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Abstract In this paper, designing an appropriate linear and nonlinear feedback control, the two

identical integer order chaotic systems are synchronized by analytically and numerically. It has been

realizing that, synchronization using linear feedback control method is efficient than nonlinear feed-

back control method due to the less computational complexity and the synchronization error. ElG-

amal public key cryptosystem is described through the proposed Diffie–Hellman key exchange

protocol based on the synchronized chaotic systems using linear feedback control and their security

are analyzed. The numerical simulations are given to validate the correctness of the proposed syn-

chronization of chaotic systems and the ElGamal cryptosystem.
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1. Introduction

In nonlinear science, chaos synchronization has grown intensively

because of its potential and practical applications in many fields.
Thepossibility of synchronizing two chaotic systemhasbeen intro-
duced by Pecora and Carroll [1] and the synchronization of two
identical chaotic systems with different initial conditions has been

presented in [2].Moreover, synchronization of two chaotic systems
has been studied extensively in the last few years.

Most recently, the problem of controlling chaos for new

dynamical system has been studied and the sufficient condi-
tions for synchronization of chaotic systems have been derived
in [3]. An efficient nonlinear control method has been applied

to the synchronization of unified chaotic systems using the
Lyapunov method in [4] and a nonlinear control scheme for
the synchronization has been presented using the Lyapunov
stability theory in [5]. The synchronization of an energy re-
icense.
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Fig. 1 Chaotic attractor corresponding to the system (1) in 3D view.
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source system has been investigated and three linear control
schemes have been proposed to synchronize a energy resource
system in [6]. The synchronization process of a four dimen-

sional chaotic systems by using linear feedback controller, a
single variable and an adaptive controller methods have been
proposed and demonstrated in [7]. Synchronization of energy

resource systems has been proposed when the parameters of
the master system are unknown and different from the slave
system using adaptive linear feedback control in [8].

Chaos synchronization has been tremendous worldwide inter-
est in communication systems, which has applications in the
encryption and decryption of information for secure communica-
tions. An adaptive scheme has been exhibited in [9] for chaos syn-

chronization that solves the problem of security in the
communications. The authors in [10] have been designed secure
digital communication systemsusing chaoticmodulation, cryptog-

raphy and chaotic synchronization and their security features have
been analyzed. Two methods of encoding and decoding message
for secure communication based on an adaptive chaos synchroni-

zation have been investigated by Xing and Huang [11]. In [12], a
new technique has been suggested for synchronizing two chaotic
systems and that technique has been applied into digital cryptogra-

phy [13] for sending and receiving messages.
In this paper, linear and nonlinear feedback control methods

to synchronize the chaotic systems are presented. The ultimate
aim is to apply the synchronized chaotic systems with minimum

synchronization error in secure communication. Synchroniza-
tion using linear and nonlinear control methods are investigated
and conclude that the linear feedback controlmethod is an effec-

tive method for synchronizing chaotic systems based on syn-
chronization cost and error. Here, these synchronized chaotic
systems are used in ElGamal cryptosystem to improve the secu-

rity level. Mathematically, the discrete logarithm problem is a
difficult problem to find their solution and it is closely related
to Diffie–Hellman key exchange in cryptography. So, the Dif-

fie–Hellman key exchange protocol is introduced newly based
on synchronized chaotic systems and ElGamal public key cryp-
tosystem which is proposed via Diffie–Hellman key exchange
with the help of Fibonacci Q matrices. The encryption and

decryption processes are demonstrated through a numerical
example and the security of the proposed cryptosystem is
investigated.

The remainder of this paper is organized as follows: Section 2,
the method of synchronizing chaotic systems using feedback
controllers and their numerical simulations are given. The appli-

cations of the synchronized chaotic systems are presented in Sec-
tion 3. In addition, it has been shown that the numerical example
supports well with the proposed public key cryptosystem. The
efficiency and security of the proposed cryptosystem are ana-

lyzed in Section 4. The paper is concluded in Section 5.

