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Abstract This paper presents a new approach for optimizing multitheaded programs with pointer

constructs. The approach has applications in the area of certified code (proof-carrying code) where

a justification or a proof for the correctness of each optimization is required. The optimization

meant here is that of dead code elimination.

Towards optimizing multithreaded programs the paper presents a new operational semantics for

parallel constructs like join-fork constructs, parallel loops, and conditionally spawned threads. The

paper also presents a novel type system for flow-sensitive pointer analysis of multithreaded pro-

grams. This type system is extended to obtain a new type system for live-variables analysis of mul-

tithreaded programs. The live-variables type system is extended to build the third novel type system,

proposed in this paper, which carries the optimization of dead code elimination. The justification

mentioned above takes the form of type derivation in our approach.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

One of the mainstream programming approaches today is mul-
tithreading. Using multiple threads is useful in many ways like
tical Society. Production and

ptian Mathematical Society.

lsevier

CC BY-NC-ND license.
(a) concealing suspension caused by some commands, (b) mak-

ing it easier to build huge software systems, (c) improving exe-
cution of programs specially those that are executed on
multiprocessors, and (d) building advanced user interfaces.

The potential interaction between threads in a multithread-
ed programs complicates both the compilation and the pro-
gram analysis processes. Moreover this interaction also

makes it difficult to extend the scope of program analysis tech-
niques of sequential programs to cover multithreaded
programs.

Typically optimizing multithreaded programs is achieved in

an algorithmic form using data-flow analyses. This includes
transforming the given program into a control-flow graph
which is a convenient form for the algorithm to manipulate.

For some applications like certified code, it is desirable to
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Figure 1 A motivating example.
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associate each program optimization with a justification or a

proof for the correctness of the optimization. For these cases,
the algorithmic approach to program analysis is not a good
choice as it does not work on the syntactical structure of the
program and hence does not reflect the transformation pro-

cess. Moreover the desired justification must be relatively sim-
ple as it gets checked within trusted computing base.

Type systems stand as a convenient alternative for the algo-

rithmic approach of program analyses when a justification is
necessary. In the type systems approach, analysis and optimi-
zation of programs are directed by the syntactical structure of

the program. Inference rules of type systems are advanta-
geously relatively simple and so is the justification which takes
the form of a type derivation in this case. The adequacy of type

systems for program analysis has already been studied like in
[3,12,22]

Pointer analysis is among the most important program
analyses and it calculates information describing contents of

pointers at different program points. The application of poin-
ter analysis to multithreaded programs results in information
that is required for program analyses and compiler optimiza-

tions such as live-variables analysis and dead code elimination,
respectively. The live-variables analysis finds for each program
point the set of variables whose values are used usefully in the

rest of the program. The results of live-variables analysis is
necessary for the optimization of dead code elimination which
removes code that has no effect on values of variables of inter-
est at the end of the program.

This paper presents a new approach for optimizing multi-
threaded programs with pointer constructs. The scope of the
proposed approach is broad enough to include certified

(proof-carrying) code applications where a justification for
optimization is necessary. Type systems are basic tools of the
new approach which considers structured parallel constructs

like join-fork constructs, parallel loops, and conditionally
spawned threads. The justifications in our approach take the
form of type derivations. More precisely, the paper presents

a type system for flow-sensitive pointer analysis of multi-
threaded programs. The live-variables analysis of multithread-
ed programs is also treated in this paper by a type system
which is an extension of the type system for pointer analysis.

The extension has the form of another component being added
to points-to types. The dead code elimination of multithreaded
programs is then achieved using a type system which is again

an extension of the type system for live-variables analysis. This
time the extension takes the form of a transformation
component added to inference rules of the type system for

live-variables analysis. To prove the soundness of the three
proposed type systems, a novel operational semantics for
parallel constructs is proposed in this paper.

1.1. Motivation

Fig. 1 presents a motivating example of the work presented in

this paper. Consider the program on the left-hand-side of the
figure. Suppose that at the end of the program we are inter-
ested in the values of x and y. We note that the assignment

in line 8 is a dead code as the variable x is modified in line 9
before we make any use of the value that the variable gets in
line 8. The assignment in line 2 indirectly modifies y which is

modified again in the par command before any useful use of
the value that y gets in line 2. Therefore line 2 is a dead code.
The par command has two threads which can be executed in
any order. If the first thread is executed first then assignments

in lines 4 and 5 become dead code. If the second thread is exe-
cuted first then assignments in lines 5 and 6 become dead code.
Therefore the dead code in the par command is the assignment

in line 5 only.
This paper presents a technique that discovers and removes

such dead code in parallel structured programs with pointer

constructs. The output of the technique is a program like that
on the right-hand-side of Fig. 1. In addition to the join-fork
construct (par), the paper also considers other parallel con-
structs like conditionally spawned threads and parallel loops.

With each such program optimization, our technique presents
a justification or a proof for the correctness of the optimiza-
tion. The proof takes the form of a type derivation.

1.2. Contributions

Contributions of this paper are the following:

1. A simple yet powerful operational semantics for multi-
threaded programs with pointer constructs.

2. A novel type system for pointer analysis of multithreaded
programs. To our knowledge, this is the first attempt to
use type systems for pointer analysis of multithreaded

programs.
3. A new type systems for live-variables analysis of multi-

threaded programs.
4. An original type system for the optimization of dead code

elimination for multithreaded programs.

