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Abstract Let s = (s,) be a sequence of s-numbers in the sense of Pietsch. In this paper we have
introduced a class A;‘Z[ of s-type ces(p, q) operators by using weighted Cesaro sequence space for
1 < p < oo. It is shown that the class Aﬁ”zl forms a quasi-Banach operator ideal. Moreover, the
inclusion relations among the operator ideals as well as the inclusion relations among their duals
are established. Finally, we have proved that the class Af,‘f(; of approximation type ces(p, ¢) operators
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1. Introduction

Due to the immense applications in spectral theory, geometry
of Banach spaces, theory of eigenvalue distributions etc., the
theory of operator ideals occupies a special importance in
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functional analysis. Many useful operator ideals have been de-
fined by using sequence of s-numbers. In 1963, Pietsch [1]
introduced the approximation numbers of a bounded linear
operator in Banach spaces. Subsequently, different s-numbers,
namely Kolmogorov numbers, Gel'fand numbers, etc. are
introduced to the Banach space setting. For the unifications
of different s-numbers, Pietsch [2] defined an axiomatic theory
of s-numbers in Banach spaces.

For 1 < p < oo, the Cesaro sequence space ces, [3.4] is de-
fined as

ces, = {x =(x4) Ew: i(;i xk> < oo},

n=1 k=1
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where wis the set of all real or complex sequences. The space ces,,

e ?
is complete with respect to the norm ||x|| = (Z - |xk\)p) .
s
It is easy to verify that if 1 < p <r < oo, then ces, C ces,. For
more on the Cesaro sequence space and Cesaro operator one
can refer [5-8].
Pietsch [1] defined an operator T € L(E, F) to be F type oper-

ator if Z (a,(T))" is finite for 0 < p < oo, where (a,(T)) is the
n=1

sequence of approximation numbers of the bounded linear oper-
ator T. Later on Constantin [9] generalized the class of /, type
operators to the class of ces — p type operators by using the
Cesaro sequence spaces, where an operator T € L(E, F) is called

n

ces — ptypeif 3 (137} a(T))" is finite, 1 < p < co. For4 —p
n=1

type operators and Stolz mappings one can see [10,11].

The purpose of this paper is to study s-type ces(p, ¢) opera-
tors using weighted Cesaro sequence space. The s-type ces(p, q)
operators are more general than the ces — p type operators. We
show that the class A}(,‘ft)l of s-type ces(p, q) operators is a quasi-
Banach operator ideal. Moreover, the inclusion relations
among the operator ideals as well as the inclusion relations
among their duals are established. Finally, we also prove that
the class A,(,‘f; of approximation type ces(p, ¢) operators is small.

2. Preliminaries

Throughout this paper we denote E, F as the real or complex
Banach spaces and L(E, F) as the space of all bounded linear
operators from E to F. Let £ be the class of all bounded linear
operators between arbitrary Banach spaces. We denote E' as
the dual of E and x’ is the continuous linear functional on E.
N and R" stand for the set of all natural numbers and the
set of all nonnegative real numbers respectively. Let x' € F
and y€ F. Then the map X’ ®y:E— F is defined by
(¥ ®y)(x) =X (x)y,x € E.

We now state few results which will be used in the sequel.
Before it, we recall some basic definitions and terminologies
of s-numbers of operators and operator ideals.

Definition 2.1. A finite rank operator is a bounded linear
operator whose dimension of the range space is finite.

Definition 2.2 (//2,/3]). A map s = (s,) : L — R" assigning
to every operator T € £ a nonnegative scalar sequence
(82(T)),cn 1s called an s-number sequence if the following con-
ditions are satisfied:

(S1) monotonicity: ||T|| =s1(T) = s(T) = --- =0, for
T e L(E,F)

(S2) additivity: sy, 1(S+T) < 5u(S) +5,(T), for S,T €
L(E,F), myneN
(S3) ideal property: s,(RST) < ||R[s,(S)||T|l,  for some

Re L(F,Fy), Se LIE,F) and T € L(Ey,E), where
Ey, Fy are arbitrary Banach spaces

(S4) rank property: If rank(T) < n then s,(T) =0

(S5) norming property:s,(/ : I5 — [3) = 1, where I denotes the
identity operator on the n-dimensional Hilbert space /3.

