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Abstract The aim of this paper is to study the transfer of homogeneous semilocality, FGFP and

Wn properties from a ring R to a normalizing extension S and vice versa.
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1. Introduction

Throughout let S be a finite normalizing extension of a ring R,
that is S is finitely generated as an R-module by elements
x1; x2; . . . ; xn of S with Rxi ¼ xiR for i ¼ 1; 2; . . . ; n; JðRÞ and
JðSÞ denote the Jacobson radicals of R and S, respectively.
A ring R is said to be semilocal if R=JðRÞ is an artinian ring
and R is said to be homogeneous semilocal if R=JðRÞ is a sim-

ple artinian ring.
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Several authors studied the transfer of algebraic properties

from S to R and from R to S. Resco [8] proved that if S is right
artinian, semiprimary or perfect, then so is R. Moreover Lee
[5] proved that if S is a local ring then R is a local ring. In
[3] the authors studied necessary and sufficient conditions on

R which forces the homogeneous semilocality of the group ring
R½G� or the crossed product R � G and vice versa. In this paper,
we shall focus on the transfer of homogeneous semilocality, or

more general conditions such as Wn or FGFP rings from S to
R (see Sections 3 and 4 below).

The given Examples 2.4 and 2.5 in this paper show that the

homogeneous semilocality cannot be transferred directly either
from S to R or from R to S. However, we will show that if R or
S satisfies some weaker properties such as normal homoge-

neous semilocal, Wn or FGFP then those properties can be
transferred from S to R (see Sections 3 and 4 below).
2. Homogeneous semilocal rings

We need the following two results.

Lemma 2.1. Let S be a finite normalizing extension of R. Then

S=JðSÞ is a finite normalizing extension of R=JðRÞ whose normal
generators are �xi ¼ xi þ JðSÞ.
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Proof. For any �s ¼ sþ JðSÞ 2 S=JðSÞ ¼ S; �s ¼
Pn

i¼1xiriþ
JðSÞ ¼

Pn
i¼1ðxi þ JðSÞÞðri þ JðRÞÞ ¼

Pn
i¼1�xi�ri. Thus �xi ¼ xiþ

JðSÞ is a normal basis for S ¼ S=JðSÞ over R=JðRÞ. h

Theorem 2.2 [8]. Let S be a finite normalizing extension of R.
Then S is artinian if and only if R is artinian.

Theorem 2.3. Let S be a finite normalizing extension of R. Then
S is a semilocal ring if and only if R is a semilocal ring.

Proof. S is a semilocal ring () S ¼ S=JðSÞ is an artinian
ring() R ¼ R=JðRÞ is an artinian ring (by 2.1 and

2.2)() R is a semilocal ring. h

The following two examples show that the transfer of homo-

geneous semilocality between R and S does not hold in either.

Example 2.4. Let A ¼ ZðpÞ ¼ fmn : m; n 2 Z; p-ng and let
R ¼ DnðZpÞ, the diagonal n� n matrices over A. Let sij ¼ eij
be the unit matrices. Then it is clear that sijR ¼ Rsij and
S ¼

Pn
i;j¼1sijR ¼

Pn
i;j¼1Rsij ¼MnðAÞ, the ring of n� n matri-

ces over A. Hence S is a finite normalizing extension of R with
n2 generators. Since A is a local ring with unique maximal ideal

m ¼ JðAÞ ¼ pZðpÞ, then K ¼ A=m ffi Zmodp is a field. There-
fore R=JðRÞ ffi DnðKÞ ffi K� K� � � � � K is an artinian ring
which is not simple. However S=JðSÞ ffiMnðKÞ, which is

simple artinian ring. Thus S is homogeneous semilocal and R is
just semilocal.

Example 2.5. Let R ¼ Zmod3 be the field of integers mod3
and G ¼ ha; bja2 ¼ b2 ¼ 1; ab ¼ bai the 4-Klein group and let

S ¼ R½G� be the group algebra of G over Zmod3. Since
charR ¼ 3-jGj ¼ 4, we know that JðR½G�Þ ¼ 0 by Maschkes
theorem and S=JðSÞ ’ S ¼ R½G�. In spite of being artinian S

is not simple as it has the augmentation ideal
DðR½G�Þ ¼ f0; 1þ aþ b; 1þ aþ ab; . . .g.