1.3. Organization

The rest of the paper is organized as follows. The language that

we study (the while language enriched with pointer and paral-
lel constructs) and an operational semantics for its constructs
are presented in Section 2. Sections 3 and 4 present our pro-
posed type systems for flow-sensitive pointer and live-variables

analyses, respectively. The type system carrying program opti-
mization is introduced in Section 5. Related work is discussed
in Section 6.

2. Programming language

This section presents the programming language (Fig. 2) we
use together with an operational semantics for its constructs.
The language is the simple while language [8] enriched with

commands for pointer manipulations and structured parallel
constructs.



Figure 2 The programming language.
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The parallel constructs include join-fork constructs, parallel
loops, and conditionally spawned threads. The par (join-fork)
construct starts executing many concurrent threads at the

beginning of the par construct and then waits until the comple-
tion of all these executions at the end of the par construct.
Semantically, the par construct can be expressed approxi-
mately as if the threads are executed sequentially in an arbi-

trary order. The parallel loop construct included in our
language is that of par-for. This construct executes, in parallel,
a statically unknown number of threads each of which has the

same code (the loop body). Therefore the semantics of par-for
can be expressed using that of the par construct. The construct
including conditionally spawned threads is that of par-if. This

construct executes, in parallel, its n concurrent threads. The
execution of thread (bi,Si) includes the execution of Si only if
bi is true.

One way to define the meaning of the constructs of our pro-

gramming language, including the parallel constructs, is by an
operational semantics. This amounts to defining a transition
relation [ between states which are defined as follows.

Definition 1

1. Addrs= {x0 Œ x 2 Var} and Val ¼ Z [ Addrs:
2. A state is either an abort or a map c 2 C = Var fi Val.

The semantics of arithmetic and Boolean expressions are
defined as usual except that arithmetic and Boolean operations
are not allowed on pointers.

sntc ¼ n s&xtc ¼ x0 sxtc ¼ cðxÞ struetc ¼ true

sfalsetc ¼ false

s � xtc ¼
cðyÞ if cðxÞ ¼ y0;

! otherwise:

�

se1 � e2tc ¼
se1tc� se2tc if se1tc; se2tc 2 Z;

! otherwise:

�

s:Atc ¼
:ðsAtcÞ ifsAtc 2 ftrue; falseg;
! otherwise:

�

se1 ¼ e2tc ¼
! if se1tc ¼ ! or se2tc ¼ !;

true if se1tc ¼ se2tc – !;

false otherwise:

8><
>:

se1 6 e2tc ¼
! if se1tc R Z or se2tc R Z;

se1tc 6 se2tc otherwise:

�

For } 2 f^;_g; sb1 } b2tc

¼
! if sb1tc ¼ !orsb2tc ¼ !;

sb1tc } sb2tc otherwise:

�

The inference rules of our semantics (transition relation) are
defined as follows:

setc ¼ !

x :¼ e : c , abort

setc – !

x :¼ e : c , c½x # setc�

cðxÞ ¼ z0 z :¼ e : c , state

�x :¼ e : c , state

cðxÞ R Addrs

�x :¼ e : c , abort x :¼ &y : c , c½x # y0�

cðyÞ ¼ z0 x :¼ z : c , c0

x :¼ �y : c , c0

cðyÞ R Addrs

x :¼ �y : c , abort skip : c , c
S1 : c , abort

S1;S2 : c , abort

S1 : c , c00 S2 : c00 , state

S1;S2 : c , state

sbtc ¼ !

if b then St else Sf : c , abort

sbtc ¼ true St : c , state

if b then St else Sf : c , state

sbtc ¼ false Sf : c , state

if b then St else Sf : c , state

sbtc ¼ !

while b do St : c , abort

sbtc ¼ false

while b do St : c , c

sbtc ¼ true S : c , c00 while b do St : c00 , state

while b do St : c , state

sbtc ¼ true S : c , abort

while b do St : c , abort
� Join-fork:

parffS1g; . . . ;fSngg : c , c0
y

parffS1g; . . . ;fSngg : c , abort
z

� there exist a permutation h: {1, . . . ,n} fi {1, . . . ,n} and
n+ 1 states c = c1, . . . ,cn+1 = c0 such that for every
1 6 i 6 n, Sh(i): ci fi ci+1.

� there exist m such that 1 6 m 6 n, a one-to-one map
b: {1, . . . , m} fi {1, . . . , n}, and m + 1 states c = c1,
. . . , cm+1 = abort such that for every 1 6 i 6 m,

Sb(i): ci fi ci+1.
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� Conditionally spawned threads:

parffif b1 then S1 else skipg; . . . ;fif bn then Sn else skipgg : c, c0

par� iffðb1;S1Þ; . . . ;ðbn;SnÞg : c, c0

parffif b1 then S1 else skipg; . . . ;fif bn then Sn else skipgg : c, abort

par� iffðb1;S1Þ; . . . ;ðbn;SnÞg : c,abort

� Parallel loops:

9n: parffSg; . . . ;fSg
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

g
n�times

: c, c0

par� for fSg : c, c0
9n: parffSg; . . . ;fSg

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
g

n�times

: c, abort

par� forfSg : c, abort
3. Pointer analysis

In this section, we present a novel technique for flow-sensitive

pointer analysis of structured parallel programs where shared
pointers may be updated simultaneously. Our technique
manipulates important parallel constructs; join-fork con-

structs, parallel loops, and conditionally spawned threads.
The proposed technique has the form of a compositional type
system which is simply structured. Consequently results of the

analysis are in the form of types assigned to expressions and
statements approved by type derivations. Therefore a type is
assigned to each program point of a statement (program). This
assigned type specifies for each variable in the program a con-

servative approximation of the addresses that may get into the
variable. The set of points-to types PTS and the relation
` ˝ C · PTS are defined as follows:

Definition 2

1. PTS = {ptsŒpts: Var fi 2Addrs}.
2. pts 6 pts0 ()def 8x 2 Var � ptsðxÞ # pts0ðxÞ.
3. c � pts ()

def
ð8x 2 Var � cðxÞ 2 Addrs ) cðxÞ 2 ptsðxÞÞ.