We call s,(7) the nth s-number of the operator 7. For re-
sults on s-number sequence, refer [2,14—16].

We now give some examples of s-number sequences of a
bounded linear operator.

Let T € L(E,F) and n € N.

The nth approximation number, denoted by a,(7), is de-
fined as

a,(T) =inf{||T - L||: L€ L(E,F),rank(L) < n}.

The nth Gel’fand number, denoted by c¢,(7), is defined as

eu(T) =inf{||TJy| : M C E,codim(M) < n}, where Jy, :
M — E be the natural embedding from subspace M of E into
E.

The nth Kolmogorov number, denoted by d,(7), is defined
as

dy(T) =inf{||Oy(T)|| : N C F,dim(N) < n}, where QO :
E — E/N be the quotient map from E onto E/N.

The nth Weyl number, denoted by x,(7), is defined as

x,(T) = inf{a,(TA) : ||4]] <1, where 4 : ¢, — E}, where
a,(TA) is an nth approximation number of the operator 74.

The nth Chang number, denoted by y,(7), is defined as

y(T) = inf{a,(BT) : ||B|| < 1, where B: F — {,}, where
a,(BT) is an nth approximation number of the operator BT.

The nth Hilbert number, denoted by #,(T), is defined as

hy(T) = sup {a,(BTA) : ||B|| < 1,||4]| < 1, where B: F —
Zz and 4 : Ez — E}

Remark 2.1 [16]. If T is compact and is defined on a Hilbert
space, then all the s-numbers coincide with the singular values
of T i.e. the eigenvalues of |T|, where |T| = (T" 7).

Proposition 2.1 [16, p. 115]. Let T € L(E, F). Then

ho(T) < x4(T) < ey(T) < ay(T)  and
dy(T) < an(T).

hn(T) < y,(T) <

Definition 2.3 [16, p. 90]. An s-number sequence s = (s,) is
called injective if, given any metric injection J € L(F,F,),
so(T) = 5,(JT) for all T € L(E, F).

Definition 2.4 [16, p. 95]. An s-number sequence s = (s,) is
called surjective if, given any metric surjection
0 € L(Ey, E),s,(T) =s,(T0Q) for all T € L(E, F).

Proposition 2.2 [16, pp. 90-94|. The Gel’fand numbers and the
Weyl numbers are injective.

Proposition 2.3 [16, p. 95]. The Kolmogorov numbers and the
Chang numbers are surjective.

The following lemma is required to prove our theorems.

Lemma 2.1 [2]. Let S,T € L(E,F). Then |sy(T)— s,(S)| <
|IT—S|| forn=1,2,...

Definition 2.5 (Dual s-numbers [2]). For each s-number
sequence s = (s,), a dual s-number sequence s® = (sP) is
defined by

$P(T) = 5,(T)

n

for all T € £, where T is the dual of T.
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Definition 2.6 [14, p. 152]. An s-number sequence is called
symmetric if s,(7) = s,(T') for all Te L. If 5,(T) = 5,(T")
then the s-number sequence is said to be completely symmetric.

Theorem 2.1 [14, p. 152]. The approximation numbers are sym-
metric i.e. a,(T") < a,(T) for T € L.

Theorem 2.2 [16, p. 95]. Let T € L. Then
en(T)=d(T) and c,(T) < dy(T).

In addition, if T is a compact operator, then ¢,(T') = d,(T).

Theorem 2.3 [16, p. 96]. Let T € L. Then
xo(T) =2,(T') and  y,(T) = x(T').

Theorem 2.4 [16, p. 97]. The Hilbert numbers are completely
symmetric i.e. h,(T) = h,(T') for all T € L.

