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Abstract In this paper, we show that the v-weighted arithmetic mean is greater than the product of
the v-weighted geometric mean and Specht’s ratio. As a corollary, we also show that the v-weighted
geometric mean is greater than the product of the v-weighted harmonic mean and Specht’s ratio.
These results give the improvements for the classical Young inequalities, since Specht’s ratio is gen-
erally greater than 1. In addition, we give an operator inequality for positive operators, applying
our refined Young inequality.

© 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.

1. Introduction

We start from the famous Young inequality:

(1—=va+vb = a'p (1)
for positive numbers a, b and v € [0,1]. The inequality (1) is
also called v-weighted arithmetic-geometric mean inequality
and its reverse inequality was given in [1] with Specht’s ratio
as follows:

S(%)a""b" > (1—va+vb 2)
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for positive numbers a, b and v € [0, 1], where the Specht’s
ratio [2,3] was defined by

1
S(h) = hlill,

h#1
elog hi-1 (1)

for a positive real number /.
Recently, based on the refined Young inequality [4,5]:
2
(1=va+vb = a"p + r(f - \/B) , (3)

for positive numbers a, b and v € [0, 1], where r = min{v,1 — v},
we proved the following operator inequalities:

Proposition 1 [6]. For v € [0, 1] and positive operators A and B,
we have

A+ B
(1 —v)A+vB > Af,B+ 2”<% - Aﬁl/zB)

> Af,B
A4+ B!
> {A“ﬁ‘,B’] +2r<+fA‘lﬁl/zB")}

> {(1-v)4™ JrvB’l}7l
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where r=min{v,] — v} and Af,B= A"?(A71PBA72)" 4" de-
fined for v e [0,1].

The above inequalities can be regarded as an additive-type
refinement for the Young inequalities [7,8]:

(1—v)A+vB> A8, B> {(1-n4"' +vB'} ", (4)
In this short paper, we give a multiplicative-type refinement
for the Young inequalities (4) with the Specht’s ratio.

2. Main results

We here review the properties of the Specht’s ratio. See [1-3]
for example, as for the proof and the details.

Lemma 1. The Specht’s ratio

1
S(h) —L’

1

:elogh/ : (h#1, h>0)

has the following properties.
(i) S(1) = 1 and S(h) = S(1/h) > Ifor h > 0.

(ii) S(h) is a monotone increasing function on (1,00).
(iii) S(h) is a monotone decreasing function on (0,1).

We use the following lemmas to show our theorem.

Lemma 2. For x = 1, we have

2(x—1)
x+1

x—1

N

<logx <

(5)

Proof 1. We firstly prove the second inequality of (5). We put

\/x =t and

?—

o) = L 2log ¢,
Then we have /(1) = (%)2 > 0 and f{1) = 0. Thus we have
f(H) = f(1) = 0 and then we have log > < ’27", which implies
the second inequality in (5).

We also put

(r=1).

gx)=(x+1logx—-2(x—1), (x=1).

Then we have g(1) =0, g'(x) =log x+* —2,¢'(1) =0 and
g'(x) = “le > 0. Therefore we have g(x) > g(1) = 0, which
implies the first inequality in (5). O

Note that Lemma 2 can be also proven by the following
relation for three means:

Vxy <

for positive real numbers x and y, where x # y.

x—y x+y

log x —log y 2

Lemma 3. For t > 0, we have
e( +1) = (1+ 1) (6)

Proof 2. We firstly prove the inequality (6) for # > 1. We put

flt) =e(P+1) = (t+ 1)1,
By using the first inequality of (5), we have
26(t = 1)%e + 2t(1 — ) + 71(1 + 1) log 1

10) = i
J (- 1)’e +21(1 — )1 +2(1 — 1)
- (= 1)’
26(t — 1)%e — 2t(t — 1)1
B (= 1)
26(t — 1)* 7 = 21(1 — 1)1
L
In the last inequality, we have used the fact that lim,_ /71 = e

and the function 77 is monotone decreasing on 7 € [1,00). We
also have f(1) = 0 so that we have f{f) = 0 which proves the
following inequality:
e(F+1) = (t+ )1, > 1.