However, if S is homogeneous semilocal, then R satisfies an
intermediate property between homogeneous semilocality and
semilocality (see Theorem 2.9 below).

Throughout the following definitions, S is a fixed finite nor-
malizing extension of a ring R with normal generators
x1; . . . ; xn.

Definition 2.6. An ideal I in R is called S-normal ideal if

Ixi ¼ xiI for each i ¼ 1; . . . ; n.

Definition 2.7. The ring R is called S-normal simple if R has no
nonzero proper S-normal ideal.

Definition 2.8. A ring R is called normal homogeneous semilo-

cal if R ¼ R=JðRÞ is artinian and is S ¼ S=JðSÞ-normal simple
ring.

Theorem 2.9. Let S be a finite normalizing extension of R. If S

is homogeneous semilocal, then R is S-normal homogeneous
semilocal.

Proof. Since S is a homogeneous semilocal ring, then
S ¼ S=JðGÞ is simple artinian ring and by Theorem 2.2

R ¼ R=JðRÞ is artinian ring. To show that R has no nonzero
normal S-ideal, assume that I is a nonzero normal S-ideal in
R. Since by Lemma 2.1 S is a finite normalizing extension of

R, then S ¼
P

�xiR ¼
P

R�xi, moreover since �xiR ¼ R�xi and
I ¼ RI ¼ IR. Then SI ¼

P
�xiRI ¼

P
R�xiI ¼

P
RI�xi ¼P

IR�xi ¼ IS. If SI ¼ S, then I contains an element �u such that
�s�u ¼ �1, where s 2 S. By Proposition 3.3, the element �u 2 I is
invertible in R, which contradicts that I is a nonzero proper
ideal in R. Therefore IS is a nonzero two sided ideal in S which
contradicts the simplicity of S. Hence R is S-normal homoge-

neous semilocal. h
3. Wn-rings

In [12] Woods introduced the notion of Wn-ring to study the

transfer of semiperfectness between the ring R and the group
ring R½G� and in [6] Okninski used the notation of Wn-ring
to show that the class of Wn-rings contains the class of semilo-
cal rings.

Definition 3.1. A ring R is said to be Wn-ring if for any r 2 R
there exists an integer i; 1 6 i 6 n, such that 1� fiðrÞ is
invertible in R; where

f1ðrÞ ¼ r; fiðrÞ ¼ fi�1ðrÞð1� fi�1ðrÞÞ:

The next theorem gives a new characterization for homoge-
neous semilocal rings.

Theorem 3.2. A ring R is homogeneous semilocal if and only if R

is a Wn-ring for some n and has a unique maximal two sided
ideal.

Proof. Assume that R is homogeneous semilocal ring, then it

follows from [2] that R has a unique maximal ideal
m ¼ JðRÞ. Since R is a homogeneous semilocal ring, then R
is semilocal and hence by [6, Lemma 3.1] R satisfies Wn fore
some n.

Assume that R satisfies Wn and has a unique maximal ideal

m. Let P be any primitive ideal then R=P is a primitive ring
satisfying Wn. Thus by [6, Lemma 1] R=P ffiMtðDÞðt� t
matrices over a division ring DÞ is simple artinian. Thus P is a
maximal ideal and so every primitive ideal equals m. Therefore

m ¼ JðRÞ and R=JðRÞ ¼ R=P is simple artinian. Hence R is
homogeneous semilocal. h

In spite of the non-transfer of homogeneous semilocality
from S to R and vice versa, we can transfer the Wn structure
from S to R using the next result of Resco.

Proposition 3.3 [8]. Let S be a finite normalizing extension of
R. Then an element u 2 R is invertible in S if and only if u is
invertible in R.

Thus we can show the following:

Theorem 3.4. If S is a Wn-ring, then so is R.