Definition 2.7 (/74,17]). Let L be the class of all bounded lin-
ear operators between arbitrary Banach spaces and L(E, F) be
the set of all such operators from E to F. A sub collection M of
L is said to be an ideal if each component
M(E, F) = M L(E, F) satisfies the following conditions:

(OI) ifxt € Etl,y € Fthenx® y € M(E,F)

on) if §,T € M(E,F) then S+ T € M(E,F)

(on) if Se M(E,F),T € L(Ey,E) and R € L(F,F,) then
RST € M(E,, Fy).

Definition 2.8 (//4,17]). A function « : M — R™ is said to be
a quasi-norm on the ideal M if the following conditions hold:

(QON1) if xt € El,y € F then a(x @ y) = ||x'||||¥]]

(QON2) if S, T € M(E,F) then there exists a constant C > 1
such that o(S + T) < C(a(S) + o(T))

(OON3) if S € M(E,F),T € L(Ey,E) and R € L(F,F,), then
2(RST) < ||R||oo(S)]| T

In particular if C=1 then « becomes a norm on the
operator ideal M.

An ideal M with a quasi-norm ¢, denoted by [M, «] is said
to be a quasi-Banach operator ideal if each component
M(E, F) is complete under the quasi-norm o. A quasi-normed
operator ideal [M,a] is called injective if for every
operator 7 € L(E,F) and a metric injection J € L(F,F),
JT € M(E,F;) we have Te€ M(E,F) and o(JT)=a(T).
Moreover, a quasi-normed operator ideal [M, o] is called sur-
jective if for every operator T € L(E, F) and a metric surjection
Q€ L(Ey,E), TQ € M(Ey,F) we have T € M(E,F) and
a(TQ) = oT). Thus injectivity and surjectivity are dual con-
cepts. For its various properties, please refer to [14,17-19].

Definition 2.9 (/74,17]). For every operator ideal M, the dual
operator ideal denoted by M’ is defined as

M(E,F)={TeL(E,F): T e M(F,E)},

where T is the dual of T and E' and F are the duals of E and F
respectively.

Definition 2.10 [14, p. 68]. An operator ideal M is called sym-
metric if M C M and is called completely symmetric if
M=M.

3. s-type ces(p, q) operators

Let ¢ = (¢,) be a bounded sequence of positive real numbers.
Define Q, =Y |_qx,n € N. Then the weighted Cesaro se-
quence space ces(p,q),1 < p < co is defined by

ces(p,q) = {x ew: i(QliMAxﬂ) < oo}.

n k=1

In particular g, = 1 for all k, then the sequence space ces(p, q)
reduces to ces,. We call an operator T € L(E, F) is of s-type

ces(p,q) if

00

n P
Z(leqksk(T)> <00, l<p<c.
n k=1

n=1

We denote by Aﬁ‘)q class of all s-type ces(p,q) operators be-
tween any two Banach spaces.
Let ¢ = (¢,) be a bounded sequence of positive numbers

such that
Q2k71+q2k<qu for dllk: 1,2,..., (31)

where M > 0 is independent of k.
Then we have.

Theorem 3.1. Let q = (q;) be a bounded sequence of positive
»
numbers satisfying (3.1). Let 1 <p < oco. If 02, <Qi) < o0,

then the class Al(le is an operator ideal.

Proof. In order to show .A/(,f; be an operator ideal, we prove
the conditions (OI1) to (OI3).

Let E and F be any two Banach spaces. Let x' € E', y € F.
Then x’ ® y is a rank one operator. So

sn(xX’ ®y) =0, foralln > 2.
We have

n

g (an Z‘]ksk(x’ ®y)>p - i (Qin g ®y)>p

k=1 n=1

— (@l¥ @ yly (fj(é)) <o

Thus ¥’ @ y € A (E — F); hence (OI1) is proved.

P4

Let S, T € .ALS;(E — F). Since s-number is nonnegative and
nonincreasing

qusk(TJF S) < ZqZk—lsﬂ(*l (T+S)+ Z‘hkhk(TJF S)
k=1 k=1 k=1

< Z(‘]zk-l + @) S (T + S)

k=1

<M <iqksk(T) + iqksk(S)> : (3.2)
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Using Minkowski inequality for 1 < p < co, we have from
(3.2)

Thus S+ T € .A( ) ,(E — F); hence (012) is proved
Let TGE(EO, E),R e L(F, Fy) andSEA W (E— F).