The inference rules of our type system for pointer analysis
are the following:

n : pts ! ; x : pts ! ptsðxÞ e1 � e2 : pts ! ;

e : pts ! A

x :¼ e : pts ! pts½x # A� ð: ¼
pÞ

x :¼ &y : pts ! pts½x # fy0g� ð:¼ &pÞ
skip : pts ! pts

8z0 2 ptsðyÞ: x :¼ z : pts ! pts0

x :¼ �y : pts ! pts0
ð:¼ �pÞ

8z0 2 ptsðxÞ: z :¼ e : pts ! pts0

�x :¼ e : pts ! pts0
ð� : ¼pÞ

Si : pts [ [j–iptsj ! ptsi
parffS1g; . . . ; fSngg : pts ! [iptsi

ðparpÞ

S1 : pts ! pts00 S2 : pts00 ! pts0

S1;S2 : pts ! pts0
ðseqpÞ

parffif b1 then S1 else skipg; . . . ;fif bn then Sn else skipgg : pts ! pts0

par� iffðb1;S1Þ; . . . ;ðbn;SnÞg : pts ! pts0
ðpar� ifpÞ
S : pts[pts0 ! pts0

par� forfSg : pts ! pts0
ðpar� forpÞ

St : pts ! pts0 Sf : pts ! pts0

if b then St else Sf : pts ! pts0
ðifpÞ

St : pts ! pts

while b do St : pts ! pts
ðwhlpÞ

pts01 6 pts1 S : pts1 ! pts2 pts2 6 pts02
S : pts01 ! pts02

ðcsqpÞ

The judgement of an expression has the form e: pts fi A. The
intended meaning of this judgment, which is formalized in
Lemma 1, is that A is the collection of addresses that e may

evaluate to in a state of type pts. The judgement of a statement
has the form S: pts fi pts0. This judgement simply guarantees
that if S is executed in a state of type pts and the execution ter-

minates in a state c0, then c0 has type pts0. Typically, the pointer
analysis for a program S is achieved via a post-type derivation
for the bottom type (mapping variables to ;) as the pre-type.

The inference rules corresponding to assignment commands

are clear. For the rule (parp) of the join-fork command, par,
one possibility is that the execution of a thread Si starts before
the execution of any other thread starts. Another possibility is

that the execution starts after executions of all other threads
end. Of course there are many other possibilities in between.
Consequently, the analysis of the thread Si must consider all

such possibilities. This is reflected in the pre-type of Si and
the post-type of the par command. Similar explanations clarify
the rules (par � ifp) and (par � forp).

We note that a type invariant is required to type a while

statement. Also to achieve the analysis for one of the par’s
threads we need to know the analysis results for all other
threads. However obtaining these results requires the result

of analyzing the first thread. Therefore there is a kind of circu-
larity in rule (parp). Similar situations are in rules (par � ifp)
and (par � forp). Such issues can be treated using a fix-point

algorithm. The convergence of this algorithm is guaranteed
as the rules of our type system are monotone and the set of
points-to types PTS is a complete lattice.

Lemma 1

1. Suppose e: pts fi A and c ` pts. Then sebc 2 Addrs implies
sebc 2 A.

2. pts 6 pts0 () ("c. c ` pts) c ` pts0).
Proof. The first item is obvious. The left-to-right direction of
(2) is easy. The other direction is proved as follows. Suppose

y0 2 pts (x). Then the state {(x,y0),(t,0)Œt 2 Varn{x}} is of type
pts and hence of type pts0 implying that y0 2 pts0(x). Therefore
pts(x) ˝ pts0(x). Since x is arbitrary, pts 6 pts0. h

Theorem 1. (Soundness) Suppose that S: pts fi pts0, S: c [ c0,
and c ` pts. Then c0 ` pts0.

Proof. The proof is by structure induction on the type deriva-
tion. We demonstrate some cases.

– The case of (:=p): In this case pts0 = pts[x ´ A] and
c0 = c[x ´ sebc]. Therefore by the previous lemma c `pts

implies c0 ` pts0.
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– The case of (\ :=p): In this case there exists z 2 Var such

that c(x) = z0 and z := e: c [ c0. Because c ` pts, z0 2
pts(x) and hence by assumption z:=e: pts fi pts0. There-
fore by soundness of (:=p), c0 ` pts0.