Putting ¢ =1 in the above inequality with simple calculations,
we have

e(s®+1) = (s+1)s7, 0<s<1. =

Then we have the following inequality which improves the
classical Young inequality between v-weighted geometric mean
and v-weighted arithmetic mean.

Theorem 1. For a,b > 0 and v € [0,1],

(1 —v)a+vb Z‘S((§>r)a“”bﬂ (7)

where r = min{v,1 — v} ans S(*) is the Specht’s ratio.
Proof 3. We prove the following inequality

-1 1 -1 1}log b’
(b : )vv+ _ e{(b h)vv +1}logb . 8)
b'S@’) GRSl
in the case of 0 < v < % From Lemma 2, we have
lgg b S ,2
b—17bp+1’
Therefore we have the following first inequality:

e{(b— 1)“v+ 1}log " > 2e{(b - v+ 1} . ©)
BV 1) (B I(B" + 1)

thus we have only to prove the above second inequality. For
this purpose, we put the following function f;, on v € [O, %]
for b > 0:

b>0.

S0) = 2e{(b— Dy + 13 = (B)FI(B +1).

Then we have

oy (log b)2 '
B = = P )

- (b" —1)°(3b" + 1) log 5" + b'(b" + 1)(log b")z}.

2V -1
v

TTT{(b“4—1)2(4b”'4—5bvg—1)

For the case of b > 1, using the inequalities (5), we have
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(b" —1)°(4b™ — 5b" —
+ 1)(log b")?

1) — (b = 1)°(3b" + 1) logh* + b'(b"

, , . , , -1
> (b — 1)°(4b™ —5b" — 1) — (b" — 1)*(3b" + I)W
. 200" = 1)\*
p+ 1) —2
OB+ )( b +1 >
B (b\'/Zi 1)4(bv/2+ 1)3(4b2v+b3\'/2+4bv+ 1) -
B2 (b" +1) -

For the case of 0 < b < 1, using the inequalities (5), we also
have

(b" —1)*(4b> — 5b" —
+ 1)(log ")’

1) — (b —1)°(30" + 1)log b’ + b (b"

= (b —1)*(4b> — 50" — 1)+ (b — 1)*(3b" + 1) log%
1 2
+b'(b"+1) <log E)

> (b~ 124" — 5" — 1) + (0"~ 136" + 1) (2(“”>

S +1
1 2
+b\'(bv + 1) <2(b‘ 1))

y+1
(b —1)*(4b" +1)

= " >0
b+ 1 0

Thus we have f;(v) <0 for » > 0. In addition, we have

B
f0) = 0and f;(}) = e(b + 1) — (VB +1) (V)" = 0, apply-
ing Lemma 3 with t = v/ > 0. Therefore we have fj,(v) > 0 for
S [O, %] Thus we have the following inequality

b-1)yv+1

b'S(b")

which implies

vb+ (1 —v) = S(B"D".

=1, 0<v<=,b6>0 (10)

Replacing b by % in the above inequality and then multiplying a
to the both sides, we have

' ‘ 1
(1=v)a+vb = S((S) )a‘*“b‘, 0<v<y, a,b>0.

Finally, from the inequality (10), we have

(a—Du+1 1
————>1, 0<u<=z,a>0.
aS(av) ’ sy d
Putting v = 1 — u in the above inequality we have
1
3 <v<l, b>0.

Replacing a by ¢ in the above inequality and then multiplying b
to the both sides, we have

(1=v)a+vb = S((g)li")a“"b‘y

since S(1/h) = S(h) for h > 0, ((i) of Lemma 1). Thus the
proof of the present theorem was completed. O

v+ (1 =v)a = a S,

<v<l, aq,b>0,

N —

Remark 1. Theorem 1 gives a tighter lower bound of the v-
wighted arithmetic mean of two variables, since the Specht’s
ratio is greater than 1, ((i) of Lemma 1).

The following inequality also improves the relation between

v-weighted geometric mean and v-weighted harmonic mean.