2. Synchronization of integer order chaotic systems

In this section, synchronization methods of two chaotic sys-
tems using nonlinear and linear feedback controllers and their
numerical simulation results will be given.

2.1. Systems description

Consider a three dimensional autonomous chaotic dynamical

system which can be expressed as in the following (see [14])
_x ¼ yð1� zÞ
_y ¼ yð1þ zÞ � ax

_z ¼ a� xy� y2
ð1Þ

where x, y, z are the state variables and a is a parameter of the

system (1). The strange attractors of the system (1) are differ-
ent from Lorenz system in topological structure. The dynami-
cal features of the system (1) have been analyzed in [14].

The system (1) exhibits chaos when a= 2. The chaotic
attractor corresponding to the system (1) is shown in Fig. 1
and the different phase portraits are depicted in Fig. 2.

In the following subsections, the processes of synchroniza-

tion of chaotic systems using nonlinear and linear feedback
control methods are studied for the driving system (1).

2.2. Synchronization using nonlinear feedback control

Consider the following system as a response system, which is
identical to system (1) as

_x1 ¼ y1ð1� z1Þ þ u1

_y1 ¼ y1ð1þ z1Þ � ax1 þ u2

_z1 ¼ a� x1y1 � y21 þ u3

ð2Þ

where u1, u2 and u3 are feedback controllers.
Let e1 = x1 � x, e2 = y1 � y and e3 = z1 � z be the error

variables.
Then the error system of (1) and (2) can be derived as

follows:

_e1 ¼ e2 � e2e3 � e2z� e3yþ u1

_e2 ¼ �ae1 þ e2ð1þ zÞ þ e2e3 þ ye3 þ u2

_e3 ¼ �e1e2 � e1y� xe2 � e22 � 2e2yþ u3

ð3Þ
Theorem 1. The systems (1) and (2) will approach global and
exponential asymptotical synchronization with the following
nonlinear control law:

u1 ¼ �k1e1
u2 ¼ �k2e2
u3 ¼ 2e1ð1þ e2Þ � k3e3

ð4Þ

where k1, k2 and k3 are positive feedback gains which will be esti-

mated in order to achieve synchronization.

Proof. Consider the Lyapunov candidate function as
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Fig. 2 Different phase portraits of the system (1) in 2D view.
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V ¼ 1

2
e21 þ e22 þ e23
� �

ð5Þ

Then the time derivative of V can be written as

_V ¼ e1 _e1 þ e2 _e2 þ e3 _e3

¼ e1ðe2 � e2e3 � e2z� e3yþ u1Þ þ e2ð�ae1 þ e2ð1þ zÞ
þ e2e3 þ ye3 þ u2Þ þ e3ð�e1e2 � e1y� e2x� e22 � 2e2y

þ u3Þ
¼ ðe1e2 � e1e2e3 � e1e2z� e1e3yþ e1u1Þ
þ �ae1e2 þ e22ð1þ zÞ þ e22e3 þ e2e3yþ e2u2
� �
þ �e1e2e3 � e1e3y� e2e3x� e22e3 � 2e2e3yþ e3u3
� �

_V 6 �2je1e2e3j � ðaþ L� 1Þje1e2j � 2Lje2e3j � 2Lje1e3j
þ ð1þ LÞe22 þ je2ju2 þ je1ju1 þ je3ju3 ð6Þ

where L is the boundary satisfying ŒxŒ, ŒyŒ, ŒzŒ 6 L and Œx1Œ,
Œy1Œ, Œz1Œ 6 L.

Substitute (4) in (6),

_V 6 � k1e
2
1 þ ðaþ L� 1Þje1e2j þ 2Lje2e3j þ ðk2 � 1� LÞe22

�
þk3e

2
3

�
¼ �jeTjPjej

where j e j¼ j e1 j; j e2 j; j e3 jð ÞT and

P ¼
k1

1
2
ðaþ L� 1Þ 0

1
2
ðaþ L� 1Þ k2 � 1� L L

0 L k3

0
B@

1
CA ð7Þ

Then the error system (3) is asymptotically stable if the matrix
P should be positive definite.