Using the property (S3) in the Definition 2.2, we have

(i: (équsk(RST)) )
n=1 n k=1
<IIRNIT] (i (Qliqkskm) ) <.
5=

=1
Thus RST € A ,(Eo — Fy) and therefore (O13) is proved.
Hence the CldSS A, g) is an operator ideal. [

Remark 3.1. It is observed that the set A](,TEI(E — F) of s-type
ces(p, q) operators from E to Fis a linear space. In particular
if we take s-number sequence as the sequence of approxima-
tion numbers and ¢, = 1, then the set A}(;’;(E — F) coincides
with the set of ces — p type operators from E to F introduced
by Constantin [9].

Proposition 3.1. For 1 < p < r < oo, we have A;‘ZI - Af‘;

Proof. The result follows from the inclusion
ces(p;q) Cees(r;q) for 1 <p<r<oo. O
Let .AM be an operator ideal. Define /3[% : .Al(,‘z{ — R* for

1 <p< oo by
. /] N
g - (35 o) ).
=1 n %=1

where T € AY

P.q

Theorem 3.2. Let g = (qk) be a bounded sequence of positive
). Let 1 <p <oo. If Y0 (—)p<oo,

then the function ﬁm is a quasi-norm on the operator ideal Al(le

numbers satisfying (3.1

where

. T
BOT) = —"——.

(S))

n=1

Proof. Let E and F be two Banach spaces and .A " (E — F) be
any one of the components of .A )

Since X’ ® y : E — Fis a rank one operator, s,(x' ® y) =0
forall n > 2.

Therefore,

B (X @y) = <Z< qukwﬁy));

= q pl]_?
=¥ ® 2L .
I y”(;(@))

Again [|x' ® y|| = supy_; [[(X' @ p)(x)]]
X[l
Therefore

B @y) =¥yl
Suppose that S, T € A[(,A,)I(E — F), then

= (Suanuzl|x/(x)|)||J’H

n=1 n k=1
00 1 n P ll)
<M (Z =5 ‘]ksk(S)> )
n=1 n k=1
o0 1 n p /ll
+ (Z <_ ‘]ASA(T)> >
n=1 n k=1
< M(B(S) + (D))
Thus B)(S+ T) < M(BL)(S) + A;;f;(T)).
Finally, let Se AY(E—F), ReL(F,Fy) and Te

L(Ey, E). Then

BY(RST) = (fj (QiznjqkaST)) )

n=1 n k=1

NG
<|R|||T|(Z< ZW ))
-1 "k
< IRIBS)ITI.
Thus
B (RST) < IRIBSL(S)IITI.

Hence ﬁ;‘; is a quasi-norm on the operator ideal Aﬂ 0

Theorem 3.3. The opelator ideal A g IS complete under the
quasi-norm [3(‘) ie. [ ] is a quasi-Banach operator ideal
for 1 < p < oo.

P‘]’

Proof. Let 1 < p < co. To prove AM is a quasi-Banach oper-
dtOI’ ideal, it is enough to prove that each component

.A W(E — F) of .A , is complete under the quasi-norm B

P
We have
N
H ]‘ ) >

s = (3 (g o
> (S (gan))

— 7y (i (g))
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= |71l < BL)(T) for T € AV)(E — F). (3.3)

Let (7,,) be a Cauchy sequence in Ap‘tq(E — F). Then Ve > 0,
there exists ny € N such that

/));YBI ( Tm -

Now from (3.3),
T — Tl < By)(Tw — T).

T)) <€, VYm,l = ny. (3.4)

Using (3.4), we have

T = Till < BO(T0 = T)) <€ Yml>n

Hence (7),) is a Cauchy sequence in L(E, F). As Fis a Banach
space, L(E, F) is also a Banach space. Therefore 7,, — T as
m— oo in E(E F). We shall now show that 7, — T as
m — oo in A J(E— F).

