extensions of homogeneous semilocal rings and related rings

M.H. Fahmy $\mathrm{^{a,*},$ S.F. El-Deken $\mathrm{^{b},}$ S.M. Abdelwahab $\mathrm{^{b}}$

^a Department of Mathematics, Faculty of Science, Al-Azhar University, Naser City, 11884 Cairo, Egypt ^b Department of Mathematics, Faculty of Science, Helwan University, Ain Helwan, 11790 Helwan, Egypt

Available online 4 June 2012

Abstract The aim of this paper is to study the transfer of homogeneous semilocality, FGFP and W_n properties from a ring R to a normalizing extension S and vice versa.

ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under [CC BY-NC-ND license.](http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Throughout let S be a finite normalizing extension of a ring R , that is S is finitely generated as an R -module by elements x_1, x_2, \ldots, x_n of S with $Rx_i = x_iR$ for $i = 1, 2, \ldots, n, J(R)$ and $J(S)$ denote the Jacobson radicals of R and S, respectively. A ring R is said to be semilocal if $R/J(R)$ is an artinian ring and R is said to be homogeneous semilocal if $R/J(R)$ is a simple artinian ring.

* Corresponding author.

E-mail addresses: d_mfahmy@yahoo.com (M.H. Fahmy), [susan_](mailto:susan_fahmy@yahoo.com) [fahmy@yahoo.com](mailto:susan_fahmy@yahoo.com) (S.F. El-Deken), semmada@hotmail.com (S.M. Abdelwahab).

1110-256X \odot 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under [CC BY-NC-ND license.](http://creativecommons.org/licenses/by-nc-nd/4.0/)

Peer review under responsibility of Egyptian Mathematical Society. <http://dx.doi.org/10.1016/j.joems.2011.12.013>

Production and hosting by Elsevier Z.S **ELSEVIEE**

Several authors studied the transfer of algebraic properties from S to R and from R to S. Resco [\[8\]](#page-2-0) proved that if S is right artinian, semiprimary or perfect, then so is R. Moreover Lee [\[5\]](#page-2-0) proved that if S is a local ring then R is a local ring. In [\[3\]](#page-2-0) the authors studied necessary and sufficient conditions on R which forces the homogeneous semilocality of the group ring $R[G]$ or the crossed product $R * G$ and vice versa. In this paper, we shall focus on the transfer of homogeneous semilocality, or more general conditions such as W_n or FGFP rings from S to R (see Sections 3 and 4 below).

The given Examples 2.4 and 2.5 in this paper show that the homogeneous semilocality cannot be transferred directly either from S to R or from R to S. However, we will show that if R or S satisfies some weaker properties such as normal homogeneous semilocal, W_n or FGFP then those properties can be transferred from S to R (see Sections 3 and 4 below).

2. Homogeneous semilocal rings

We need the following two results.

Lemma 2.1. Let S be a finite normalizing extension of R . Then $S/J(S)$ is a finite normalizing extension of $R/J(R)$ whose normal generators are $\bar{x}_i = x_i + J(S)$.

Proof. For any $\bar{s} = s + J(S) \in S/J(S) = \overline{S}; \bar{s} = \sum_{i=1}^{n} x_i r_i +$ $J(S) = \sum_{i=1}^{n} (x_i + J(S))(r_i + J(R)) = \sum_{i=1}^{n} \bar{x}_i \bar{r}_i$. Thus $\bar{x}_i = x_i +$ $J(S)$ is a normal basis for $\overline{S} = S/J(S)$ over $R/J(R)$. \Box

Theorem 2.2 [\[8\].](#page-2-0) Let S be a finite normalizing extension of R. Then S is artinian if and only if R is artinian.

Theorem 2.3. Let S be a finite normalizing extension of R. Then S is a semilocal ring if and only if R is a semilocal ring.

Proof. S is a semilocal ring $\iff \overline{S} = S/J(S)$ is an artinian ring $\Longleftrightarrow \overline{R} = R/J(R)$ is an artinian ring (by 2.1 and 2.2) \iff R is a semilocal ring. \Box

The following two examples show that the transfer of homogeneous semilocality between R and S does not hold in either.

