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Abstract In the present paper, we introduce a family of integral operators 7

At

ohs(a, b, c) associate

with the Noor integral operator in the open unit disk U = {z € C: |z] < 1}, which is defined by
the convolution [f] ;(a, b, &)(2)]7Y % f(z), where

.f"pvé(a,b, e)(z) = (1 — u+ 8)2">Fi(a, b; c;2) + (u — 8)z[282F1 (a, b; ¢; 2)] + udz* (22 F (a,b; ¢; 2)]"

functions;

Hadamard product (or con-

volution);

Differential subordination; <
Superordination; (peN={L2-}udé>0zel)

Noor integral operator;
Sandwich-type result

By using the operator

p.n,o

(a, b, c), we investigate some subordination and superordination

preserving properties for certain classes of analytic and multivalent functions in U. Various sand-
wich-type results for these multivalent functions are also obtained.
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1. Introduction

Let H(U) denote the class of analytic functions in the open
unit disk U={zeC:|z|]<1}. For aeC and
neN={1,2,---}, let

Hla,n) = {f€ H(U) : f(z) = a+ a,2" + @y 2" +---}.

Let fand g be two members of H(U). The function fis said to
be subordinate to g, or g is said to be superordinate to f, if
there exists a Schwarz function @, analytic in U with
o0) =0 and lo(z)] < 1(z € U), such that

flz) =g(w(z))(z € U). In such a case, we write f<g or
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f(z) < g(z)(z € U). Furthermore, if the function g is univalent
in U, then we have (see [1,2]):

f=g(zeU) <= f(0) =g(0) and f(U) C g(U).

Definition 1.1 (see [1]). Let ¢ : C*> — C and let /& be univalent
in U. If p is analytic in U and satisfies the following differential
subordination

d(p(2),29'(2)) < h(z) (z € U), (L.1)

then p is called a solution of the differential subordination
(1.1). The univalent function q is called a dominant of the solu-
tions of the differential subordination (1.1), if p < q for all p
satisfying (1.1). A dominant q that satisfies g < g for all domi-
nants q of (1.1) is said to be the best dominant.

Definition 1.2 (see [3]). Let ¢ : C*> — C and let / be univalent
in U. If p and ¢(p(z), zp’(z)) are univalent in U and satisfy the
following differential superordination

h(z) < ¢(p(2),20'(2)) (z € U),

then p is called a solution of the differential superordination
(1.2). An analytic function q is called a subordination of the
solutions of the differential superordination (1.2), if g <p
for all p satisfying (1.2). A univalent subordination q that sat-
isfies q < q for all subordinations q of (1.2) is said to be the
best subordination.

(12)

Definition 1.3 (see [3]). We denote by Q the class of functions
f that are analytic and injective on U \ E(f), where

z—¢&

E(f) = {5 £ & € OU and limf(z) = oo},

and are such that f'(&)#0(¢ € OU \ E(f)).

Let A,(p) denote the class of all analytic functions of the
form

o) =2+ ayu™* (pneN;z e U),

k=n

and let A, (p) = A(p).
For /'€ A(p), we denote by D"7~" : A(p) — A(p) the oper-
ator defined by

zP
m #f(z) (n> —p)
or, equivalently, by
_ 2
(n+p-—1)

D) =

D If(z) ;
where n is any integer greater than —p and the symbol (x)
stands for the Hadamard product (or convolution). The oper-
ator D"~ with p = 1 was introduced by Ruscheweyh [4], and
D771 was introduced by Goel and Sohi [5]. The operator
D77 is called as the Ruscheweyh derivative of (n + p — 1)th
order.

Recently, analogous to "', Liu and Noor [6] introduced
an integral operator Z,, : A(p) — A(p) as below.

Let fup(z) = 2/(1 —2)"""(n > —p), and let fI)(z) be
defined such that

1) z

Sup(@) £D(2) = 1

Then

PN
)) f2) (F € AQ).

Z,./(2) = )(2) #f2) = ((1_7

(13)

We note that Zo,/(z) = zf'(z)/p and T, ,/(z) = f(z). Also, the
operator Z,, defined by (1.3) is called the Noor integral oper-
ator (n + p—1)-th order [6]. For p =1, the operator
I,y =7, was introduced by Noor [7] and Noor and Noor
[8], which is an important operator in defining several classes
of analytic functions. In recent years, it has been shown that
Noor integral operator has fundamental and significant appli-
cations in analytic function theory. For the properties and
applications of the Noor integral operator, see, for example,
[9-13].

