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1. Introduction

Since Lotka [1] and Volterra [2] introduced the first predator—
prey model, numerous complicated but realistic predator—prey
models have been formulated by ecologists and mathemati-
cians. In 1992, Berryman [3] argued that the dynamic relation-
ship between predators and their preys has been one dominant
theme in both ecology and mathematical ecology due to its
universal existence and importance. Dynamics of predator—
prey models has been discussed by a lot of papers. It is well
known that in many applications, the nature of permanence
and global asymptotic stability of predator—prey models is of
great interest. Recently, Samanta [4] investigated the perma-
nence and global asymptotic stability of a delay predator—prey
model with disease in the prey. Fan and Li [5] gave a theoret-
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ical study on permanence of a delayed ratio-dependent preda-
tor—prey model with Holling type functional response. Chen
[6] focused on the permanence and global attractivity of
Lotka—Volterra competition system with feedback control.
Wang and Zhu [7] analyzed the permanence and global asymp-
totic stability for a delayed predator—prey system with Hassell-
Varley type functional response. Teng et al. [8] addressed the
permanence criteria for a delayed discrete nonautonomous-
species Kolmogorov systems. For more research on the this
topic of predator—prey models, one can see [9-17].

In 2008, Liu [18] investigated the permanence and almost
periodic solution to the following delayed predator—prey sys-
tem with diffusion and type III functional response

1 (]
= nlanol) —an ()2~

dxy (1)

o =xalax (1) — an (1) x2] + Da (1) (x1 — x2),

{l.\q(l) 1(t=11)

i [ azo(l)-i-a;](l)wliw—a}z(l)x;—034([))64],

+ D1 (1)(x2 = x1),

'L\’%’(’): X4 [ 6140(1) +ay (l)ﬁ%—mg(l)m — 043(I)X3:| .

(1.1)
with the initial condition

xi(s) = ¢1(s) € C([=7, 0], Ry),
>0, x/(0)= ¢, = 0(constants),

s € C([-1,0], ¢,(0)
i=1,2,3,4, (1.2)

where x;(¢) (i = 1,2) describe the densities of the prey popula-
tion in Patch 1 and Patch 2, respectively, x; (j = 3,4) describe
the densities of the predator population in Patch 1 with com-
petition, ajo(¢) and a;(¢) (i=1,2) represent the intrinsic
growth rate and the intra-specific interference coefficient of
the prey population x; (i = 1,2), respectively. We then assume
that the death rate of the predator population x; (i = 3,4) in
Patch 1 is proportional to both the existing predator popula-
tion with the proportional functions az(¢)z and, respectively,
as (1) and to its square with the proportional functions as(7)
and, respectively, as(f). The predator consumes the prey
according to Holling type III functional response [19,20], that

o (t)x%,\'; az(t)x%ng
S Th e e

the predator organism. Applying inequality theory and Liapu-
nov—Razumikhin technique, Liu [18] obtained some sufficient
conditions which guarantee the uniform permanence and the
existence and uniqueness of the positive almost periodic solu-
tion which is globally asymptotically stable of system (1.1).

In this paper, we will focus on the permanence and global
asymptotic stability of model (1.1). It shall be pointed that
although Liu [18] had investigated the permanence of model,
the sufficient conditions they obtained are different from the
ones in this paper. Moreover, the global asymptotic stability
of model (1.1) has not still been studied in Liu [18].

Let f{r) be a bounded continuous functions on interval
[0, +00), we define

/' =inff(1),

7; (i =1,2) is the time to digest food in

S =supf(1).
teR

In the following discussion, we always assume that system (1.1)
satisfies the following assumptions:

(Hl) atO(t)7 atl( ) (l = 17 27 37 4)a %s ﬁjv D/(] = 15 2)7 An1 (t)7
an(t)(n=3,4),a3(t),as(t) are all bounded continuous func-
tions on the interval [0, +00) and strictly for periodic functions
and satisfy:

I .
(1) min {azmam % [7anl7an2’a?47a4?} > 0;

) max{ dly, dy, o, B, dly, nz,ag4,a43} < oo, i=1,2,3,
4, j=1,2; n=3,4

(H2)a4, ot > aéoﬁq,aﬁlag > afmﬁ[z.