The necessary and sufficient conditions for a matrix P to be
positive definite are

1. The diagonal elements of P must be all positive.
2. The determinants of all the upper left-hand corners of P are
positive.

If above conditions are satisfied, then the matrix P is positive
definite. Hence P is positive definite, then _V is negative definite,
which implies the error system (3) is asymptotically stable. Based
onLyapunov’s stability theory, limtfi1ie(t)i = 0. Therefore the

systems (1) and (2) are synchronized successfully. h
2.3. Synchronization process using linear feedback control

Consider the following response system with the linear feed-
back controller as described by

_x1 ¼ y1ð1� z1Þ � g1ðx1 � xÞ
_y1 ¼ y1ð1þ z1Þ � ax1 � g2ðy1 � yÞ
_z1 ¼ a� x1y1 � y21 � g3ðz1 � zÞ

ð8Þ

where g1, g2 and g3 are positive feedback gains.
Then the error dynamical system of (1) and (8) can be de-

rived as follows:

_e1 ¼ e2 � ðy1z1 � yzÞ � g1e1

_e2 ¼ �ae1 þ ðy1z1 � yzÞ þ e2 � g2e2

_e3 ¼ �ðx1y1 � xyÞ � y21 þ y2 � g3e3

ð9Þ

where e1 = x1 � x, e2 = y1 � y and e3 = z1 � z.

Theorem 2. The systems (1) and (8) will approach global and
exponential asymptotical synchronization with the following
linear control law:

v1 ¼ �g1e1
v2 ¼ �g2e2
v3 ¼ �g3e3

ð10Þ
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where g1, g2 and g3 are positive feedback gains which will be esti-

mated in order to achieve synchronization.

Proof. Consider the Lyapunov candidate function as

V1 ¼
1

2
e21 þ e22 þ e23
� �

ð11Þ

Then the time derivative of V1 can be written as

_V1 ¼ e1 _e1 þ e2 _e2 þ e3 _e3

¼ e1ðe2 � ðy1z1 � yzÞ þ v1Þ þ e2ð�ae1 þ ðy1z1 � yzÞ þ e2

þ v2Þ þ e3 �ðx1y1 � xyÞ � y21 þ y2 þ v3
� �

¼ ðe1e2 � ðy1z1 � yzÞe1 þ e1v1Þ
þ �ae1e2 þ e22 þ ðy1z1 � yzÞe2 þ e2v2
� �
þ �ðx1y1 � xyÞe3 � y21 � y2

� �
e3 þ e3v3

� �

_V1 6 je1e2j � L2
1 � L2

1

� �
je1j þ v1e1 � aje1e2j þ e22

þ L2
1 � L2

1

� �
je2j þ v2e2 � L2

1 � L2
1

� �
je3j

� L2
1 � L2

1

� �
je3j þ v3e3 ð12Þ

where L1 is the boundary satisfying ŒxŒ, ŒyŒ, ŒzŒ 6 L1 and Œx1Œ,
Œy1Œ, Œz1Œ 6 L1. Substitute (10) in (12),

_V1 6 � �ðaþ 1Þje1e2j þ g1e
2
1 þ ðg2 þ 1Þe22 þ g3e

2
3

� �
¼ �jeTjP1jej

where j e j ¼ j e1 j; j e2 j; j e3 jð ÞT and

P1 ¼
g1 � 1

2
ðaþ 1Þ 0

� 1
2
ðaþ 1Þ g2 þ 1 0

0 0 g3

0
B@

1
CA ð13Þ

Then the error system (9) is asymptotically stable if the matrix
P1 is be positive definite.