For real or complex numbers «, b, ¢ other than 0, —1,
—2, -+, the Gauss hypergeometric function ,F\(a, b;c;z) is de-
fined by

akbkzk
zFl(a,b;QZ):;( zcgk) K

(1.4)

where (v); denotes the Pochhammer symbol defined, in terms
of Gamma function, by

_T(v+k) 1
(V) = r(v) 7{v(v+1).--(v+k—l)

Since the series in (1.4) converges absolutely for all z € U, so
that it represents an analytic function in U.
We now introduce a function f/ 5(a, b, ¢)(z) defined by

holab.c)(z)=(1—u+0)"2Fi(a,bic;z)
+(u—90)z[Z' 2 F (a,b;¢;2))
+ udZ% 205 F (a,b;e;2)]" (p € N, 6 = 0;z € U).

(k=0),
(ke N).

In its special case when p =1 and ¢ =0, we obtain
Siola,b,¢)(z) = fula,b,c)(z) studied by Shukla and Shukla
[14].

On the other hand, we define a function [} ;(a, b, o) (=)
by means of Hadamard product (or convolution):

. (=1 P
Sislab, @)+ [fislab OG)] =T (00 2 054> —p),
(1-2)
which leads us to the following family of linear operators
It s(a,b,e)f(z) = [fs 5(a, b, ) (2)) 7+ £(2), (1.5)
where a, b, ¢ are real numbers other than 0, —1, -2, ---, and
1€ Ap). A
We observe that the operator I;;:f;v(;(a,b, ¢) generalizes sev-

eral previously studied familiar operators, and we will show
some of the interesting particular cases as follows.

() Z1(a,b,c) = I/(a,b,c), where T/(a, b, c) is the Srivast-
ava et al. operator [15];
(i) Z,5(a,b,c) =T, (a,b,c), where the

1';‘"(117 b, c) was introduced by Fu and Liu [16];

operator
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(iii) I1 10(a,b,c) =7,(a,b,c), where the operator Z,(a,b,c)
was introduced by Noor [17];

(iv) I;j?‘o(a, l,¢) =T(a,c), where I (a,c) is the Cho et al.
operator [18];

W) I,l;:(l),o(” +p,c,c)=1,, where the operator Z,, was
introduced by Patel and Cho [19];

(vi) Iﬁ':?)o(a,n +1,a) =Z,, where Z,
operator [7].

is the Noor integral

It is easily verified from the definition (1.5) that

Tihy(a et p i) =) and Zi2 i) =2,
(Tet b M) = G T b, e12) ~ ATt b, (16)

(T s(a+ 1b,0012)) =aZits(ab, )~ (a=p)Ths(a+ Lhafe). (17)

With the help of the principle of subordination, various subor-
dination preserving properties involving certain integral oper-
ators for analytic functions in U were investigated by Bulboca
[20], Miller et al. [21], and Owa and Srivastava [22]. Moreover,
Miller and Mocanu [3] considered differential superordina-
tions, as the dual problem of differential subordinations (see
also [23]), while some other interesting results involving differ-
ential subordination and subordination, the interested reader
may refer to, for example, [24-31]. In the present paper, we ob-
tain some subordination and superordination preserving prop-
erties for the operator II’, ts(a,b,c) defined by (1.5). Also, we
derive several sandwich-type results for these multivalent
functions.

2. Preliminaries

In order to establish our main results, we shall require the fol-
lowing lemmas.

Lemma 2.1 (see [32]). Suppose that the function H: C* — C
satisfies the following condition
Re{H(is,1)} <0

n(l+?' (I’l c N)
is analyllc in U and

for all real s and t< —
p(E) = 1+p, 2+

Re{H(p(2),zp'(2))} > 0 (z € U),
then Re{p(z)} > 0 for z € U.

If the function

Lemma 2.2 (see [33]). Let k,y € C with ik #0 and let h € H(U)
with h(0) = . If Re{xh(z) +y} > 0 (z € U), then the solution
of the following differential equation

A

is analytic in U and satisfies the inequality given by Re
{kq(z) + 7} > 0 for z € U.