We denote X = (x1, x2,x3,X4) € Ri = {(x1,x2, X3, x4)|x; =
0, i=1,2,3,4}. For the point of view of biology, system (1.1)
is discussed in Ri.

The organization of this paper is as follows. In the next
Section 2, Basic definitions and Lemmas are given, some suffi-
cient conditions for the permanence of the delayed diffusive
predator—prey model with competition and type III functional
response in consideration are established. A series of sufficient
conditions which guarantee the existence and global stability
of positive periodic solution of the delayed diffusive preda-
tor—prey model with competition and type III functional
response are included in Section 3. In Section 4, we give an
example which shows the feasibility of the main results. Con-
clusions are presented in Section 5.

2. Permanence

In order to obtain the main result of this paper, we shall first
state the definition of permanence and several lemmas which
will be useful in the proving the main result.

Definition 2.1 [21]. We say that system (1.1) is permanence if
there are positive constants M and m such that for each
positive solution (x1(¢),x2(2), x3(¢), x4()) of system (1.1)
satisfies

m < lim infx;(7) < lim supx;(f) < M

1—+00 1—+00

(i=1,2,3,4).

Lemma 2.1 [22]. If a>0, b>0 and x > x(b — ax),
t = 0 and x(0) > 0, we have

b

o

when

lim infx(z) >

1—+00

If a>0,b>0and x <
we have

x(b — ax), when ¢ = 0 and x(0) > 0,

lim sup x(7) <

—+00

SRS

Lemma 2.2. Let X(t) = (x1(1),x2(2),x3(t), x4(2)) denote any
solution of system (1.1) with initial conditions (1.2). If the condi-
tion (H1) and (H2) hold, then there exists a positive constant T
such that

xi(t) <M (i=1,2,3,4), fort>T,
where
! ag ! g%
. alO azo “n B Tt B
M > MM =max{ —,— ; , —
ay,dy,’ ay Ay

Proof. It follows from system (1.1) with initial conditions (1.2)
that
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% = D] (I)XZ > 0,
x1=0
|
azll x2=0 - DZ(I)X] > 07

o (v)\% (s—12)

Thus X = (x1,x2, X3, x4) € RL = {(x1, %2, X3, x4)|3; > 0,
i=1,2,3,4} is a positively invariant set of system (1.1). We
define

V(1) = max{x: (1), x2(1), x3(1), x4(1) }. (2.2)

(1) If V(¢) = x1(¢), then

dx, (1
D V(1) = ét( ) < xi[ao(t) — ar (1)xi]
< V() [dfy — d, V(1) (23)
(2) If V(¢) = x»(¢), then
dx,(t
DYV (1) = ;t( ) < Xalan (1) — @ (1)x2)
< () [ago - alzl V(t)]~ (2.4)
(3) If V(¢) = x3(¢), then
dX}(t) a;l(t)ocl(t)
+ = < — DA
D V([) a S X3 a30(l) + ﬂl(l‘) a32(t)x3
VO | —dy + S - V(). (2.5)
1
(4) If V() = x4(¢), then
dX4([) a4](l)a2(t)
+ =7 < x|l = NN
D V(Z) di < Xg a40(t) + [32(1‘) a42(t)x4
< V()| —dy + 52— V(1) . (2.6)
2
Let
0f = afy, 05 = a5, 05 = —da}, a",}/f‘ J
0y = —djy “'ax/;':gvéll = alllvélz = ‘1121:5{1 = aéz,éf‘ = djy.
(2.7)
It follows from (2.2)—(2.7) that
D V() < V(n)[0y — oV (1), i=1,2,3,4 (2.8)

Applying the comparison theorem we derive from the above
inequality that:

() If max{x;(0),x2(0),x3(0),x4(0)} < M,
{x1(0), x2(0), x3(2), xa(1)} < M, 1 > 0.