– The case of (parp): In this case there exist a permutation h:
{1, . . . ,n} fi {1, . . . ,n} and n + 1 states c = c1, . . . ,cn+1 =
c0 such that for every 1 6 i 6 n, Sh(i): ci fi ci+1. Also c1 `

pts implies c1 ` pts [ [ j„h(1)ptsj. Therefore by the induction

hypothesis c2 ` ptsh(1). This implies c2 ` pts [ [ j„h(2)ptsj.
Again by the induction hypothesis we get c3 ` ptsh(2). There-
fore by a simple induction on n, we can show that

c0 = cn+1 ` ptsh(n) which implies c0 ` pts0 = [ jptsj.
– The case of (par � forp): In this case there exists n such that

par ffSg; . . . ; fSg
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n�times

g : c , c0. By induction hypothesis we

have S: pts [ pts0 fi pts0. By (parp) we conclude that

par ffSg; . . . ; fSg
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n�times

g : pts , pts0. Therefore by the soundness

of (parp), c0 ` pts0. h
4. Live-variables analysis

In this section, we present a type system to perform live-vari-
ables analysis for pointer programs with structured parallel

constructs. We start with defining live-variables:

Definition 3

– A variable is usefully used if it is used
� as the operand of the unary operation \.
� in an assignment to a variable that is live at the end of

the assignment, or

� in the guard of an if-statement or a while-statement,
– A variable is live at a program point if there is a computa-

tional path from that program point during which the var-
iable gets usefully used before being modified.

Definition 4. The set of live types is denoted by L and equal to

pts	PðVarÞ. The second component of a live type is termed a
live-component. The subtyping relation 6 is defined as:
(pts,l) 6 (pts0,l0) ()

def
pts 6 pts0 and l ˚ l0.

The live-variables analysis is a backward analysis. For each
program point, this analysis specifies the set of variables that

may be live (according to the definition above) at that point.
Our type system for live-variables analysis is obtained as an

enrichment of the type system for pointer analysis, presented in

the previous section. Hence one can say that the type system
presented here is a strict extension of that presented above.
This is so because the result of pointer analysis is necessary

to improve the precision of the live-variables analysis. This
also gives an intuitive explanation of the definition of live types
above.

The judgement of a statement S has the form S:(pts,l) fi
(pts0,l0). The intuition of the judgement is that the presence
of live-variables at the post-state of an execution of S in l0 im-
plies the presence of live-variables at the pre-state of this exe-

cution in l. The intuition agrees with the fact that live-variables
analysis is a backward analysis and gives an insight into the

definition of c ` l below.
Suppose we have the set of variables l0 that we have interest

in their values at the end of executing a statement S and the
result of pointer analysis of S (in the form S: pts fi pts0).

The live-variables analysis takes the form of a pre-type deriva-
tion that calculates a set l such that S:(pts ,l) fi (pts0,l0).

The inference rules for our type system for live-variables

analysis are as follows.

x :¼ e : pts ! pts0 x R l0

x :¼ e : ðpts; l0Þ ! ðpts0; l0Þ : ¼l
1

� �
x :¼ e : pts ! pts0 x 2 l0

x :¼ e : ðpts; ðl0 n fxgÞ [ FVðeÞÞ ! ðpts0; l0Þ : ¼l
2

� �

x :¼ &y : ðpts; l0 n fxgÞ ! ðpts½x # fy0g�; l0Þ ð:¼ &lÞ

skip : ðpts; lÞ ! ðpts; lÞ
x :¼ �y : pts ! pts0 x R l0

x :¼ �y : ðpts; l0 [ fygÞ ! ðpts0; l0Þ :¼ �l1
� �

x :¼ �y : pts ! pts0 x 2 l0

x :¼ �y : ðpts; ðl0 n fxgÞ [ fy; zjz0 2 ptsðyÞgÞ ! ðpts0; l0Þ :¼ �l2
� �

�x :¼ e : pts ! pts0 ptsðxÞ \ l0 ¼ ;
�x :¼ e : ðpts; l0 [ fxgÞ ! ðpts0; l0Þ � : ¼l

1

� �
�x :¼ e : pts ! pts0 ptsðxÞ \ l0 – ;

�x :¼ e : ðpts; l0 [ FVðeÞ [ fxgÞ ! ðpts0; l0Þ � : ¼l
2

� �
Si : ðpts [ [j–iptsj; liÞ ! ðptsi; l0 [ [j–iljÞ

parffS1g; . . . ; fSngg : ðpts;[iliÞ ! ð[iptsi; l
0Þ ðpar

lÞ

parffif b1 then S1 else skipg; . . . ;fif bn then Sn else skipgg : ðpts; lÞ ! ðpts0; l0Þ
par� iffðb1;S1Þ; . . . ;ðbn;SnÞg : ðpts; lÞ ! ðpts0; l0Þ ðpar� iflÞ

S : ðpts[pts0; lÞ ! ðpts0; l0 [ lÞ
par� forfSg : ðpts; lÞ ! ðpts0; l0Þ ðpar� forlÞ

S1 : ðpts; lÞ ! ðpts00; l00Þ S2 : ðpts00; l00Þ ! ðpts0; l0Þ
S1;S2 : ðpts; lÞ ! ðpts0; l0Þ ðseqlÞ