(z€ U;q(0) = o)

Lemma 2.3 (see [1]). Let p € Q with $(0) = a and let the func-
tion q(z) = a+a,z" + -+ be analytic in U with q(z)#a and
n € N. If q is not subordinate to p, then there exist points

Zy = l’oei() € U and 50 € ou \bﬂ(]/)7

for which

q(Uy,) C p(U),q(z0) = p(20) and 204 (20) = mé&op' (&) (m = n),

where U,y ={z € C: |z] < ro}.

A function L(z,7) : U x [0,00) — C is called a subordina-
tion chain (or Lowner chain) if Z(-,f) is analytic and univalent
in U forall # >0, and L(z,#;) < L(z,1,) (z € U;0 < 1, < 1o).

Lemma 2.4 (see [3]). Let g € H[a,1] and ® : C* — C. Also let

®(q(z2),24'(z)) = h(z) (z€U).

If L(z,t) = ®(q(z),tzq'(z)) is a subordination chain and
p € Hla,1]NQ, then
h(z) < ®(p(z), 29’ (2))

implies  that  q(z) < p(z).  Furthermore, if ®(q(z),
zq'(z)) = h(z) has a univalent solution q € Q, then q is the best
subordinant.

(zeU),

Lemma 2.5 (see [34]). Let the function L(z,t) = a;(t)z + a5
(1) + -« with  a;(t)#0 for all >0, and
lim,_>+0<;| a,(t)| = +o00. Suppose that L(-,t) is analytic in U
for all t =0, L(-,t) is continuously differentiable on [0,c0)
for all z € U. If L(z,t) satisfies

Re{%} >0 (ze U1 >0)
and
IL(z, )| < Kola (1)]

for some positive constants Ky and ry, then L(z,t) is a subordi-
nation chain.

(lzl <ro< L322 0)

3. Main results

First of all, we begin by proving the following subordination
theorem involving the operator I,’7 n5(a; b, ). Unless otherwise
mentioned, we assume throughout this paper that a, b, ¢ € R\
{0,—1,=2,-- -} A>—p;pp, 6=200<a<1;>0;pneN
and z € U.

Theorem 3.1. Let f,g € A,(p) and suppose that

Re{l +Z$,/;(ZZ))} > _a,

(3.1)
where

0" (a,b,c)g(z f
¢(z)—(1—a)<—p”( = L ”)

(z;,ma b, c>g<z>) (I;t;o(a b,c)g <z>)”
+o
0t (a,b,c)g(z) zP

pyn,0

and

_ 4B+ | = B +p)
4ofi(A+p) ’

(3.2)

Then the following subordination condition
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ot A\ ? L - e N b
(1—a) (Im.a(ajw)f(~)> +<II(<:));(<))> (I,,.t,,(,<a;f,c>/<z>> B where
B gy o) = B p) = 20218 = 208 ) 28 )
’ (3.11)

implies that

(Iﬁj‘n‘,a(a, b, c)f(z)) ' < (Iﬁiﬁ‘a(a, b.c)g (Z)> ﬁ.

zP zP

(T (ab)g(2)
Moreover, the function (%

zP

I;
) is the best dominant.

Proof. Let us define the functions F and G, respectively, by
: [ i B
ot (a,b z " (a,b, z
Fio) = ( AL )) and G{z) = ( sha(a.b. O )) G
We first prove that, if the function ¢ is defined by
q(z) =1 + M
then Re{q(z)} > 0 for z € U.

G(2)
Taking the logarithmic differentiation on both sides of the
second equation in (3.4) and using (1.6) for g € A,(p), we have

(z e L), (3.5)

0zG'(2)
Bl+p)
Differentiating both sides of (3.6) with respect to z yields

, o , azG"(z)

= (1+— )
00 = (1 50O i
Combining (3.5) and (3.7), we easily get
2¢"(2) zq'(2)
= — =

O e PR

$(z) = G(2) + (3.6)

(3.7)

1+ (ze ).

Thus, form (3.1) and (3.8), we see that

Re{h(z) +M} >0 (zeU).

o

Also, in view of Lemma 2.2, we conclude that the differential
Eq. (3.8) has a solution ¢ € H(U) with ¢(0) = 4(0) = 1.
Let us put

v
u-i—[f(/l-i-P)/och

where o is given by (3.2). From (3.1) and (3.8), together with
(3.9), we obtain

Re{H(q(z),2q'(z))} > 0

Now, we proceed to show that

H(u,v) =u+ g, (3.9)

(zeU).