(2) If max{x;(0),x2(0),x3(0),x4(0)} > M, let —y = max
{M(0" - 5'M)} (i=1,2,3,4),7 >0. When D*V(r) < V(1)
[0? — 5§V(I)} <-y<0,i=1,2,3,4, by continuous depen-
dence of the initial value there exists a positive constant ¢
such that V(¢) > M for t € [0,¢), then

then max

x3(1) = x3(0) f; [fa30(s) + asy (s)% —axn(s)x; — a34(s)x4] ds >0,

x4(1) = x4(0) for —ag(s) + ay (A)W — ap(s)xs — a43(s)x3} ds > 0.

DYV(t) S V(N[0 = siV(1)] < =y <0, i=1,2,34

In view of Lemma 2.1, there exists a constant 7 > 0 such that
max{x; (1), x2(¢),x3(¢),x4(t)} < M for t > T. The proof of
Lemma 2.2 is complete. [

In order to facilitate the calculation, we define

.
m" =min{p, p,, p3, P4}, (2.9)
where
2
oy = (@i — D} — (o + o) M 0y = dy
1 — u ) 27 u
ay a3, + D
”Izl‘xllm% ( u u M) “A,n“[zm% ( u u M)
_ +poM® @3 + a3 _ Lp(oM® dag T Ay
3 u ? 4 — u .
a3 Ay

We assume that

(H3)m™ > 0.

Theorem 2.1. Suppose that the conditions (H2)-(H3) hold
true, then system (1.1) is permanent.

Proof. It is easy to see that system (1.1) with the initial value
condition (x;(0),x,(0),x3(0), X4(0)) has positive solution
(x1(2),x2(8), x3(¢), x4(¢))  passing through  (x,(0),x2(0),
x3(0),x4(0)). Let (x1(¢), x2(¢), x3(f), x4(¢)) be any positive solu-
tion of system (1.1) with the initial condition (x;(0),x,(0),
x3(0),x4(0)). It follows from the first equation of system
(1.1) that

dxl(t) O(](l)X1X3 O(z(l)X]X4
= t)—Di(t) — t — —
e e T N E S B ATIE
= X [alo(l‘) — D, (l) —dy (l)x] — 0 (I)X|X3 — O(z(l)X1X4]
= X {[alo(l) —D1 (l) — (OC] (1) +OCQ(Z))M2] —a”(l)xl}
> xi{[d}y— D} — (o + o) M| —af,x1 }.
(2.10)
It follows from Lemma 2.1 that
[ —_ D" — u u MZ
lim infx,(¢) > %10 ' Sml + ) =my. (2.11)
t—+00 a”
From the second equation of system (1.1) that
dx, (1
;h( ) = xa[ax(t) — (ax(t) + Da(1))x2]
> xdy, — (“;1 + DZ)XZ] (2.12)
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It follows from Lemma 2.1 that

!

a
lim infx,(f) > —2— = m,. 2.13
Jim infa() > 5=t = m 2.13)

From the third equation of system (1.1) that

dXQ(l) |: aszy ([)O(] (t)mf

: X3 |—ay(t) + ————F——

dt 3| a(0) 14 () M?
I,

!

as o m

3% M
2{

L+ B ()M

\%

— 6[32(I)X3 — a34(Z)M:|

(%+%m—%4

(2.14)

From the third equation of system (1.1) that

dX4(t) CM]([)OQ([)WZ%
a = {*““(’) e

day, oym?
41727771 u u u
= { (a40 + a43M) — (142.’C4:| .