St;Sf : ðpts; lÞ ! ðpts0; l0Þ
if b then St else Sf : ðpts; l[FVðbÞÞ ! ðpts0; l0Þ ðif

lÞ

l¼ l0 [FVðbÞ St : ðpts; l0Þ ! ðpts; lÞ
while b do St : ðpts; lÞ ! ðpts; l0Þ ðwhl

lÞ

ðpts01; l
0
1Þ 6 ðpts1; l1Þ S : ðpts1; l1Þ ! ðpts2; l2Þ ðpts2; l2Þ 6 ðpts02; l

0
2Þ

S : ðpts01; l01Þ ! ðpts02; l
0
2Þ

ðcsqlÞ

For the command *x :=e, we have two rules, namely � : ¼l
1

� �
and � : ¼l

2

� �
. In both cases, calculating the pre-type from the

post-type includes adding x to the post-type. This is so because
according to Definition 3, x is live at the pre-state of any exe-
cution of the command. The rule � : ¼l

1

� �
deals with the case

that there is no possibility that the modified variable by this
statement is live (pts (x) \ l0 = ;) at the end of an execution.
In this case there is no need to add any other variables to

the post-type. The rule � : ¼l
2

� �
deals with the case that there

is a possibility that the modified variable by this statement is
live (pts (x) \ l0 „ ;) at the end of an execution. In this case,
there is a possibility that free variables of e are used usefully

according to Definition 3. Therefore free variables of e are
added to the post-type. This gives an intuitive explanation
for rules of all the assignment commands. The intuition given

in the previous section for the rules (parp) helps to understand
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the rules for the parallel constructs, (parl), (par � ifl), and

(par � forl).
Towards proving the soundness of our type system for live-

variables analysis, we introduce necessary definitions and

results.

Definition 5

1. c�lpts ()
def
8x 2 l: cðxÞ 2 Addrs) cðxÞ 2 ptsðxÞ:

2. c
lc0 ()
def
8x 2 l: cðxÞ ¼ c0ðxÞ:

3. c
ðpts;lÞc0 ()
def

c�lpts; c0�lpts, and c 
 l c0.

Definition 6. The expression c ` l denotes the case when there

is a variable that is live at that state (computational point) and
is not included in l. A state c has type (pts,l), denoted by
c ` (pts,l), if c ` lpts and c ` l.

The following lemma is proved by structure induction on e
and b.

Lemma 2. Suppose that c and c0 are states and
l and l0 2 PðVarÞ. Then

1. If l ˚ l0 and c 
 lc0, then c
l0c0.
2. If l = l0 [ FV(e) and c 
 lc0, then sebc = s ebc0 and c
l0c0.
3. If l = l0 [ FV(b) and c 
 lc0, then sbbc = s bbc0 and c
l0c0.

The following lemma follows from Lemma 1.

Lemma 3. Suppose that c ` lpts,FV(e) ˝ l, and e: pts fi A.

Then

setc 2 Addrs ! setc 2 A:

Proof. Consider the state c0, where c0 = k x. if x 2 FV(e) then

c(x) else 0. It is not hard to see that sebc = seb c0 and c0 ` pts.

Now by Lemma 1, sebc0 2 Addrs implies sebc0 2 A which com-

pletes the proof. h

Theorem 2

1. ðpts; lÞ 6 ðpts0; l0Þ ) ð8c: c�lpts ! c�l0pts0Þ.
2. Suppose that S:(pts,l) fi (pts0,l0) and S: c [ c0. Then c ` l

pts implies c0�l0pts0:
3. Suppose that S:(pts,l) fi (pts0,l0) and S: c [ c0. Then c ` l

implies c0 ` l0. This guarantees that if the set of variables live
at c0 is included in l0, then the set of variables live at c is
included in l.

Proof

1. Suppose c ` lpts. This implies c�l0pts because l0 ˝ l. The last

fact implies c�l0pts0 because pts 6 pts0.
2. The proof is by induction on the structure of type deriva-

tion. We show some cases.
(a) The type derivation has the form : ¼l

1

� �
. In this case,

pts0 = pts [x ´ A] and c0 = c[x ´ seb c]. Therefore
c�l0pts implies c0�l0pts0 because x R l0.
(b) The type derivation has the form : ¼l
2

� �
. In this case,

e: pts fi A, pts0 = pts[x ´ A], c0 = c[x ´ sebc], and
l= (l0n{x}) [ FV(e). Therefore by Lemma 3 it is

not hard to see c0�l0pts0.
(c) The type derivation has the form :¼ �l

1

� �
. In this case,

for every z0 2 pts(y), we have x:=z: pts fi pts0,

c(y) = z0, and x:=z: c fi c0. We have z0 2 pts(y),

because y 2 l and c ` lpts. Therefore by : ¼l
1

� �
, we

have x:=z:(pts ,l0) fi (pts0,l0). Now c ` lpts amounts

to c�l0pts. Hence we get c0�l0pts0 by soundness of

: ¼l
1

� �
.

(d) The type derivation has the form :¼ �l
2

� �
. In this case,

for every z0 2 pts(y), we have x:=z: pts fi pts0,

c(y) = z0, x:=z: c fi c0, and l= (l0n{x}) [ {y,zŒz0

2 pts(y)}. We have z 2 pts(y) because c ` lpts and

y 2 l. Therefore by : ¼l
2

� �
we have x:= z:(pts,

(l0n{x}) [ {z}) fi (pts0, l0). c ` lpts implies

c�ðl0nfxgÞ[fzgpts. Hence by soundness of : ¼l
2

� �
, we get

c0�l0pts0.
(e) The type derivation has the form � : ¼l

1

� �
. In this

case, for every z0 2 pts(x), we have z:=e: pts fi pts0,

c(x) = z0, and z:=e: c fi c0. We have z0 2 pts(x),

because x 2 l and c ` lpts. Therefore by : ¼l
1

� �
, we

have z:=e:(pts ,l0) fi (pts0,l0) because pts(x) \ l0 = ;.
Now c ` lpts amounts to c�l0pts. Hence we get

c0�l0pts0 because z:= e:(pts,l0) fi (pts0,l0) and by

soundness of : ¼l
1

� �
.