Corollary 1. For positive numbers a, b and v € [0,1], we have

ayr I A

- _ - - < I—vpyv
s((b)>((1 v)a+vb) <dop, (11)
where r=min{v,1 — v} and S(-) is the Specht’s ratio.

Proof 4. Replace a and b in Theorem 1 by ! and ;]

b’
respectively. O

Applying Theorem 1, we have the following operator
inequality for positive operators.

Theorem 2. For two positive operators A, B and positive real
numbrs mm' ,M,M’ satisfying the following conditions (i) or

(ii):

() 0<mI<A<mI< MISBLSMI
(i) 0 < MI<B<ml < MISALMI

. a
with h = % and ' =2 we have

'

(1=v)A+vB > S(h")A4,B (12)
> Af,B (13)
> SNH{(1 =4 +vB '} (14)
o {0 ) s)

wherev e [0,1],r= min{v,] — v}, S(:) is the Specht’s ratio and
At,B= AP(A71PBAT2) 4172 is the v-power mean for positive
operators A and B [9].

Proof 5. From Theorem 1, we have

v+ (1—v) = SH")x'
for any x > 0.
Therefore we have

v X+ (1=v)I> min SHHX

m <x<M’
for the positive operator X such that 0 < m'I< X< M'I We
here put X = A~"2B4~'2,
In the case of (i), we have h =Y < 4712BA~ 12 < M = ),
Then we have

vATPBAT? 4 (1 -1 = min S(x')(47/2BA7'2)".
h<a<i!

Since S(x) is an increasing function for x > 1, ((ii) of Lemma
1) we have

VAT PBATR (1= = S()(47'2BA'?)". (16)
.. ' —1/2 —1/2 m __
In the case of (i), we also have b =2 < 47'?BA™'> < =1

Then we also have

vATY2BATV2 4 (1 = )T > mi

V3=

in S(x")(472BA72)".
<

1
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Since S(x) is a decreasing function for 0 < x < 1 ((iii) of Lem-
ma 1), we have

1 v
vA—l/ZBA71/2 + (1 _ V)[ > S(ﬁ) (Afl/ZBA71/2) )

By the property S(x) = S(1/x) for x > 0 ((i) of Lemma 1), the
above inequality is the same to (16). Multiplying 4"/ from the
both sides to the inequality (16), we have the inequality (12).

The inequality (14) can be proven by replacing 4 and B by
A~"and B!, respectively in the first inequality and taking its
inverse.

The inequality (13) and the inequality (15) are trivial, due to
the property of the Specht’s ratio S(x) > 1 for x > 0. O

3. Conclusion

We have shown the refined Young inequalities for a real
number with Specht ratio. Applying these inequalities we have
obtained their operator version inequalities which refine the
classical Young operator inequalities as our previous results
have done in Proposition 1 (See [6]). Therefore we have two
different refinements for the classical Young inequalities (4).
Two kinds of the operator inequalities are based on the scalar
inequalities (3) and (7).

In our previous paper [6], we have proved the additive-type
refined Young inequality for n real numbers.

Proposition 2 [6]. Let a;,---,a, = 0 and p;,--- ,p, > 0 with
Z/'.’lej =1 and A=min{p;, --- p,}. If we assume that the
multiplicity attaining A is 1, then we have

n n ) 1 n n "
;pia,——ga’i’ >n),<;;a,-—111a}/>, (17)

with equality if and only if a; =---= a,.

See [10,11] for recent developments based on the above
inequality (or Jensen-type inequality [12]). It is also notable
that we do not need the assumption that the multiplicity
attaining / is 1, to prove only inequality (17). This assumption
connects with the equality condition.

Closing this section, we give comments on the multiplica-
tive-type refined Young inequality for n real numbers. We have
not yet found its proof. We also have not found any counter-
examples for the following 3-variables case:

wia) + waay + wyas = S(h")a)"ay*ay?, (18)

for a; € [m,M] where 0 < m < M with h=mxlawal 444

min{a;.a,a3}
r=min{wj,wy,w3}, where w; > 0 and w; + wy, + w3 = 1.
The problem on the multiplicative-type refined Young
inequality for n real numbers will be our future work.
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