1+ B, ()M

A\

—an(t)xs — a43(t)M}

(2.15)
Under the condition (H3), we get

(aio — DY — (of + o5) M* > 0,

Il 2

a3, %17 u u
— — — (&, + &5, M >0,
1+ B ()M (a5 + a3,

Il 2

g %117 u u
—=— — (d), + ;M) > 0.
EVATIT R
Choose m satisfying 0 < m < m* and close enough to m*.
Define

V(1) = min{x, (¢), x2(2), x3(2), x4(1)}-

Calculating the right derivative D, I7(I) of 17(1) along the solu-
tion of system (1.1), we obtain

(2.16)

D V(1) = V(z){[am DY — (o + o) M?] — !, ﬁ(z)}, (2.17)

D, V(1) > V(1) |ahy — (ay + DY V(1)]. (2.18)
1 1 aglallm% u u u 17
D, V(1) = V(1) {W — (a4 + dyyM) — a, V(t)} ,
(2.19)

_ _ ol m? _
D, V(1) = V(1) {W — (afy + dyM) — af, V(t)} .
(2.20)

0),x2(0),x3(0),x4(0)} = m,  then

)} > m.
= min{x,(0),x,(0),x3(0),x4(0)} < m, then let

() If 7(0) = min{x (
V(1) = min{x; (), %2(t), x3(1), x4
() If 7(0)

. 0 0 0 0
u=mm{p(1 ),pé),pg),pi)}

where
fxl (0){[aly — DY — (o + ) M?] — afym},
2(0) [ (aZI + Dy)m],
ds ol m?
=x(0 L +3}3 ) (ago + a§4M) - a§2x3(0)} )
a (x m U U U
L +4;322 l (a40 +dy3 M) - a42m] .

If 77(0) < m holds, by dependence of initial value then there
exists ¢ > 0 such that if 7 € [0,¢), then V(r) < m and we get
D,V(t) > u>0. Thus there exists 7> T >0 such that
min{x; (1), x2(1), x3(2), x4(¢)} = m for t > T. Let

A= {(x1(1), x2(8), x3(2), x4 (1)) | m < x:(t) < M(i =1,2,3,4)},

then A is a bounded compact region in Ri which has a positive
distance from coordinate planes. According to the analysis
above, we obtain that there exists a constant 7 > 0, if t > T,
then every positive solution of system (1.1) eventually enters
and remains in the region A. The proof of Theorem 2.1 is com-
plete. O

3. The existence and global asymptotic stability of positive
periodic solution

In this section, we will derive sufficient conditions for the exis-
tence of periodic solution of system (1.1). Firstly, we use the
fixed point theorem of Brouwer.

Lemma 3.1 [Brouwer]. Suppose that the continuous operator P
maps closed bounded convex set Q € R" onto itself, then the
operator P has at least one fixed point in set Q.

Theorem 3.1. Suppose that the conditions (H1)—( H3) hold, then
there is at least one positive periodic solution of system (1.1).

Proof. Let the unique of periodic system (1.1) for initial value
X0 = (x9,x3,x3, x9) be denoted as

X, X" = (x1(6, X°), %2 (6, X°), x3 (1, X°), x4(2, X°)).

In the sequel, we define the Poincare map P: R} — R is
P(x") = P(w, X"), where w is the period of periodic system
(1.1). If (H1)-(H2) are fulfilled, then from Theorem 2.1 we
know that there exists m > 0 such that

xi(t) =zm (i=1,2,3,4).

Then the compact region A € Ri is a positive invariant set of
system (1.1), and A is also a closed bounded convex set. There-
fore we have X(#,X°) € 4 when X° € 4, also X(w, X°) C A.
Thus PA C A. The operator P is continuous because the solu-
tion is continuous with respect to the initial value. Applying
the fixed point theorem of Brouwer, we obtain that P has at
least one positive w-periodic solution of system (1.1). This
completes the proof of Theorem 3.1. O

Definition 3.1. A bounded positive solution (u;(z),ux(1),
u3(t)7u4(t))T of system (1.1) is said to be globally asymptoti-
cally stable, if for any other positive bounded solution
(x1(2), x2(2), x3(1), x4(2))" of system (1.1), the following equal-
ity holds,