(f) The type derivation has the form � : ¼l
2

� �
. In this

case, for every z0 2 pts(x), we have z:=e: pts fi pts0,

c(x) = z0, z:=e: c fi c0, and l= l0 [ FV(e) [ {x}. We

have z 2 pts(x) because c ` lpts and x 2 l. Therefore

by : ¼l
2

� �
we have x:=z:(pts, (l0n{z}) [

FV(e)) fi (pts0,l0). c ` lpts implies c�ðl0nfzgÞ[FV ðeÞpts.

Hence by soundness of : ¼l
2

� �
, we get c0�0lpts0.

(g) The type derivation has the form (parl). In this case

there exist a permutation h: {1, . . . ,n} fi {1, . . . ,n}

and n+ 1 states c = c1, . . . ,cn+1 = c0 such that for

every 1 6 i 6 n, Sh(i): ci fi ci+1. Also c1 ` lpts implies

c1�lhð1Þpts [ [j–hð1Þptsj. Therefore by the induction

hypothesis c2�l0[[j–hð1Þlj ptshð1Þ. This implies c2�lhð2Þ

pts [ [j–hð2Þptsj. Again by the induction hypothesis

we get c3�l0[[j–hð2Þlj ptshð2Þ. Therefore by a simple induc-

tion on n, we can show that c0 ¼ cnþ1�l0[[j–hðnÞlj ptshðnÞ

which implies c0�l0pts0 ¼ [jptsj.

(h) The type derivation has the form (par � forl): In this

case there exists n such that parffSg; . . . ; fSg
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n�times

g :

c , c0. By induction hypothesis we have S:

(pts [ pts0,l) fi (pts0,l [ l0). By (parl) we conclude that

par ffSg; . . . ; fSg
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n�times

g : ðpts; lÞ ! ðpts0; l0Þ. Therefore by

soundness of (parl), we get c0�l0pts0.

3. The proof is also by induction on the structure of type der-
ivation and it is straightforward. h
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The proof of the following corollary follows from
Theorem 2.

Corollary 1. Suppose S: c [ c0 and S: (pts,l) fi (pts0,l0).
Then c ` (pts,l) implies c0 ` (pts0,l0).

Theorem 3. Suppose that S: (pts,l) fi (pts0,l0), S: c [ c0,
c 
 (pts,l)c*, and S does not abort at c*. Then there exists a state

c0� such that S : c� ! c0� and c0
ðpts0 ;l0Þc0�.

Proof. The proof is by induction on structure of type deriva-
tion. We demonstrate some cases:

1. The type derivation has one of the forms : ¼l
1

� �
and : ¼l

2

� �
.

In this case, pts0 = pts[x ´ A] and c0 = c[x ´ sebc]. We
take c0� ¼ c�½x # setc��.

2. The type derivation has the form :¼ �l
1

� �
or :¼ �l

2

� �
. In this

case, "z0 2 pts(y), we have x:=z: pts fi pts 0,c(y) = z0, and
x:= z: c fi c0. We set c0� ¼ c�½x # c�ðzÞ�.

3. The type derivation has one of the forms :¼ �l
1

� �
and

:¼ �l
2

� �
. In this case, "z0 2 pts(x), we have z:=e: pts

fi pts0,c(x) = z0, and z:= e: c fi c0. We let

c0� ¼ c�½z # setc��
4. The type derivation has the form (parl). In this case there

exist a permutation h: {1, . . . ,n} fi {1, . . . ,n} and n+ 1

states c = c1, . . . ,cn+1 = c0 such that for every 1 6 i 6 n,
Sh(i): ci fi ci+1. We refer to c* as c*1. We have
c1
ðpts;[iliÞc�1 which implies c1
ðpts[[j–hð1Þptsj ;lhð1ÞÞc�1. Therefore
by induction hypothesis, there exists c*2 such that

Sh(1): c*1 fi c*2 and c2
ðptshð1Þ ;l
0[[jlj–hð1ÞÞc�2 which implies

c2
ðpts[[j–hð2Þptsj ;lhð2ÞÞc�2. Therefore a simple induction on n
proves the required. h
5. Dead code elimination

This section introduces a type system for dead code elimina-
tion. Given a program and a set of variables whose values con-
cern us at the end of the program, there may be some code in

the program that has no effect on the values of these variables.
Such code is called dead code. The type system presented here
aims at optimizing structured parallel programs with pointer

constructs via eliminating dead code. In the form of a type der-
ivation, the type system associates each optimization with a
proof for the soundness of the optimization. Optimizing a pro-
gram may result in correcting it i.e. preventing it from abort-

ing. Of course this happens if the removed dead code is the
only cause of abortion.
The type system presented here has judgements of the form:
S: (pts ,l) fi (pts0,l0) W S0. The intuition is that S0 optimizes S
towards dead code elimination (and may be program correc-
tion). As mentioned early in many occasions, the derivation

of such judgement provides a justification for the optimization
process. The form of the judgement makes it apparent that the
type system presented in this section is built on the type system

for live-variables analysis.
Fig. 3 outlines an algorithm, parallel-optimize, that summa-

rizes the optimization process. A pointer analysis that anno-

tates the points of the input program with pointer
information is the first step of the algorithm. This step takes
the form of a post type derivation of S, in our type system
for pointer analysis, using the bottom points-to type