2
Re{H(is, 1)} <0 (seR;zg —1”)‘ (3.10)

2

In fact, from (3.9), we have
t
Re{H(is,t)} = Reis+ —————
e{H(is, 1)} e{ls+is+[)’(ih+p)/oc+6}
_1p(A+p)
o2s? + [)’2(2 +p)2

B Eq(s)
225 + B+ p)]

For o given by (3.2), we can prove easily that the expression
E,(s) in (3.11) is greater than or equal to zero, which implies
that (3.10) holds true. Therefore, by using Lemma 2.1, we con-
clude that Re{q(z)} > 0 for z € U, that is, that the function G
defined by (3.4) is convex (univalent) in U.

Next, we prove that F < G(z € U) holds for the functions F
and G defined by (3.4). Without loss of generality, we assume
that G is analytic and univalent on U and that G'(¢)#0 for
|d = 1. Otherwise, we replace F and G by F(pz) and G(pz),
respectively, with 0 < p < 1. These functions satisfy the
conditions of the theorem on U, and we need to prove that
F(pz) < G(pz) for 0 < p < 1, which enables us to obtain
F < G by letting p > 17

Let us define the function L(z,?) by

a(l +1)

L(z, 1) = G(2) + -~ zG'(z) (1t = 0;z € U). 3.12
(z,0) = G(2) B 1) () ( ) (3.12)
Then,
IL(z, 1) ) < o1 +f)> ol +1)
— |, =G 0)( 1+ =1+ #0

oz =0 =TI+ 55 B2+ p)

(1= 0;z€ ),
and this show that the function L(z,1) = a;(0)z + ax(t)z*
+ --- satisfies the conditions a;(#)#0 for all # > 0 and
lim, ¢ od @1(6) = +oo.

From the definition (3.12) and for all z > 0, we have

o(1+1)
L0l |66 + 6 )

- a(141)
ol L+ f

a(l+1) ZG/(Z)‘

Bli+p)
a(l41)
B(A+p)

1G(2)] +
<

o (3.13)

Since the function G is convex in U, so the following
well-known growth and distortion sharp inequalities (see
[35]) are true:

r r

< < < .
<6< (<), (314)
1 1
—— < |G (2)] < 5 <r). 3.15
e 1G'(2)] 0 (Il <) (3.15)
By using (3.14) and (3.15) in (3.13), we deduce that
Lol r k) pAEp(-r) _

()] (1 —r)
(2l <r1=0)

a(l+0)+B(A+p)  ~ (1-r)

and thus, the second assumption of Lemma 2.5 holds.
Moreover, we have

Re{%} = Re{ﬁ(i +p)+a(l+ t)(l +%>}
>0 (t=0),
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because G is convex in U. Hence, by virtue of Lemma 2.5, we
see that L(z,¢) is a subordination chain. We notice from the
definition of subordination chain that

azG'(z) .
and
L(z,0) < L(z,t) (t = 0),

which implies that
L(&,1) ¢ L(U,0) = ¢(U) (3.16)

Now, we suppose that Fis not subordinate G, then by Lemma
2.3, there exist two points zy € U and &, € 0U, such that

F(z0) = G(&) and 2F (20) = (1 + )G (&) (1 > 0).

Thus, by means of the subordination condition (3.3), we have

(¢ €dU;t = 0).

a1 408G ) ez ()
Lo =Gl =m0y = et 500

—(1-3) (Iﬁ;t:.‘,- (@b, f)f(20>> . (I (@ b,csz)) <Z,";.::_a (@b, c)f(zo) o

% Tt (ab.ofiz) z

which contradicts to (3.16). Therefore, we conclude that
F < G. Considering F = G, we know that the function G is
the best dominant. This completes the proof of Theorem
3.1. O

By applying the similar method as in the proof of Theorem
3.1 and using (1.7), we easily get the following result.

Corollary 3.1. Let f,g € A,(p) and suppose that

()

where

I)";‘(S
wa-a—w<“

o A B
+a<1ﬁﬂmh®ﬁﬂ )(agm+haama>

I (a+1,b,c)g(z) 2’

p.n,0

zP

(a+1,b, c)g(z))ﬁ

and

4+ Bra® — |o? — prd?|
- 4ofa

(a > 0). (3.17)

Then the following subordination condition

(1_@(¢$w+1wmma>“

zP

T (b, Ofz) (T2 s+ 1,b,o)f(z)\
T (a+ 1,b,0)f(2) z
< (2

implies that

(ﬁﬁﬂw+haqﬂd)ﬁ<(zﬁﬂa+hbmk@§ﬁ

zP zP

T (a+1,b,0)g(z)

B
Moreover, the function ( pind > ) is the best dominant.