Proof. Since S is a Wn-ring for any s 2 S there exists

i; 1 6 i 6 n, such that 1� fiðsÞ is invertible in S. Then for
any r 2 R#S there exists i; 1 6 i 6 n, such that 1� fiðrÞ is
invertible in S. By (Proposition 3.3) 1� fiðrÞ is invertible in

R for some 1 6 i 6 n. Hence R is Wn-ring. h
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4. FGFP rings

Throughout this section all modules are unitary right modules.
A well known theorem due to Bass [1] states that a ring R is left

perfect if and only if every flat R-module is projective. There-
fore, it is natural to study the rings R, for which every finitely
generated flat R-module is projective. Such rings are called

FGFP rings. In [10] Sakhaev and Chirkov proved that a semi-
local ring with a unique primitive ideal is an FGFP ring.

In [7] Puninski and Rothmaler proved that the FGFP prop-
erty is closed under Morita equivalence, finite direct sum and

subrings. Jondrup [4] proved that FGFP property is inter-
changed between a ring R and the group ring R[G], also be-
tween R and the ring of power series R½½x��. Right notherian

rings, right Ore domains with right Krull dimension and semi-
perfect rings are FGFP rings. The latter two rings are even left
and right FGFP rings.

If a sequenceA1;A2;A3; . . . ofMnðRÞ the n� nmatrices over
R such that Aiþ1Ai ¼ Ai for every i, eventually consists of idem-
potent generating the same principal right ideal in MnðRÞ, then
we say in this case that the sequence converges [7]. Following
Sakhaev [9] an ideal I of a ring R is called weakly commutative
if there exists m P 2 such that for all a1; a2; . . . ; am 2 I there
exists a non identity permutation r 2 Sm such that

a1; a2; . . . ; am 2 Rarð1Þ; arð2Þ; . . . ; arðmÞ. A ring R is called MnCP
if every right cyclic MnðRÞ-module is projective.

Theorem 4.1 [9]. Let R is a semilocal ring. then

(1) R is FGFP if and only if R is MnCP for some n > 0.
(2) If JðRÞ is weakly commutative, then R is FGFP.
(3) If R is FGFP then every sequence A1;A2;A3; . . . of MnðRÞ

converges.

Theorem 4.2 [7]. If for every n > 0, one of the following condi-
tions are satisfied (i) MnðRÞ satisfies a:c:c an right annihilators
of elements or (ii) MnðRÞ satisfies d:c:c on left annihilators of
elements, then R is FGFP.

Theorem 4.3 [11]. An R-module T is flat if and only if S	 RT is
a flat S-module.

Proposition 4.4. Let R be a homogeneous semilocal ring. Then
R is an FGFP ring.

Proof. If R is homogeneous semilocal, then R is Wn-ring hav-
ing a unique maximal idealM by Theorem 3.2. Using the same
argument as in the proof of Theorem 3.2 we deduce that every

primitive ideal is maximal. Thus R has a unique primitive ideal
M. Since R is semilocal, then by [10] R is FGFP. h

In the rest of this paper S is a finite normalizing extension
of R.

Proposition 4.5. If S is FGFP, then so is R.

Proof. Follows directly by [7, Lemma 3.1]. h

In Example 2.4 we showed that the homogeneous semilo-
cality of S does not imply the homogeneous semilocality of
R, however the homogeneous semilocality of S guarantees that
at least R is FGFP, MnCP and Wn-ring.

Corollary 4.6. Let S be a homogeneous semilocal ring. Then:

(i) R is FGFP ring,
(ii) R is MnCP ,
(iii) every sequence A1;A2;A3; . . . of MnðRÞ converges,
(iv) R is W n-ring.
Proof.

(i) Since S is homogeneous semilocal, then by Proposition

4.4 S is FGFP. Thus R is FGFP by Proposition 4.5.
(ii) Since S is homogeneous semilocal, then R is semilocal by

Theorem 2.3. Thus by Theorem 4.1, R is MnCP
(iii) From (ii) R is semilocal and by Theorem 4.1 (3) the

result follows.
(iv) Follows directly from Theorems 3.2 and 3.4. h
Proposition 4.7. Let S be a flat R-module, and R is a FGFP
ring. Then S is a FGFP ring.

Proof. Since S is finitely generated flat R-module and there is a

ring monomorphism from R to S, then the ring S is FGFP by
[4, Proposition 1.2]. h
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