The necessary and sufficient conditions for a matrix P1 to
be positive definite are given in Theorem 1. Based on
Lyapunov’s stability theory, limtfi1ie(t)i = 0. Thus, the

synchronization of systems (1) and (8) is achieved
successfully. h
2.4. Numerical simulations

Choose the value L = L1 = 10, k1 = g1 = 25 and

k3 = g3 = 20.
Here the value of L = 10, then k2 > 11. So, we choose

k2 = g2 = 13.

Then the nonlinear controller (4) becomes

u1 ¼ �25e1
u2 ¼ �13e2
u3 ¼ 2e1ð1þ e2Þ � 20e3

ð14Þ

Then the error system (3) can be written as

_e1 ¼ e2e3 � 9e2 � 10e3 � 25e1

_e2 ¼ �ae1 � 2e2 þ e2e3 þ 10e3

_e3 ¼ �8e1 � e22 � 30e2 þ e1e2 � 20e3

ð15Þ

The time variation of the error system (15) using nonlinear
feedback controller can be depicted in Fig. 3. Let r(t) be the
synchronization error of the system (1) and (2) and it can be

described as rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22 þ e23

p
. The evolution of the syn-

chronization error r(t) using nonlinear feedback controller
with various time t is depicted in Fig. 4.

For the above values, the linear controller (10) becomes

v1 ¼ �25e1
v2 ¼ �13e2
v3 ¼ �20e3

ð16Þ

Then the error system (9) can be written as

_e1 ¼ e2 � 25e1

_e2 ¼ �ae1 � 12e2

_e3 ¼ �20e3
ð17Þ

The time variation of the error system (17) using linear
feedback controller can be depicted in Fig. 5. The evolution
of the synchronization error r(t) using linear feedback control-
ler with various time t is depicted in Fig. 6.

Remark 2.3. From Fig. 3, the errors e1, e2 and e3 are tend to
zero when t P 1.3 and the trajectory of r(t) tends to zero when
t P 1.4, see Fig. 4.

Remark 2.4. From Fig. 5, the errors e1, e2 and e3 are tend to

zero when t P 0.3 and the trajectory of r(t) tends to zero when
t P 0.4 by Fig. 6.

Result 2.5. From the above remarks, one can easily realize

that the error of the synchronization of chaotic systems (1)
and (8) using linear feedback control is 10 times less than the
synchronization of chaotic systems (1) and (2) using nonlinear
feedback control for the same feedback gains.

Result 2.6. As the synchronization cost and error are reduced
by using linear feedback control for synchronizing the systems
(1) and (8), it is very useful to apply linear feedback controllers

in real life applications for secure communications are con-
cerned. Hence the synchronized chaotic systems (1) and (8)
are applied into ElGamal cryptosystem to improve the security
level which will be presented in the next section.
3. Application of the proposed synchronized chaotic systems

In this section, the proposed integer order synchronized chaotic
systems are applied into the famous ElGamal [15] cryptosystem

with the help of the FibonacciQmatrix. It has so many applica-
tions in recent technologies including PGP, GNU and, etc.

Some basic assumptions are needed to describe the ElG-
amal cryptosystem via Diffie–Hellman key exchange and they

can be given as follows.
Consider the Fibonacci Q matrix as in [16] given by

Q ¼
1 1

1 0

� �
ð18Þ

Then for any integer n P 1 the nth power of Q matrix has the
form

Qn ¼
Fnþ1 Fn

Fn Fn�1

� �
ð19Þ
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The plaintext (p) can be divided into message units. Con-
sider the assignment of numbers for unit messages as given
in Table 1.

The plain text can be arranged into sequence of integers p1,
p2, p3, p4, . . . , pn using Table 1. Divide the sequence p1, p2, p3,
p4, . . . , pn into blocks of four terms. Consider the first four

terms p1, p2, p3, p4 as a first block and let it be M1, p5, p6,
p7, p8 as a second block and let it be M2, and so on. If the total
term of plaintext sequence is not a multiple of 4, then include
the necessary blank spaces at the end of the sequence to com-
plete the sequence as a multiple of 4. Choose the first block and

form a 2 · 2 square matrix M1 ¼
p1 p2
p3 p4

� �
. Do the same for

another blocks.