We next derive the dual result of Theorem 3.1, in the sense
that subordinations are replaced by superordinations.

Theorem 3.2. Let f,g € A,(p) and suppose that

Re{l + zj))/';(zz))} > —0,

where

) B
Ip;ln,é (a7 b7 c)g(z))

zP

wnm—w(
a(ﬁﬁf@lﬂdﬁd)(%ﬁﬂ%hCM&vﬂ
I//;i:é(av ba C)g(Z) 2

and o is given by (3.2). If the function
1, ) B
(1 o O() (Ipfr,é(cL b7 C)f(Z))

zP

(T b, (Tts(ab. )\
T2 (a,b,0f(2) i

e\
is univalent in U and <M> € H[1,11N Q. Then the

zP

following superordination condition

%mw@dwv”

zP

w4<a—w<

zP

(ﬁﬁ#wlndﬂd><ﬁﬁﬂmwa@»ﬁ
o -
I;:lnt,&(% b: C)f(Z)

implies that

<ﬁﬁﬂmhdﬂd>ﬂ<<ﬁﬁx%hdﬂd>ﬂ
zP zP :

] B

“H (a,bc)g(z
Moreover, the function (M) is the best subordination.
Proof. Let us define the functions F and G just as (3.4). We
first observe that, if the function ¢ is defined by (3.5), then

we obtain from (3.6) that

0zG'(2)
B(A+p)

By using the same method as in the proof of Theorem 3.1, we
can prove that Re{q(z)} > 0 for z € U. That is, the function G
defined by (3.4) is convex (univalent) in U.

Next, we will show that G < F. For this purpose, we
consider the function L(z,?) defined by

$(z) = G(=) + — B(G(2),2G'(2)). (3.18)

ot
B(A+p)

Since the function G is convex in U, so we can prove easily that
L(z,1) is a subordination chain as in the proof of Theorem 3.1.
Hence, by Lemma 2.4, we conclude that G < F. Furthermore,
since the differential Eq. (3.18) has the univalent solution G, it
is the best subordination of the given differential superordina-
tion. We thus complete the proof of Theorem 3.2. [

L(z,t) = G(z) + zG'(z) (1= 0;z € U).



Subordination and superordination preserving properties

357

By applying the similar method used in the proof of
Theorem 3.2, in conjunction with (1.7), we easily obtain the
following result.

Corollary 3.2. Let f,g € A,(p) and suppose that

w1

where

I/l.,u
W) = (- a)(

2, ’, B
+o Zpﬁ,é(a7 b7 C)g(z) ij:,é(a + 17 b7 C)g(z)
I"‘”-(a—i—l,b,c)g(z) z

pn,o

zP

(a+1,b, c)g(z))ﬁ

and t is given by (3.17). If the function
N B
(1 _ OC) (Ip.i.é(a + 17 b7 C)f(Z))

zP

T (@b f(2) (T2 sa+1,6,0/2))
T (a+ 1,6,002) z

; . . T (at1,b,0)f(z)
is univalent in U and <1"7p

B
) € H[1,11N Q. Then the

following superordination condition

I/l.u (LZ + 1, b, C)f(Z)) B

WE) < (- a)(

zP

T (@b, fz) ) (T2 s+ 1,b,0f2)\
AT (at Lb o)

implies that

(I;';:s.,xa +Lb, c)g(z>)/’ . <Ij;:;ﬂo-<a +Lb, c)f(z)>"

zP

zP

Moreover, the function ("‘”‘” - ) is the best

subordination.

Combing Theorems 3.1 and 3.2, and Corollaries 3.1 and
3.2, respectively, we derive the following two sandwich-type
results.