E‘&{ZX' )~ ul ]—0

Definition 3.2 [23]. Let / be a real number and f'be a non-neg-
ative function defined on [A, +00) such that f'is integrable on
[h,4+00) and is uniformly continuous on [/, +00), then
lim, ., f(t) = 0.
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Theorem 3.2. In addition to (H1)-(H3) , assume further that

(H4)K; > 0,

where K; (i =1,2,3,4) are defined by (3.20)-(3.22) and (3.23)
respectively. Then system (1.1) has a unique positive solution
(x1 (1), x2(2), x3(1), x4(2))" which is global attractivity.

Proof. According to Theorem 3.1 we have obtained that if
(H1)—(H3) hold true, then system (1.1) has at least one strictly
positive w-periodic solution X(¢) = (x;(2), x2(¢), x3(¢), x4()).
Let U(f) = (u1 (), ua (1), us(1),us(t)) be any positive solution
of system (1.1). From Theorem 3.1, there exist positive con-
stants m, M such that

m<x, <M, m<uyy <M, i=1,2734 fort>T.

Let

Xi(t) =Inx;(¢), w(t)=Inu(t), i=12,3,4

Define

Vi(t) = [Inx(0) — na(n)], i=1,2,3,4. (3.1)

Then the upper-right derivative of V;(¢) along the solution of
(1.1) are given below:

+ _ () w'(@)
o= (559
)

)sgnm(r) ~ (1) = sen(i (1)

(1 ;rﬁl(zjx%(t) 5 B (0 (1)
X3 (1)x4(1) i (1)ua(2)
—az(l)(l RO 1 +ﬁ2(t)u?(f)>}
o3 -] .

], (3.3)

X3t —1)
L+ Bi(0)xi(t =)

) — () (ea(1) — (1)

= sgn(X3(1) — ii3(1)) {aal(l)al(f)(

_ xi(t—n)
L+ B (0)xi(t — 1)

1) (xa) u4<t>>} (3.4)
X‘4/(l) B ﬁ4/(l)
X4(t) ﬁ4(l)

X}t — 1)

= sgn(Xy(1) — (1)) {041(0062@) (Wﬁ(f—fz)

xi(r—11)
_WM) — (1) (x4 (1) — ua(2))

~as () - ()] (3.5)

D = Jsena(0) - )

Ds(t) = Dy(1)sgn(%x(1) — (1))

It follows from (3.6) and (3.7) that

u

Di(1) < 2 jusle) — ()]

Similarly we have

_ DY
Do(t) < 2w (1) — (1),
Then we have
u 1+ﬂuM3
DTV () < —d |xi(6) — uy (¢ 4—061(7l
1(1) nlxi () — i (1)) 1+ B
(14 gy’
1+,811m2
o (1 + g’
_ (_a,“+ 5(1+ B}

e )mm —u(r)
200 — (o) +

o (14 gy’
1+ pim2

DA < ~dy(a(t) — 0]+ 22 (1) = (0],

2ai ot M
D+Vg(l‘)< 31 11 z‘xl(f*‘ﬁ)*u](tf‘ﬂ”
(1 + [)’lm)
— dby|xs — us(1)] + diy|xa — ua(1)],
2at M
DV,(1) < % |x1 (1 = 12) — uy (t — 1)
(1+ Bym)
— dyp|xs — ug(0)] + dis|x3 — w3 (1)].
Define
2a¥ o M !
Vs(1) :%/ 1%1(5) — 11 (5)|ds
(1+pim)” =
and
Zau OCHM t
Vat) =228 [ ) - olas
(1 + ﬂzm) -1

(3.6)

(3.7)

(3.8)

(3.9)

3 (1) = us(1)]

() = 0 ()] + 2 ) — (o),

|x3() — us(1)],

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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Calculating the right-upper derivative of Vs(z) and V(z) along
the solution of system (1.1), we derive