Consider two cryptographic entities Alice and Bob and let
Alice be a sender and Bob be a receiver. Consider the driving
system (1) as a sender system and the response system (8) as a

receiver system. The synchronization error r(t) of the system
(1) and (8) tends to zero after time t P 0.4 and hence
x1 = x, y1 = y, z1 = z after t0 = 0.4.
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3.1. Diffie–Hellman key exchange based on synchronized chaotic
systems

The security of many cryptographic techniques depends on the
intractability of the discrete logarithm problem. The concept
of a public key construction based on discrete logarithm prob-

lem was introduced by Diffie–Hellman [17] in 1976. It was a
brilliant insight of Diffie and Hellman that the difficulty of
the discrete logarithm problem and finding their solution.

Here, we describe the Diffie–Hellman key exchange problem
based on synchronized chaotic systems as follows.

Alice and Bob agree on a public element Q and n= 38.

1. Alice to pick a secret number t1 > t0 and compute x at t1
from (1) that she keeps secret. She calculates s ¼ t1� j x j½ �
(mod 38) where [a] is the integer part of a and ŒbŒ is the

modulus value of b.
2. Alice computes A= Qs (mod 38) and sends to Bob.
3. Bob to pick a secret number t2 > t0 and compute x1 at t2

from (8) that he keeps secret. He calculates r ¼ t2� j x1 j½ �
(mod 38).

4. Bob computes B = Qr (mod 38) and sends to Alice.

5. Alice generates key KA = Bs = (Qr)s (mod 38).
6. Bob generates key KB = Ar = (Qs)r (mod 38).

Their common secret key K= KA = KB, since
(Qr)s = Qrs = (Qs)r.

Remark 3.1. In the general Diffie–Hellman algorithm, the
sender and receiver should pick an integer for computing the

discrete logarithm. The proposed Diffie–Hellman algorithm is
developed to relax the restriction of choosing integer so that it
is valid for all numbers.
3.2. ElGamal cryptosystem

It is a public key cryptosystem which is based on the Diffie–
Hellman key exchange. ElGamal encryption is probabilistic.
Table 1 Assignment of numbers with unit messages.

Number assigned 0 1 2 3 4 5 6

Unit message 0 1 2 3 4 5 6
Consider the assumptions of the proposed Diffie–Hellman
key exchange and the completed encryption and decryption
process of the ElGamal cryptosystem based on synchronized

chaotic systems as described by

1. Alice picks a random secret number t1 > t0 and compute x

at t1 from (1). Then set s ¼ t1� j x j½ � (mod 38), she calcu-
lates and publishes C= Qs (mod 38).

2. Bob wants to send a message M 2 M2ðRÞ to Alice.
3. Bob picks a random secret number t2 > t0 and compute x1

at t2 from (8). Then set r ¼ t2� j x1 j½ � (mod 38), he com-
putes D= Qr (mod 38).

4. Bob sends two elements D and Ei = Mi(C
r) (mod 38) to

Alice where i = 1, 2, . . . , m.
5. Alice recovers a message Mi = Ei(D

s)�1 (mod 38).

The ElGamal cryptosystem should be applied to communi-
cation systems where both parities are not able to interact in
reasonable time due to delays in transmission. The numerical

illustration of the proposed ElGamal cryptosystem will be gi-
ven in the next section.

3.3. Numerical example

Alice picks a random number t1 = 4.985, then get
x= �0.2637 by solving the system (1) at t1 and calculates
s= [t1 \ ŒxŒ] = 1 (mod 38). She computes

C ¼ 1 1
1 0

� �1

¼ 1 1
1 0

� �
(mod 38) and sends A to Bob.

Bob wants to send a message M=MEET AT SPA. M has

11 characters, which is not a multiple of 4. So, insert a one
black space at the end of the message. Then Bob split a mes-
sage into 3 blocks let it be M1,M2 and M3.