Theorem 3.3. Let f,g; € A,(p)(j = 1,2) and suppose that
¢ (z)
Re{1+—7 > —o0,
{ e

where

(3.19)
T (a.b, Vg (2)\"
¢j(z) =(1-2) (M)

Y (I;‘;;?ﬂa, b, c>g,-<z>) (I;:;&(a?b? c)g,-(z)) '

I0h (a,b,0)g;(2) 2

zP

and o is given by (3.2). If the function

zpP

o 5
(1—a) (WW)

(T @, (T 5(a b, ) !
I;l,ﬁ;() (a7 b’ C)f(z) zP

N . T abor\’
is univalent in U and | 2*———| € H[1,1]N Q. Then the

Sfollowing subordination relationship

T (a,b, c)f(z)> /

¢1(Z) < (l — a)( pin,d

zP

(Do @b A1) (T b.efz)
T2 5 (a,b,0)f(2) i
< ¢,(2)
implies that

(I;:';,o'(a,b, o), (z))ﬁ < (I;:Z,a(avb,cy(z))”

zP zP

zP

7 B
< <Ip:‘r:,<)‘ (a7 b7 c)g2 (Z)

Ao /i‘

Ea

pnd

D

i (@be 0 y nd

Moreover, the functions
are, respectively, the best subordination and the best dominant.

Theorem 3.4. Let f,g; € A,(p)(j = 1,2) and suppose that

A\
Re{lJr %(z)}> ,

where

(3.20)

s
W/(Z) =(1- “)( —

zP

(a+1,b, c)g,(z)) 4

7, 7, B
o[ Forslab.g()  (Thaslat 1b. g (2)
I;:ffﬁ(a +1,b,¢)g,(z) zP

and t is given by (3.17). If the function
2 4
(1 _ OC) (Ip,z,é(a + 17 b7 C)f(Z))

zP

; ( Zpty(a b M) ) (I;rs,é(a +1,b, C)f(Z))ﬂ
Tialat 16,002

. . ) T (at1,,02)
is univalent in U and (”—,

following subordinationrelationship

(a+ 1,b,c)f(z)>ﬁ

zP

€ H[1,1] N Q. Then the

Ii?ﬁ.é
¥i(z) < (1 0‘)( -

T (a, b, f2) (T2 s(a+1,6,0/2)\
\Z27 (@ + 1,b,0f)

< ¥(2)
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implies that

<I;;Zf;‘5(a 1,608, (z)) . (I;:Z,a(a +1.b, c)f(Z)> '

zP zP

y (Iﬁzz,Aa 1.0, C)g2(2)> ’

zP

[
. I (at+1,b,0)g(2)
Moreover, the Sfunctions (M and

P

zP

T4 (a+1,b,¢)gs(z . . .
(M> are, respectively, the best subordination and
the best dominant.

Since the assumption of Theorem 3.3 that the functions

U)(M)“

zP

) <I;‘:fs"<a, b, c)f(z>> (:f;:;ia(a, b, c)f(z)> '

I, 5(a,b,0)f(2) 2
and
ot B
zP

need to be univalent in U, is not so easy to check, we will re-
place these conditions by another simple condition in the fol-
lowing result.

Corollary 3.3. Let f,g; € A,(p)(j=1,2). Suppose that the
condition (3.19) is satisfied and

ref1420 8>

(3.21)

where

Iﬁiﬁ,(s(a7b70)f(2))ﬁ

zP

w(Z)(l—Of)<

(z;.t.‘s"(a, b c)f(z)) (I;izﬁf.o(a, b c)f(Z)> '
o >
I;:f:ﬁ(a, b,o)f(z) #

and o is given by (3.2). Then the following subordination
relationship

zP

o ]
61(2) < (1 — ) (WW)

THa,b, f2)\ (T2 (a,b, (2))
\ 22 @ b, () 7

=< ¢,(2)

implies that

(I( b.0)g, <z>>’* ) (Iﬁ:ﬁ:ﬁw,b, c)f(2)>ﬁ

zP zP

zP

v, B

st B ot B
I8 s(abi)gi(2) and I8 5(ab)g:(2)

Moreover, the functions -
are, respectively, the best subordination and the best dominant.

2

Proof. To prove our result, it suffices to show that the condi-
tion (3.21) implies the wunivalence of ¢ and

zP

) B
bt b,o)f(z . . .
F(z) = <w) . Since ¢ given by (3.2) in Theorem 3.1

satisfies the inequality 0 < o < %, the condition (3.21) means
that ¢ is a close-to-convex function in U (see [36]) and hence
¢ is univalent in U. Also, by using the same techniques as in
the proof of Theorem 3.1, we can prove that F is convex (uni-
valent) in U, and so the details may be omitted. Therefore, by
applying Theorem 3.3, we obtain the desired result. [

Using the same method as in the proof of Corollary 3.3, as

well as Theorem 3.4, we have the following result.