Using Lemma 2.1., we have

|Sn(Tl - T‘m) - Sn(T_ Tm)| g ||TI - TH

On taking / — oo, we have

Sn(Tl - ]—;11) - Sn(T_ Tm)~ (35)

r Ill 00 q P\ 7
m <e I 5 Vm, /
) ) <(5@))

Using (3.5), it can be shown that as / — oo (keeping m > ny
fixed)

(Elgeer=)) (5

= B (Tme) <e

From (3.4), we get

Slpper

= ny.

Vm = n,

This means that 7, — T under the quasi-norm
Next we show that T € AM(E — F). Now

n n n
> aisi(T) <D amrsw (1) + > _qoesu(T)
k=1 k=1 k=1

< Z(qzk—l + @) 521 (T)

k=1

M(;qkw— 1)+ ;qkm)).

)
P9

Therefore

Segen))
| (EleXmrr))
(Slagme))]

since ﬂ;‘) (T—T,) —0 asm—oo and for each
m, T, € AY(E— P,

Hence T € A (E — F). This completes the proof. [

We now study some properties of the quasi-Banach opera-
tor ideal A g for 1 < p <oo.

Theorem 3.4. If s-number sequence is injective, then the quasi-

Banach operator ideal | M,[)’p q] is injective for 1 < p < oo.

Proof. Let 1 <p <oo. Let T € L(E,F) and J € L(F,F,) be
any metric injection. Suppose that JT € AX;(E — Fy). Then

o0 n P
Z Lqusk JT) ] < .
N Z

Since s = (s,) is an injective s-number sequence, we have
$o(T) = 5,(JT), for all T € L(E,F),n=1,2,.... Hence

i(Qliqksk(T)> :i< qusk JT) < 0.

n=1 n=1 n k=
() s — s
Thus 7'€ A, (E — F) and clearly ﬁ;)(JT) = ﬁ;;(T) holds.

Hence the operator ideal [A](f}{, [A)’ﬁ] is injective. [

Remark 3.2. The quasi-Banach operator ideal [A pq,ﬁp q}
formed by Gel’fand numbers ¢ = (¢,) and the quasi-Banach
operator ideal [A;‘J,[Ai;‘;] formed by Weyl numbers x = (x,)
are injective quasi-Banach operator ideals.

Theorem 3.5. [If s- numbe} sequence is surjective, then the quasi-
Banach operator ideal [ “ﬂ /3; q} is surjective for 1 < p < oo.

Proof. Let 1 < p < oco. Let T € L(E,F) and Q € L(Ey, E) be
any metric surjection. Suppose that 7Q € AW " (Ey — F). Then

e

n=1

qusk T0 ) < 00.

”/(

Since s = (s,) is a surjective s-number sequence, we have
sy(T) = 5,(TQ), for all T € L(E,F) and n=1,2,.... Hence

n=1

Thus 7T € AY

Pq

(E — F) and also ﬁ Z( Q) = ﬁ;‘;(T)

Hence the operator ideal [A [ B}, 7] 1s surjective. [

Remark 3.3. The quasi-Banach operator ideal [A!l
formed by Kolmogorov numbers d =

By
I“I I“l
(d,) and the quasi-

Banach operator ideal [.A/, i /3 ] formed by Chang numbers
» = (»,) are surjective quasi- Banach operator ideals.
Let us consider [A\%)

. q,ﬁp‘g] and [A;{';, [3[()’2} be the quasi-Ba-
nach operator ideals corresponding to the approximation
numbers a = (a,,) and the Hilbert numbers /& = (h,) respec-

tively. Let A/, pe .A,,",,, Al(,ig, A,(,'Z, Alfq and .Ah be the class
of approximation type, the class of Gel'fand type, the class
of Kolmogorov type, the class of Weyl type, the class of Chang
type and the class of Hilbert type ces(p,q) operators respec-
tively. Then we have the following inclusion relations among

the operator ideals.
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N
Theorem 3.6. Let 1 < p < co. Then Proof. Let o= (ZZC:, (g—‘) >' <o00,l <p<oo. Then
. [Al(,‘f;, [fl(]“;} is a quasi-Banach operator ideal, where
(1) A€ A C AL C A and Al N
(I1) A9 C AD C A C AD B (T) :ﬁ(zn 1( Dk 1qkak(73) ) . Let E,F be any two
Pqg =" P9 =" P9 4