^ = {x ´ ;Œx 2 Var} as the pre type. Secondly, the algorithm
refines the pointer information obtained in the first step via
annotating the pointer types with type components for live-

variables. Using our type systems for live-variables analysis,
this is done via a pre type derivation of S for the set l0, the
set of variables whose values concerns us at the end of execu-

tion, as the post type. Finally, the information obtained so far
is utilized in the third step to find S0 via using the type system
for dead code elimination proposed in this section. Applying

this algorithm to the program on the left-hand side of Fig. 1
results in the program on the right-hand side of the same fig-
ure. The details of this application is a simple exercise.

The inference rules of our type system for dead code elim-

ination are as follows:

x :¼ e : pts ! pts0 x R l0

x :¼ e : ðpts; l0Þ ! ðpts0; l0Þ,! skip
: ¼e

1

� �
x :¼ e : pts ! pts0 x 2 l0

x :¼ e : ðpts; ðl0 n fxgÞ [ FVðeÞÞ ! ðpts0; l0Þ,!x :¼ e
: ¼e

2

� �
x R l0

x :¼ &y : ðpts; l0Þ ! ðpts½x # fy0g�; l0Þ,!skip
:¼ &e

1

� �

skip : ðpts; lÞ ! ðpts; lÞ,!skip

x2 l0

x :¼&y : ðpts; l0 n fxgÞ ! ðpts½x# fy0g�; l0Þ,!x :¼&y
:¼&e

2

� �

x :¼�y : pts ! pts0 x R l0

x :¼�y : ðpts; l0 [fygÞ ! ðpts0; l0Þ,!skip
:¼�e1
� �

x :¼�y : pts ! pts0 x2 l0

x :¼�y : ðpts;ðl0 n fxgÞ[fy;zjz0 2 ptsðyÞgÞ ! ðpts0; l0Þ,!x :¼�y :¼�e2
� �
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�x :¼ e : pts ! pts0 ptsðxÞ\ l¼;
�x :¼ e : ðpts; l0 [fxgÞ ! ðpts0; l0Þ,!skip

� :¼e
1

� �

�x :¼ e : pts ! pts0 ptsðxÞ\ l0– ;
�x :¼ e : ðpts; l0 [fxg[FVðeÞÞ ! ðpts0; l0Þ,!�x :¼ e

� :¼e
1

� �

Si : ðpts[[j–iptsj; liÞ ! ðptsi; l0 [[j–i ljÞ,!S0i
parffS1g; . . . ;fSngg : ðpts;[iliÞ ! ð[iptsi; l0Þ,!parffS01g; . . . ;fS0ngg

ðpareÞ

parffif b1 then S1 else skipg; . . . ;fif bn then Sn else skipgg : ðpts; lÞ ! ðpts0; l0Þ

,!parffif b1 then S01 else skipg; . . . ;fif bn then S0n else skipgg
par� iffðb1;S1Þ; . . . ;ðbn;SnÞg : ðpts; lÞ ! ðpts0; l0Þ

,!par� iffðb1;S01Þ; . . . ;ðbn;S0nÞg

ðpar� ifeÞ

S : ðpts[pts0; lÞ ! ðpts0; l0 [ lÞ,!S0

par� forfSg : ðpts; lÞ ! ðpts0; l0Þ,!par� forfS0gðpar� foreÞ

S1 : ðpts; lÞ ! ðpts00; l00Þ,!S01 S2 : ðpts00; l00Þ ! ðpts0; l0Þ,!S02
S1;S2 : ðpts; lÞ ! ðpts0; l0Þ,!S01;S

0
2

ðseqeÞ

St : ðpts; lÞ ! ðpts0; l0Þ,!S0t Sf : ðpts; lÞ ! ðpts0; l0Þ,!S0f
if b then St else Sf : ðpts; l[FVðbÞÞ ! ðpts0; l0Þ,!if b then S0t elsegS0f

ðifeÞ

l¼ l0 [FVðbÞ St : ðpts; l0Þ ! ðpts; lÞ,!S0t
while b do St : ðpts; lÞ ! ðpts; l0Þ,! while b do S0t

ðwhleÞ

ðpts01; l
0
1Þ 6 ðpts1; l1Þ S : ðpts1; l1Þ ! ðpts2; l2Þ,!S0 ðpts2; l2Þ 6 ðpts02; l

0
2Þ

S : ðpts01; l01Þ ! ðpts02; l
0
2Þ,!S0

ðcsqeÞ

When optimizing programs it is important to guarantee that if
(a) the original and optimized programs are executed in similar
states, and (b) the original program ends at a state (rather than

abort), then (a) the optimized program does not abort as well,
and (b) the optimized program reaches a state similar to that
reached by the original program. Indeed, this is guaranteed
by the following theorem.