D () = ZEEM () = ()]
(1+ pym)
_ M) —w— ), (3.16)
(1 +ﬁ/1m)
D Ve(t) = =5 1 () = (o)
(14 pym)
_ M ) — w1 (3.17)
(1+ pim)
Let
V(l) =0 V](f) + 0y V2([) + O'3(V3(Z) + V5(l))
+ O'4(V4(t) + V(,([)) (318)
It follows (3.10)—(3.17) that
4
DYV(1) < =Y Kilxi(t) —w(0)l, ¢ >T, (3.19)
i=1

where T is defined in Theorem 2.1 and K; (i =1,2,3,4) are
defined in (3.20)-(3.22) and (3.23), respectively.

o (1+ By M) 4 _ 02Dy 203a5,00M  204ay,05M

Ky =a ] —ay 7 (R
1+ pym? m 1+ p,m? 1+ p,m?
(3.20)
O'lDu
K2 = O'zaél — m 1 N (321)
oo (1 + pidr?
K; = 030132 — 04dyy — 11(7112, (3.22)
1+ pym

Ky = 044}, — 03dl,. (3.23)

Integrating both sides of (3.19) on interval [T, 7] yields

V(t) + Z /?’ Ki(0))xi(¢) — wi(1)|ds < V(T). (3.24)

It follows from (3.24) that

0.55
05}
045
04l
035}
03}
025

x,(0)

0.05

0 50 100 150 200 250 300
t

Fig. 1

X, (1)

4 t
3 /_ Kipx(t) — w()|ds < V(T) < 00, fort>T.  (3.25)
— ' JT

Since x;(f) (i=1,2,3,4) are bounded for ¢ > T, so |xi(1)—

u;(1)] (i=1,2,3,4) are uniformly continuous on [T,c0). By
Barbalat’s Lemma [23], we have

lim |x,(1) — w(6)] = 0, (i=1,2,3,4). (3.26)
t—00

By Theorems 7.4 and 8.2 in [24], we know that the positive solu-
tion (x;(7), x2(1), x3(2), x4(1))" of Eq. (1.1) is uniformly asymp-
totically stable. The proof of Theorem 3.2 is complete. [J

4. Numerical example

To illustrate the theoretical results, we present some numerical
simulations. Let us consider the following discrete system:

(2+4cos I)xfx;
14(2+sin)x?

P10 — x1[0.5+0.2sin s — (2+sin) (1) x]

_ (7—sint)x2xy
14+(2—sin I)x%

220 — ,[0.4+0.2c08 7 — (7 —sin£)xs] + (0.8 +0.2sin 1) (x; — x2),

+(0.940.4cos?)(x2 —x1),

(2+cost)x? (1—11)
1+(2+sint)x?(tfrl)

—(840.4cost)x; — (0.7—0.5sin1)xy),
dul) _ [7(0.6 £0.3cost)+ (2 +sing) i)

dt 1+(2—sint)x%(f—rg)

—(840.5sin?)x4 — (0.9+0.2sin7)x3].

dul) _ o [—(0‘8+0.4sint) +(14cos?)

Corresponding to system (4.1), we have

aio(t) = 0.5+ 0.2sin ¢, ax (1) = 0.4 + 0.2 cos ¢, az (1)
= 0.8+ 0.4sin¢,

as(t) = 0.6 +0.3cost,ay(t) =2 +sint, ay (1)
=7 —sint, a3 (f) = 1 + cost,

ag (t) =2 +sint, o (1) =2+ cost,0(1)
=7 —sint, B,(t) =2 +sin¢,

By(t) =2 —sint, as(t) = 8 + 0.4 cos t, a(1)
=0.7—-0.5sint,as,(1) =8+ 0.5sin ¢,

ag(t) =0.940.2sin7, Di(¢) = 0.9 4+ 0.4cos t, Dy(7)
=0.84+0.2sin7?.