Example 2.4. Let $A = Z^{(p)} = \{\frac{m}{n}: m, n \in \mathbb{Z}, p\nmid n\}$ and let $R = D$ (Z^p) the diagonal $n \times n$ matrices over A Let $s_n = e_n$ $R = D_n(Z^p)$, the diagonal $n \times n$ matrices over A. Let $s_{ij} = e_{ij}$ be the unit matrices. Then it is clear that $s_{ij}R = Rs_{ij}$ and $S = \sum_{i,j=1}^{n} s_{ij} R = \sum_{i,j=1}^{n} R s_{ij} = M_n(A)$, the ring of $n \times n$ matrices over A. Hence S is a finite normalizing extension of R with n^2 generators. Since A is a local ring with unique maximal ideal $m = J(A) = pZ^{(p)}$, then $K = A/m \cong \mathbb{Z} \mod p$ is a field. Therefore $R/J(R) \cong D_n(K) \cong K \oplus K \oplus \cdots \oplus K$ is an artinian ring which is not simple. However $S/J(S) \cong M_n(K)$, which is simple artinian ring. Thus S is homogeneous semilocal and R is just semilocal.

Example 2.5. Let $R = \mathbb{Z} \mod 3$ be the field of integers mod 3 and $G = \langle a, b | a^2 = b^2 = 1, ab = ba \rangle$ the 4-Klein group and let $S = R[G]$ be the group algebra of G over Zmod3. Since *charR* = $3/|G| = 4$, we know that $J(R[G]) = 0$ by Maschkes theorem and $S/J(S) \simeq S = R[G]$. In spite of being artinian S is not simple as it has the augmentation ideal $\Delta(R[G]) = \{0, 1 + a + b, 1 + a + ab, \ldots\}.$

However, if S is homogeneous semilocal, then R satisfies an intermediate property between homogeneous semilocality and semilocality (see Theorem 2.9 below).

Throughout the following definitions, S is a fixed finite normalizing extension of a ring R with normal generators x_1, \ldots, x_n .

Definition 2.6. An ideal I in R is called S -normal ideal if $Ix_i = x_iI$ for each $i = 1, \ldots, n$.

Definition 2.7. The ring R is called S-normal simple if R has no nonzero proper S-normal ideal.

Definition 2.8. A ring R is called normal homogeneous semilocal if $\overline{R} = R/J(R)$ is artinian and is $\overline{S} = S/J(S)$ -normal simple ring.

Theorem 2.9. Let S be a finite normalizing extension of R. If S is homogeneous semilocal, then R is S-normal homogeneous semilocal.

Proof. Since S is a homogeneous semilocal ring, then $\overline{S} = S/J(G)$ is simple artinian ring and by Theorem 2.2 $\overline{R} = R/J(R)$ is artinian ring. To show that \overline{R} has no nonzero normal \overline{S} -ideal, assume that \overline{I} is a nonzero normal \overline{S} -ideal in \overline{R} . Since by Lemma 2.1 \overline{S} is a finite normalizing extension of \overline{R} , then $\overline{S} = \sum \overline{x}_i \overline{R} = \sum \overline{R} \overline{x}_i$, moreover since $\overline{x}_i \overline{R} = \overline{R} \overline{x}_i$ and $\overline{I} = \overline{RI} = \overline{IR}$. Then $\overline{SI} = \sum \overline{x}_i \overline{RI} = \sum \overline{R} \overline{x}_i \overline{I} = \sum \overline{R} \overline{I} \overline{x}_i$ \overline{i} _i $\overline{RI} = \sum \overline{R} \overline{x}_i \overline{I} = \sum \overline{R} I \overline{x}_i =$ $\sum \overline{IR} \bar{x}_i = \overline{IS}$. If $\overline{SI} = \overline{S}$, then \overline{I} contains an element \bar{u} such that $\overline{\overline{su}} = \overline{1}$, where $s \in S$. By Proposition 3.3, the element $\overline{u} \in \overline{I}$ is invertible in \overline{R} , which contradicts that \overline{I} is a nonzero proper ideal in \overline{R} . Therefore \overline{IS} is a nonzero two sided ideal in \overline{S} which contradicts the simplicity of \overline{S} . Hence R is S-normal homogeneous semilocal. \square

3. W_n -rings

In [\[12\]](#page-2-0) Woods introduced the notion of W_n -ring to study the transfer of semiperfectness between the ring R and the group ring $R[G]$ and in [\[6\]](#page-2-0) Okninski used the notation of W_n -ring to show that the class of W_n -rings contains the class of semilocal rings.