Theorem 4. (Soundness) Suppose that S: (pts,l) fi
(pts0,l0) W S0 and c 
 (pts,l)c*. Then

1. If S: c [ c0, then there exists a state c0� such that
S0 : c� ! c0� and c0
ðpts0 ;l0Þc0�.

2. If S0 : c� ! c0� and S does not abort at c, then there exists a
state c0 such that S: c [ c0 and c0
ðpts0 ;l0Þc0�.

The proof of this theorem is by induction on the structure
of type derivation and it follows smoothly from Theorem 3.
More precisely Theorem 3 is used when S0 = S. When
S0 = skip, we take c0� ¼ c� in 1. We note that the requirement

of Theorem 3 that S does not abort at c* is guarantied when
this theorem is called in the proof of Theorem 4.

6. Related work

6.1. Analysis of multithreaded programs

The analysis of multithreaded programs is an area that receives

growing interest. It is a challenging area [27] as the presence of
threading complicates the program analysis. The work in this
area can be classified into two main categories. One category

includes techniques that was designed specifically to optimize
or correct multithreaded programs. The other category
includes techniques whose scope was extended from sequential

programs to multithreaded programs.
Under the first category mentioned above comes several

directions of research. The purpose in the analysis of synchro-
nization constructs [28,32] is to clarify how the synchroniza-

tion actions apart executions of program segments. The
result of this analysis can be used by compiler to conveniently
add join-fork constructs. One problem of multithreading com-

puting is deadlock which results from round waiting to gain re-
sources. Researchers have developed various techniques for
deadlock detection [9,30,31]. The situation when a memory

location is accessed by two threads (one of them writes in
the location) without synchronization is called data race. On
direction of research in this category focuses on data race

detection [15]. The analysis of multithreaded programs be-
comes even harder in the presence of a weak memory consis-
tency model because such model does not guarantee that a
write statement included in one thread is observed by other

threads in the same order. However such model simplifies
some issues on the hardware level. The work in this direction,
like [5], aims at overcomes the drawbacks of using a simple

consistency memory model.
Under the second category mentioned above comes several

directions of research. One such direction is the using of flow-

insensitive analysis techniques to analyze multithreaded pro-
grams [18,24]. Although flow-insensitive techniques are not
very precise, some applications can afford that. Examples of
program analyses whose techniques were extended to cover

multithreaded programs are code motion [11], constant prop-
agation [14], data flow for multithreaded programs with
copy-in and copy-out memory semantics [10,17], and concur-

rent static single assignment form [13].
The problem with almost all the work refereed to above is

that it does not apply to pointer programs. More precisely, for

some of the work the application is possible only if we have the
result of a pointer analysis for the input pointer program. The
technique presented in this paper for optimizing multithreaded

programs has the advantage of being simpler and more reliable
than the optimization techniques refereed to above that would
work in the presence of a pointer analysis.

6.2. Pointer analysis

The pointer analysis for sequential programs has been studied

extensively for decades [7]. One way to classify the work in this
area is according to properties of flow-sensitivity and context-
sensitivity.

Flow-sensitive analyses [6,29,33], which are more natural
than flow-insensitive to most applications, consider the order
of program commands. Mostly these analyses perform an ab-

stract interpretation of program using dataflow analysis to
associate each program point with a points-to relation.
Flow-insensitive analyses [1,2] do not consider the order of
program commands. Typically the output of these analyses,

which are performed using a constraint-based approach, is a
points-to relation that is valid all over the program. Clearly
the flow-sensitive approach is more precise but less efficient

than the flow-insensitive one. Moreover flow-insensitive tech-
niques can be used to analyze multithreaded programs.

The idea of context-sensitive approach [20,33] is to produce

a points-to relation for the context of each call site of each pro-
cedure. On the other hand, the context-insensitive [16] pointer
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analysis produces one points-to relation for each procedure to

cover contexts of all call sites. As expected the context-sensitive
approach is more precise but less efficient than the context-
insensitive one.

Although the problem of pointer analysis for sequential

programs was studied extensively, a little effort was done to-
wards a pointer analysis for multithreaded programs. In [25],
a flow sensitive analysis for multithreaded programs was intro-

duced. This analysis associates each program point with a tri-
ple of points-to relations. This in turn complicates the analysis
and creates a sort of redundancy in the collected points-to

information. Investigating the details of this approach and
our work makes it apparent that our work is simpler and more
accurate than this approach. Moreover our approach provides

a proof for the correctness of the pointer analysis for each pro-
gram. To the best of our knowledge, such proof is not known
to be provided by any other existing approach.

6.3. Type systems in program analysis

The work in [3,12,22] is among the closest work to ours in the

sense that it uses type systems to achieve the program analysis
in a way similar to ours. The work in [26] can be seen as a spe-
cial case of our work for the case of while language where there

is no threading nor pointer constructs.
The work in [12] shows that a good deal of program anal-

ysis can be done using type systems. More precisely, it proves
that for every analysis in a certain class of data-flow analyses,

there exists a type system such that a program checks with a
type if and only if the type is a supertype for the set resulting
from running the analysis on the program. The type system in

[19] and the flow-logic work in [22], which is used in [21] to
study security of the coordinated systems, are very similar to
[12]. For the simple while language, the work in [3] introduces

type systems for constant folding and dead code elimination
and also logically proves correctness of optimizations. The
bidirectional data-flow analyses and their program optimiza-

tions are treated with type systems in [4]. Earlier, related work
(with structurally-complex type systems) is [23].

To the best of our knowledge, our approach is the first at-
tempt to use type systems to optimize multithreaded programs

and associates every individual optimization with a justifica-
tion for correctness.
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