0.45

04+
0.35}
0.3+
0.25}
0.2+t

0.1F
0.05

0 50 100 150 200 250 300
t

The dynamical behavior of the solution (x;(¢),x2(¢), x3(¢), x4(¢)) of system (4.1).
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It is easy to see that

al, =07, diy=03, a4 =06, dyy=02, dafy=12, dyy=04, a} =09,
dy =03, a', =3, d,=1, a4 =8, da=6 a, =2 da,;, =0 ai =3,
af“=1, of =3, allzlv =38, 061226, By =3, ﬂ11:17 B =3,
By=1, a, =84, d,=76 a,=12 da,=02 a,=285 d,=75,
an =11, d,;=07 Di=13, D, =05 Di=1 D,=06.

Leto; =0.2, 0, =0.3, 03 = 0.8 and o4 = 0.75. Then the coef-
ficients of system (4.1) satisfy the conditions in Theorem 3.2.
The phase diagram of system (4.1) is illustrated in Fig. 1.
Numerical simulations show that system (4.1) has a unique po-
sitive periodic solution which is globally asymptotically stable.

5. Conclusions

In this paper, we have investigated the dynamical behavior of a
delayed diffusive predator—prey model with competition and
type I1I functional response. By using inequality analytical tech-
nique, sufficient conditions which ensure the permanence of the
system are obtained. Moreover, we also analyze the positive
periodic solution by mean of fixed point theorem of Brouwer.
By Lyapunov functional method, we has also obtained some
sufficient conditions for the global stability of positive periodic
solution of the system. From the conditions (H1)-(H3) in The-
orems 2.1 and 3.2., we can conclude that delay has no influence
on the permanence and the global stability of the system.
Numerical simulations show the feasibility of our main results.

Acknowledgments

The authors would like to express sincere appreciation to the
editor and anonymous referee for their valuable comments
which have led to an improvement the presentation of this

paper.
References

[1] A. Lotka, The Elements of Physical Biology, Williams and
Wilkins, Baltimore, 1925.

[2] V. Voltera, Variazioni e fluttuazioni del numero di individui in
specie animali conviventi, Mem. Accd. Lincei. 2 (1926) 1-113.

[3] A.A. Berryman, The origns and evolution of predator—prey
theory, Ecology 73 (5) (1992) 1530-1535.

[4] G.P. Samanta, Analysis of a delay nonautonous predator—prey
system with disease in the prey, Nonlinear Anal.: Modell. Contr.
15 (1) (2010) 97-108.

[5] Y.H. Fan, W.T. Li, Permanence for a delayed discrete ratio-
dependent predator—prey model with Holling type functional
response, J. Math. Anal. Appl. 299 (2) (2004) 357-374.

[6] F.D. Chen, The permanence and global attractivity of Lotka—
Volterra competition system with feedback control, Nonlinear
Anal.: Real World Appl. 7 (1) (2006) 133-143.

[7]1 K. Wang, Y.L. Zhu, Permanence and global asymptotic stability
of a delayed predator-prey model with Hassell-Varley type
functional response, Bull. Iran. Math. Soc. 37 (3) (2011) 197—
215.

[8] Z.D. Teng, Y. Zhang, S.J. Gao, Permanence criteria for general
delayed discrete nonautonomous n-species Kolmogorov systems

and its applications, Comput. Math. Appl. 59 (2) (2010) 812—
828.

[9] J. Dhar, K.S. Jatav, Mathematical analysis of a delayed stage-
structured predator—prey model with impulsive diffusion
between two predators territories, Ecological Complexity 16
(2013) 59-67.

[10] S.Q. Liu, L.S. Chen, Necessary-sufficient conditions for
permanence and extinction in Lotka—Volterra system with
distributed delay, Appl. Math. Lett. 16 (6) (2003) 911-917.