Definition 3.1. A ring R is said to be W_n -ring if for any $r \in R$ there exists an integer $i, 1 \leq i \leq n$, such that $1 - f_i(r)$ is invertible in R; where

$$
f_1(r) = r
$$
, $f_i(r) = f_{i-1}(r)(1 - f_{i-1}(r))$.

The next theorem gives a new characterization for homogeneous semilocal rings.

Theorem 3.2. A ring R is homogeneous semilocal if and only if R is a W_n -ring for some n and has a unique maximal two sided ideal.

Proof. Assume that R is homogeneous semilocal ring, then it follows from $[2]$ that R has a unique maximal ideal $m = J(R)$. Since R is a homogeneous semilocal ring, then R is semilocal and hence by [\[6, Lemma 3.1\]](#page-2-0) R satisfies W_n fore some n.

Assume that R satisfies W_n and has a unique maximal ideal m. Let P be any primitive ideal then R/P is a primitive ring satisfying W_n . Thus by [\[6, Lemma 1\]](#page-2-0) $R/P \cong M_t(D)(t \times t)$ matrices over a division ring D) is simple artinian. Thus P is a maximal ideal and so every primitive ideal equals m. Therefore $m = J(R)$ and $R/J(R) = R/P$ is simple artinian. Hence R is homogeneous semilocal. \square

In spite of the non-transfer of homogeneous semilocality from S to R and vice versa, we can transfer the W_n structure from S to R using the next result of Resco.

Proposition 3.3 [\[8\]](#page-2-0). Let S be a finite normalizing extension of R. Then an element $u \in R$ is invertible in S if and only if u is invertible in R.

Thus we can show the following:

Theorem 3.4. If S is a W_n -ring, then so is R.

Proof. Since S is a W_n -ring for any $s \in S$ there exists $i, 1 \leq i \leq n$, such that $1 - f_i(s)$ is invertible in S. Then for any $r \in R \subseteq S$ there exists $i, 1 \le i \le n$, such that $1 - f_i(r)$ is invertible in S. By (Proposition 3.3) $1 - f_i(r)$ is invertible in R for some $1 \leq i \leq n$. Hence R is W_n -ring. \Box

4. FGFP rings

Throughout this section all modules are unitary right modules. A well known theorem due to Bass [1] states that a ring R is left perfect if and only if every flat R-module is projective. Therefore, it is natural to study the rings R , for which every finitely generated flat R-module is projective. Such rings are called FGFP rings. In [10] Sakhaev and Chirkov proved that a semilocal ring with a unique primitive ideal is an FGFP ring.

In [7] Puninski and Rothmaler proved that the FGFP property is closed under Morita equivalence, finite direct sum and subrings. Jondrup [4] proved that FGFP property is interchanged between a ring R and the group ring $R[G]$, also between R and the ring of power series $R[[x]]$. Right notherian rings, right Ore domains with right Krull dimension and semiperfect rings are FGFP rings. The latter two rings are even left and right FGFP rings.

If a sequence A_1, A_2, A_3, \ldots of $M_n(R)$ the $n \times n$ matrices over R such that $A_{i+1}A_i = A_i$ for every i, eventually consists of idempotent generating the same principal right ideal in $M_n(R)$, then we say in this case that the sequence converges [7]. Following Sakhaev [9] an ideal I of a ring R is called weakly commutative if there exists $m \geq 2$ such that for all $a_1, a_2, \ldots, a_m \in I$ there exists a non identity permutation $\sigma \in S_m$ such that $a_1, a_2, \ldots, a_m \in Ra_{\sigma(1)}, a_{\sigma(2)}, \ldots, a_{\sigma(m)}$. A ring R is called M_nCP if every right cyclic $M_n(R)$ -module is projective.