Corollary 3.4. Let f,g; € A,(p)(j=1,2). Suppose that the
condition (3.20) is satisfied and

w1+ 2O},

where

xwz) =

zP

1 (I;:f:ﬁ(a +Lb, c)f(z)) '

[ Tnab ) ) (Tikgla+ 1)
Ty s(a+1,b,0f()

and t is given by (3.17). Then the following subordination
relationship

zP

A (g A1)\
e =< (1-2) (I( - )>

T (@b, f(2) (T2 s+ 1,b,0/2))
T @+ 1,6,000) I
< Yy(z2)

implies that

<I,’;:‘nﬂa(a +Lbo) <z>>ﬁ ) (I;:x,m +1.b, c)f(z>>’*

zP zP

p

< (Iﬁ:ff,m +1,5,0)(2)

zP

[
. T (a+1,b,0)g (2)
Moreover, the Sfunctions (u) and

zP

zP

) B
T (a+1,b,0)es (= . L
(M) are, respectively, the best subordination and
the best dominant.
Upon setting § = 1 in Theorems 3.3 and 3.4, we are easily

led to the following results.

Corollary 3.5. Let f,g; € A,(p)(j = 1,2) and suppose that

e { | +;f(())} o, ( o) = 1= DTkl g, +aI;,*,,,‘x‘(a.,b,c>g,-<z>>

,
zr
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where o is given by (3.2) with = 1. If the function
(1 = o)Zyh 5@, b, )f(z) + oI, (@, b, O)f(z)

p.no

zP
- . I3k (@b Af)
is univalent in U and +———
ing subordination relationship

(1 = )T, 5(a,b, Mf(z) + oL, (a, b, ()

zP

€ H[1, 11N Q. Then the follow-

$1(2) <
implies that

T (a,b,0)g,(2) . T (a,b,)f(2) . T (a,b,¢)g(2)
zP zP P ’

LT (abog (o) TH (ab.c)gs ()
Moreover, the functions -2 > and +—; are, respec-

tively, the best subordination and the best dominant.

= $1(2)

Corollary 3.6. Let f,g; € A,(p)(j = 1,2) and suppose that

)

N { | +:w;’<z>} . ( (o) = (1= DTEula 1.8, +ar;:r,o-<a,b.c>g,<z>)

zr

i)
where T is given by (3.17) with B = 1. If the function
(1 =)0+ 1,b,)f(z) + L)) 5(a, b, O)f(2)

p.n,o
zP

T (a+1b,0)f(2)

is univalent in U and +**————¢c H[1,1]N Q. Then the

following subordination relaziohship

0 (2) < m D Tmalat 1b, V@) + oL (b )

<Y, (2)
implies that

I;):Zb(a+ l,b,C)g](Z) _<Z;;,¢;o(a+ l,byC)f(Z)

zP

zP zP
=< Z]/7¢115 ((l + 17 b7 C)gZ (Z)
zP ’

TH (a+1,b,0)g (2) T (a+1,b,0)g5(2)
pond _ and e are,

zP

Moreover, the functions : -
respectively, the best subordination and the best dominant.

Finally, we consider the generalized Libera operator
F,(m > —p) defined by (see [37,38]; also [5,39])

Fu(f)(z) =22 / Ude (> —pif e Ap)), (3.22)

m
z 0

which satisfies the following relationship
2(Tp@ b, OFa()()) = (m+ pIT (0, b, ()
- mII’;:‘n‘,(s(a7 b, c)F,(f)(2).

We now derive the following sandwich-type result involving
the integral operator F,, defined by (3.22).

(3.23)

Theorem 3.5. Let f,g; € Au(p)(j = 1,2) and suppose that

HO\
Re{l+ <j);(z)}> ,

where

(3.24)

I;“Za
¢,-<z>:(1a><

zP

(a,b, c)Fm<g,-><z>>“

v ). B
” Z,s(ab,c)g(z) Z,5(a, b, ) Fu(g)(2)
I;:“V;,zi(a7 b, c)F(g;)(2) 2

and

y _EHBmp) — |2 — fm+p)|
B 4afp(m + p)

