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Abstract In this work we introduce a discretization process to discretize fractional-order differen-

tial equations. First of all, we consider the fractional-order Logistic differential equation then, we

consider the corresponding fractional-order Logistic differential equation with piecewise constant

arguments and we apply the proposed discretization on it. The stability of the fixed points of the

resultant dynamical system and the Lyapunov exponent are investigated. Finally, we study some

dynamic behavior of the resultant systems such as bifurcation and chaos.
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1. Introduction

Chaotic systems have been a focal point of renewed interest for
many researchers in the past few decades. Such nonlinear sys-

tems can occur in various natural and man-made systems, and
are known to have great sensitivity to initial conditions. In re-
cent years differential equations with fractional-order have at-

tracted many researchers because of their applications in many
areas of science and engineering. Analytical and numerical
techniques have been implemented to study such equations.

The fractional calculus has allowed the operations of integra-
tion and differentiation to be applied upon any fractional-or-
der. For the existence of solutions for fractional differential
equations, one can see [1,2].

About the development of existence theorems for fractional
functional differential equations, many contributions existed
and can be referred to [3–5]. Many applications of fractional

calculus amounts to replace the time derivative in a given evo-
lution equation by a derivative of fractional-order.

Recalling the basic definitions (Caputo) and properties of
fractional-order differentiation and itegration

Definition 1. The fractional integral of order b 2 Rþ of the
function f(t), t> 0 is defined by

IbfðtÞ ¼
Z t

0

ðt� sÞb�1

CðbÞ fðsÞds;

and the fractional derivative of order a 2 (n � 1,n) of f(t),
t> 0 is defined by
icense.
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DafðtÞ ¼ In�aDnfðtÞ; D ¼ d

dt
:

To solve fractional-order differential equations there are

two famous methods: frequency domain methods [6] and time
domain methods [7]. In recent years it has been shown that the
second method is more effective because the first method is not

always reliable in detecting chaos [8,9].

Often it is not desirable to solve a differential equation ana-

lytically, and one turns to numerical or computational
methods.

In [10], a numerical method for nonlinear fractional-order

differential equations with constant or time-varying delay
was devised. It should be noticed that the fractional differen-
tial equations tend to lower the dimensionality of the differen-
tial equations in question, however, introducing delay in

differential equations makes it infinite dimensional. So, even
a single ordinary differential equation with delay could display
chaos.

On the other hand, some examples of dynamical systems
generated by piecewise constant arguments have been studied
in [11–14]. Here we propose a discretization process to obtain

the discrete version of the system under study. Mean while, we
apply discretization process to discretize the fractional-order
Logistic differential equation.

A lot of differential equations with Caputo fractional deriv-

ative were simulated by the Predictor-Corrector scheme, such
as the fractional Chua system, the fractional Chen system,
and Lorenz system. We should note that Predictor-Corrector

method is an approximation for the fractional-order integra-
tion, however, our approach is an approximation for the right
hand side. For applications of fractional-order differential

equations one can see [15–17], [21], and [23–27].

2. Discretization process

Consider the fractional-order Logistic differential equation gi-
ven by

DaxðtÞ ¼ qxðtÞð1� xðtÞÞ; t > 0; ð2:1Þ

with the initial condition x(0) = xo.

The main purpose of this section is to introduce a discreti-
zation process to discretize the counterpart of (2.1) with piece-
wise constant arguments

DaxðtÞ ¼ qx
t

r

h i
r

� �
1� x

t

r

h i
r

� �� �
; ð2:2Þ

with the initial condition x(0) = xo.

We proceed like the step method mentioned in [20] and [22].
The steps of the discretization process is as follows

(1) Let t 2 [0, r), then t
r 2 ½0; 1Þ. So, we get

DaxðtÞ ¼ qxoð1� xoÞ; t 2 ½0; rÞ;

and the solution of (2.2) is given by

x1ðtÞ ¼ xo þ Iaqxoð1� xoÞ ¼ xo þ qxoð1� xoÞ
Z t

0

ðt� sÞa�1

CðaÞ ds

¼ xo þ qxoð1� xoÞ
ta

Cð1þ aÞ

(2) Let t 2 [r, 2r), then t
r 2 ½1; 2Þ. So, we get
DaxðtÞ ¼ qx1ð1� x1Þ; t 2 ½r; 2rÞ;

and the solution of (2.2) is given by

x2ðtÞ ¼ x1ðrÞ þ Iarqx1ð1� x1Þ

¼ x1ðrÞ þ qx1ð1� x1Þ
Z t

r

ðt� sÞa�1

CðaÞ ds

¼ x1ðrÞ þ qx1ðrÞð1� x1ðrÞÞ
ðt� rÞa

Cð1þ aÞ

Repeating the process we can easily deduce that the solution of

(2.2) is given by

xnþ1ðtÞ ¼ xnðnrÞ þ
ðt� nrÞa

Cð1þ aÞ qxnðnrÞð1� xnðnrÞÞ; t

2 ½nr; ðnþ 1ÞrÞ:

Let t fi (n+ 1)r, we obtain the discretization

xnþ1ððnþ 1ÞrÞ ¼ xnðnrÞ þ
ra

Cð1þ aÞqxnðnrÞð1� xnðnrÞÞ;

That is

xnþ1 ¼ xn þ
ra

Cð1þ aÞqxnð1� xnÞ: ð2:3Þ

On a similar manner, consider the corresponding equation of

(2.1) with piecewise constant arguments

DaxðtÞ ¼ qx
t

r

h i
r

� �
1� x

t� r

r

h i
r

� �� �
; ð2:4Þ

with the initial condition x(0) = xo.So, we obtain the second
order discretization

xnþ1 ¼ xn þ
ra

Cð1þ aÞqxnð1� xn�1Þ: ð2:5Þ
3. Fixed points and their asymptotic stability

Now we study the stability of the fixed points of the Eq.
(2.3)which has two fixed points namely, 0 and 1 given by solv-

ing the equation

x ¼ xþ ra

Cð1þ aÞqxð1� xÞ:

To study the stability of these fixed points we relay on the
following theorem

Theorem 1 [18]. Let f be a smooth map on R, and assume that

x0 is a fixed point of f.

1. If ––f0(x0)–– < 1, then x0 is stable.

2. If ––f0(x0)–– > 1, then x0 is unstable.

In case of the first fixed point ‘0’, it is stable if
1þ ra

Cð1þaÞ q
��� ��� < 1 which is impossible. That is the origin is
unstable. For the second fixed point ‘1’, it is stable if

0 < q <
2ðCð1þ aÞÞ

ra
: ð3:1Þ

On the other hand, to study the stability of the fixed points
of Eq. (2.5) we first split it into two equations as follows



Fig. 1 Lyapunov exponent for system (2.3) with different values of the fractional-order parameter a.
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Fig. 2 Bifurcation diagram of system (3.2) as a function of q with different values of the fractional-order parameter a.
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Fig. 3 Bifurcation diagram of system (3.2) as a function of the fractional-order parameter a with different values of the

parameters r and q.
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ynþ1 ¼ xn

xnþ1 ¼ xn þ
ra

Cð1þ aÞqxnð1� ynÞ: ð3:2Þ

This system has two fixed points namely (x,y)fix1 = (0,0)

and (x,y)fix2 = (1,1)
By considering a Jacobian matrix for one of these fixed

points and calculating their eigenvalues, we can investigate

the stability of each fixed point based on the roots of the sys-
tem characteristic equation [19]. The Jacobian matrix is given
by

J ¼
1 0

1þ raq
Cð1þaÞ ð1� yÞ � raq

Cð1þaÞ x

 !

The eigenvalues associated to the Jacobian matrix for the
first fixed point are k1 = 0, and k2 = 1, that is, this fixed point
is unstable.

While the eigenvalues associated to the Jacobian matrix for
the second fixed point are
k1;2 ¼ 0:5 1� raq
Cð1þ aÞ

� �
� 0:5

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ raq

Cð1þ aÞ

� �2

þ 4
raq

Cð1þ aÞ

s
:

If we take for instance r= 0.2, a = 0.85, and q = 3, we get
k1 = 1 and k2 = �0.0539. This means that this fixed point is
unstable.

In the next section, the numerical experiments assure our

analytical results for different values for r, a, and q. It is worth
to mention here that Lyapunov exponent for (2.3) is given by
(see 1).

Lya:exp ¼ lim
n!1

Rlog2 1þ ra

Cð1þ aÞ qð1� 2xÞ
� �

:

When a fi 1 the same Lyapunov exponent for the original

discrete system (xn+1 = xn + rqxn(1 � xn)) is obtained. The
following figures show the lyapunov exponent for the system
(2.3) for different values of the fractional-order parameter a
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4. Bifurcation and chaos

In this section we show by numerical experiments bifurcation
and chaos of the dynamical system (3.2) first with respect to

the parameter q and then with respect to the fractional-order
parameter a.

Let r = 0.25 be fixed and vary a from 0.70 to 0.95 and q
from 0 to 8. The initial state of the system (3.2) is x0 = 0.1
and y0 = 0.2. The step size for q is 0.001, the resulting bifurca-
tion diagrams are shown in Fig. (2) from (a) – (f). It is observed
from the figures that increasing the fractional-order parameter

a and fixing the parameter r stabilize the chaotic system.
Now vary the fractional-order parameter a from 0.70 to

0.95 but with a fixed system parameter q and change the

parameter r from 0.15 to 0.30. The resulting bifurcation dia-
grams are shown in Fig. (3) from (a) – (d).

5. Conclusion

In this work we studied the dynamics of the fractional-order
Logistic equation. We applied a simple discretization scheme

to discretize fractional-order differential equations. Chaos
and bifurcation of the resulting discrete system were numeri-
cally investigated by varying the system parameter q and the

fractional-order parameter a. We have noticed that when
a fi 1, the discretization will be Euler’s method discretizartion
[18]. Moreover, Euler’s method is able to discretize a first order
difference equations, however, we succeeded in discretizing a

second order difference equation.
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