Theorem 4.1 [9]. Let R is a semilocal ring. then

- (1) R is FGFP if and only if R is M_nCP for some $n > 0$.
- (2) If $J(R)$ is weakly commutative, then R is FGFP.
- (3) If R is FGFP then every sequence A_1, A_2, A_3, \ldots of $M_n(R)$ converges.

Theorem 4.2 [7]. If for every $n > 0$, one of the following conditions are satisfied (i) $M_n(R)$ satisfies a.c.c an right annihilators of elements or (ii) $M_n(R)$ satisfies d.c.c on left annihilators of elements, then R is FGFP.

Theorem 4.3 [11]. An R-module T is flat if and only if $S \otimes_R T$ is a flat S-module.

Proposition 4.4. Let R be a homogeneous semilocal ring. Then R is an FGFP ring.

Proof. If R is homogeneous semilocal, then R is W_n -ring having a unique maximal ideal M by Theorem 3.2. Using the same argument as in the proof of Theorem 3.2 we deduce that every primitive ideal is maximal. Thus R has a unique primitive ideal *M*. Since R is semilocal, then by [10] R is FGFP. \Box

In the rest of this paper S is a finite normalizing extension of R.

Proposition 4.5. If S is FGFP, then so is R.

Proof. Follows directly by [7, Lemma 3.1]. \Box

In Example 2.4 we showed that the homogeneous semilocality of S does not imply the homogeneous semilocality of

R, however the homogeneous semilocality of S guarantees that at least R is FGFP, M_nCP and W_n -ring.

Corollary 4.6. Let S be a homogeneous semilocal ring. Then:

- (i) R is FGFP ring,
- (ii) R is M_nCP .
- (iii) every sequence A_1, A_2, A_3, \ldots of $M_n(R)$ converges,
- (iv) R is W_n -ring.

Proof.

- (i) Since S is homogeneous semilocal, then by Proposition 4.4 S is FGFP. Thus R is FGFP by Proposition 4.5.
- (ii) Since S is homogeneous semilocal, then R is semilocal by Theorem 2.3. Thus by Theorem 4.1, R is M_nCP
- (iii) From (ii) \hat{R} is semilocal and by Theorem 4.1 (3) the result follows.
- (iv) Follows directly from Theorems 3.2 and 3.4. \Box

Proposition 4.7. Let S be a flat R-module, and R is a FGFP ring. Then S is a FGFP ring.

Proof. Since S is finitely generated flat R -module and there is a ring monomorphism from R to S, then the ring S is FGFP by [4, Proposition 1.2]. \Box

Acknowledgment

The authors express their gratitude to the referees for their valuable comments which have improved the presentation of this paper.

References

- [1] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Am. Math. Soc. 95 (1960) 466–488.
- [2] R. Corisello, A. Facchini, Homogeneous semilocal rings, Commun. Algebra 29 (4) (2001) 1807–1819.
- [3] M. Fahmy, S. El-Deken, S. Abdelwahab, Homogeneous semilocal group rings and crossed products, submitted for publication.
- [4] S. Jondrup, On finitely generated flat modules, Math. Scand. 26 (1970) 233–240.
- [5] D. Lee, Finite normalizing extensions of rings, Commun. Korean Math. Soc. 4 (1) (1989) 103–112.
- [6] J. Okninski, Semilocal skew group rings, Proc. Amer. Math. Soc. 80 (1980) 552–554.
- [7] G. Puninski, Ph. Rothmaler, When every finitely generated flat module is projective, J. Algebra 277 (2004) 1–21.
- [8] R. Resco, Radicals of finite normalizing extensions, Commun. Algebra 9 (7) (1981) 713–725.
- I. Sakhaev, Projectivity of finitely generated flat modules over semilocal rings, Math. Z. 37 (2) (1985) 152–162.
- [10] I. Sakhaev, Ch. Chirkov, Projectivity of finitely generated plane modules over a semilocal ring with a single primitive ideal, Soviet Math. (Iz. VUZ) 6 (1970) 100.
- [11] L. Soueif, Normalizing extensions, injective modules and essentially bounded normalizing extensions, Commun. Algebra 15 (18) (1987) 1607–1619.
- [12] S. Woods, Some results on semiperfect group rings, Canad. J. Math. XXVI (1) (1974) 121–129.