Proof. Let 1 < p < co. Suppose that T € A;”; Then

i(éiq,ﬂ,(ﬂ) < o0.
n k=1

n=1

From Proposition 2.1., we have

oo ? o n P
2( Suh ) z( S )
= \9 = \Qn =
oo n p
z( S )

n=1

<SS g ) -
n=1 Q” k=1

This proves (I).
(IT) The proof of this part can be established following the
technique used in part (I) above O

We now state the dual of the operator ideals formed by dif-

ferent s-number sequences.

Theorem 3.7. The operator ideal .A b
operator ideal A

is symmetric and the
, Is completely symmetric for 1 < p < oo.

Proof. Since ,(T') < a,(T) and h,(T) = h,(T), for all
T € L(E,F), we have A(" (A”) and A(h _ (A(h)) 0

g = 120 P’ "

Theorem 3.8. Let 1<p<oo. Then AM (Aﬁ‘g) and

Apd; - (.A(‘ ) In addition, if T belongs to the class of compact

operators, then A, d) = (A(‘ )/
Proof. The proof follows from the Theorem 2.2. [

Theorem 3.9. Let

1 <p<oo. Then A;‘ (A(’)) and
0 _ (4)y
AI’IJI - (AM) :

Pq

Proof. The proof follows from the Theorem 2.3. [

4. Small operator ideal

This section deals with the notion of small ideal of operators.
n [20], Pietsch proved that the ideal SL“) of approximation
type /, operators is small for 0 < p < oco.

Definition 4.1. [20] An operator ideal M is said to be small if
M(E,F) = L(E,F) implies that at least one of the Banach
spaces E and F is of finite dimension.

Then we have.

Theorem 4.1. The quasi-Banach ideal A](f; of approximation

type ces(p, q) operators is small for 1 < p < oo.

Banach spaces. Suppose that A[(,‘f;(E—>F) = L(E,F). Then
there exists a constant C > 0 such that ﬁ,(f;(T) < Q|7 for
all T € L(E, F). Assume that E and F both are infinite dimen-
sional Banach spaces. Then by Dvoretzky’s theorem [20] for
m=1,2,..., we have quotient spaces E/N,, and subspaces
M,, of F which can be mapped onto ;' by isomorphisms X
and A,, such that || X,,||||X;'|| <2 and ||4,,]|]|4,,'|| < 2. Con-
sider 7, be the identity map on /}',Q,, be the quotient map
from E onto E/N,, and J,, be the natural embedding map from
M, into F. Let a,,d, and u, be approximation numbers, Kol-
mogorov numbers and Bernstein numbers [2] respectively.
Then

l—un( m) —un(AmA Im/YmX )

\HAm”u"(Am I X )” mlH
=4 lun (T4, ' Xm)“Xm]”
<||4wlldy

m
JmA Im/Ym H ;,l”

= [ Amlldn(

< | 4nllan

m 1 A/’7142771)HA/;11”
JmAm‘1meQm)||X;,‘\| forn=1,2,....m

,.\A,.\A

Now

n n
qu < qu||AmHak(JmA;,‘Lnanm)HXm I
qu <4l <Q Qi (In A, ImeQm)> 1%,
n k=1

n k=1

< (I4nllllx,,

1
Therefore (Z(l )) <

P
(Q Zq,caA Tnd,, 1,,,X,,,Qm)>

n =
1
p

m 1 <& PN\ 7
(411X, 52 4kt (Jud, 1, X0 0,)
0

n=1 n=1 n k=1

1
p

1 1 m 1 & - PN
> <l (35 g Cnatnainren) )

n=1 n k=1
1
=~ < [ A1, 1B (T A, 10X Q)

< A IX Az T X O

S A, 1o Az 1 11X 2
= Cll 11, 11145, 11X

<4C.

This is a contradiction as m is any arbitrary number. Thus £
and F Dboth cannot be infinite dimensional when
A,(,“;(E — F) = L(E, F). This completes the proof. [
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