Bob picks a random number t2 = 10.10, then get
x1 = 0.7058 by solving the system (8) at t1 and calculates
r ¼ t2� j x1 j½ � ¼ 7 (mod 38).

Bob takes a first block, M1 ¼
M E
E T

� �
¼ 24 16

16 31

� �
(mod 38) since by Table 1.
7 8 9 10 11 12 13 . . . 37

7 8 9 – . A B . . . Z
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He computes D ¼ 1 1
1 0

� �s

¼ 21 13
13 8

� �
and

E1 ¼M1 � Cr ¼ 28 22
17 38

� �
(mod 38).

Then he sends D and E1 values to Alice.
Alice recovered a message M1,

M1 ¼ E1ðDsÞ�1 ¼
28 22

17 38

� �
21 13

13 8

� ��1
¼

24 16

16 31

� �

ðmod 38Þ ¼
M E

E T

� �
:

Continue the procedure for M2 and M3.

Finally, Alice recover a original message M= MEET AT

SPA from M1, M2 and M3.
In every cryptosystem, the security is very important. It will

be analyzed in the next section for proposed ElGamal
cryptosystem.

4. Security analysis

The security of proposed ElGamal public key cryptosystem de-
pends on the perception and consensus of experts as to the dif-

ficulty of problems such as integer factorization (IFP) and
discrete logarithm (DLP).

4.1. DLP attack

Suppose an Adversary (ADV) recovers the private key by solv-
ing the DLP. Then compute the value of Qrs (mod n) and tries
to recover a message M. But it is not sufficient to recover M

because the decryption M= E \ (Ds)�1 (mod n) involves in-
verse problem and IFP.

To recover a message M, ADV needs to solve the inverse

problem modulo n. The process finding the solution of the in-
verse congruence is computationally infeasible since ADV does
not known the factorization of n and difficult to find the value

of E. So ADV faced many difficulties and problems to recover
the information or a message M. Hence ADV would fail to re-
cover a message M by using DLP attack.

4.2. IFP attack

Suppose ADV successfully factoring an integer n into primes p
and q. Then ADV computes the value of C, D, E (mod n) by

solving congruence modulo p and modulo q and using Chinese
Remainder Theorem.

To recover a message M, ADV needs to find the values r

and s. But r and s are exponent of Q but Q is only shared
by Alice and Bob. So ADV compulsorily to solve two DLP
along with primes p and q for finding the values of r and s.

Hence ADV would fail to recover the values r and s since it
is very difficult to solve the DLP of modulo primes p and q.
Moreover, s and r are computed from the chaotic systems
(1) and (8) respectively and solving these chaotic systems is

very difficult. So, ADV would fail to recover a message M
by using IFP attack.

Finally ADV would fails to recover a message M by solving

both matrix DLP and IFP.

Remark 4.1. From the security analysis of the proposed
cryptosystem, we conclude that the proposed cryptosystem is
stronger than the usual ElGamal cryptosystem due to addi-

tional hardness of choosing r and s because finding the value of
x and x1 from synchronized chaotic systems is very hard from
(1) and (8) at time t1 and t2 respectively.
5. Conclusions

Linear and nonlinear feedback controllers are designed to real-
ize drive-response synchronization of an existing chaotic sys-
tem. It has shown that synchronization using linear feedback

control method is suitable and efficient than nonlinear control
method due to less synchronization cost and synchronization
error. The novel Diffie–Hellman key exchange protocol is pre-

sented based on synchronized chaotic systems using linear con-
trol with the support of Fibonacci Q matrix and that protocol
is generalized to pick a number to computing discrete loga-
rithm instead of an integer. ElGamal cryptosystem based on

novel Diffie–Hellman key exchange protocol has been pro-
posed and the numerical example has been fully exhibited.
Further, we have shown that the security of the proposed cryp-

tosystem is stronger than the usual ElGamal cryptosystem due
to the hardness of DLP and IFP and the additional securities.
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