[11] X.Y. Liao, S.F. Zhou, Y.M. Chen, Permanence and global
stability in a discrete n-species competition system with feedback
controls, Nonlinear Anal.: Real World Appl. 9 (4) (2008) 1661
1671.

[12] H.X. Hu, Z.D. Teng, H.J. Jiang, On the permanence in non-
autonomous Lotka—Volterra competitive system with pure-
delays and feedback controls, Nonlinear Anal.: Real World
Appl. 10 (3) (2009) 1803—-1815.

[13] Y. Muroya, Permanence and global stability in a Lotka—
Volterra predator—prey system with delays, Appl. Math. Lett.
16 (8) (2003) 1245-1250.

[14] T. Kuniya, Y. Nakata, Permanence and extinction for a
nonautonomous SEIRS epidemic model, Appl. Math.
Comput. 218 (18) (2012) 9321-9331.

[15] Z.Y. Hou, On permanence of Lotka—Volterra systems with
delays and variable intrinsic growth rates, Nonlinear Anal.: Real
World Appl. 14 (2) (2013) 960-975.

[16] C.H. Li, C.C. Tsai, S.Y. Yang, Analysis of the permanence of an
SIR epidemic model with logistic process and distributed time
delay, Commun. Nonlinear Sci. Numer. Simul. 17 (9) (2012)
3696-3707.

[17] E.D. Chen, M.S. You, Permanence for an integrodifferential
model of mutualism, Appl. Math. Comput. 186 (1) (2007) 30-34.

[18] Q. Liu, Almost periodic solution of a diffusive mixed system
with time delay and type III functional response, Discr. Dyn.
Nat. Soc. (2008) 13 (Article ID 706154).

[19] S. Tang, L.S. Chen, Chaos in functional response host-
parasitoid ecosystem models, Chaos, Solitons Fract. 13 (4)
(2002) 875-884.

[20] F. Wei, K. Wang, Uniform persistence of asymptotically
periodic multispecies competition predator—prey systems with
Holling III type functional response, Appl. Math. Comput. 170
(2) (2005) 994-998.

[21] X. Lv, S.P. Lu, P. Lu, Existence and global attractivity of
positive periodic solutions of Lotka—Volterra predator—prey
systems with deviating arguments, Nonlinear Anal.: Real World
Appl. 11 (5-6) (2010) 574-583.

[22] F. Montes de Oca, M. Vivas, Extinction in a two dimensional
Lotka—Volterra system with infinite delay, Nonlinear Anal.:
Real World Appl. 7 (5) (2006) 1042—-1047.

[23] K. Gopalsamy, Stability and Oscillations in Delay Differential
Equations of Population Dynamics, Kluwer Academic,
Dordrecht, The Netherlands, 1992.

[24] T. Yoshizawa, Stability Theory by Lyapunov’ Second Method,
Math. Soc. Japan, Tokyo, 1966.


http://refhub.elsevier.com/S1110-256X(13)00138-7/h0015
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0015
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0015
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0020
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0020
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0025
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0025
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0030
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0030
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0030
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0035
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0035
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0035
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0040
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0040
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0040
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0045
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0045
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0045
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0045
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0050
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0050
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0050
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0050
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0125
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0125
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0125
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0125
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0055
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0055
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0055
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0060
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0060
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0060
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0060
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0065
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0065
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0065
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0065
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0070
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0070
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0070
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0075
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0075
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0075
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0080
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0080
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0080
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0085
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0085
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0085
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0085
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0090
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0090
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0095
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0095
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0095
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0100
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0100
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0100
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0105
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0105
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0105
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0105
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0110
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0110
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0110
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0110
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0115
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0115
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0115
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0120
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0120
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0120
http://refhub.elsevier.com/S1110-256X(13)00138-7/h0120

	Dynamical behavior of a delayed diffusive predat
	1 Introduction
	2 Permanence
	3 The existence and global asymptotic stability of positive periodic solution
	4 Numerical example
	5 Conclusions
	Acknowledgments
	References