(m>—-p). (3.25)
If the function

At , z B
(1—w (Ip.,,ﬁ(a,b, QLA >>

zP

zP

( Tynalas by A2) )(I;';:;:,-(a7b7c>Fm<f><z>)"
I;:ffﬁ(a,b,c)Fm(f)(z)

o (@b, En()(2)
P

is univalent in U and € H[1,1]N Q. Then the

following subordination relationship

Iﬁ;ﬁ_xa,b,c)w(z))"

zP

¢1(2)<(1a)<

zP

o[ Tonala b AN\ (T35 b )F()(E) '
I;:jffd(a,b,c)Fm(f)(Z)
< ,(2)

implies that

(Zﬁ:ﬁ,a(a,b, OF, <g])(z>>ﬁ ) (Ii:::.5<a, b, C)Fm(f)(z)>ﬁ

zP zP

B

zP

(z;;;;ﬁ (a,b,¢)F(82)(2)
=<

7, p
7 ; Tk s(abc)Fu(g))(z
Moreover, the Sfunctions (M) 7

zP
(ZZW (@b Fm(e) @\

pd
P

are, respectively, the best subordination

and the best dominant.

Proof. Let us define the functions F and G,j = 1,2), respec-
tively, by

A 7 B
F(Z) _ <Ip,n,é(a7bvc)Ei1(f)( )) and G_,-(Z)

zP

zP

) <z;;;;5(a,b,cm(g,-)(z))ﬁ,

Without loss of generality, as in the proof of Theorem 3.1,
we assume that G; is analytic and univalent on U and that
G(&)#0(¢ € OU). Then, form (3.23) and (3.24), we know

that
0zG(2)

¢,(z) = Gi(2) +W-

(3.26)
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Settin 1 21— 2
g g L mAp) —|1—(m+p)| (m> —p).
. ZG]’.’(Z) 12 4(m +17)
i =1+ / =1 ) : pina @b, ; ;- /
9(2) Gi(2) U ) If the function M is univalent in U and
ThH a,b,c)Fp(f)(z . . .
and differentiating both sides of (3.26) with respect to z, we M € H[1,1]N Q. Then the following subordination
obtain relationship
Ui ! It 78 A,
N z¢lj (z) — )+ zqi(2) G=12). Iy s(ab,c)g (2) § Zyns(ab,o)f(z) § Zyns(ab,c)g(2)
¢j(z) qj(z) + p(m+p)/a zP zP zP

The remaining part of the proof is similar to that of Theorem
3.3 (a combined proof of Theorems 3.1 and 3.2), and is thus
omitted. O

Applying the same method as in the proof of Corollary 3.3,

from Theorem 3.5, we can derive the following result.

Corollary 3.7. Let f,g; € Ay(p)(j=1,2). Suppose that the
condition (3.24) is satisfied and

w1220,

where

zP

mn—<y_@<¢%WJmﬂ%m@§ﬁ

( T2 (a,b,)(2) >(z;;:ﬁ(a,b,c)pm(f)(z)>“
I0" (a, b, ) F(f)(z) 2

and o is given by (3.25). Then the following subordination
relationship

ThH
¢i(2) < (1 - a)( o

(a,b, c)Fm(f)(z)> ’

zP

([ Titslab )\ (Thslab G
T35 b.0F,()(2) z

Pn,0

=< $y(2)
implies that

(%ﬁxﬁbﬂgﬂa&xn>”< (ﬁﬁxmbmﬂuvxa>ﬁ

zP zP

B

zP

(I;:ﬁ‘é(a, b, C)Fm(gz)(z)
<

Moreover, the

. 8
T (ab)Fn (gz)(z)) !
e S— are,

zr

Junctions 5
zf

(I;:A;_(;(%b-f)l"m(gl)(Z)) / nd
respectively, the best subordination
and the best dominant.

By putting o = f = 1 in Theorem 3.5, we have the following
result.

Corollary 3.8. Let f,g; € A,(p)(j = 1,2) and suppose that

Re{l +ZZ((ZZ))} >—c <¢,(Z) :w

(G=12)z¢€ [U)

where

implies that

Ipiﬁﬁ(a, b,c)F,(g1)(2) < I;:i(;(a, b, ) Fy(f)(2)
zP zP
~ I;:ﬁ,é(ay b: C)Fm (g2)(z)

zP
Thk a,b,c)Fy z T (abe Fy z
(a,b,¢)Fin(21)(2) and s (@05 Fin (22) (2) ar

Moreover, the functions -*—— —
respectively, the best subordination and the best dominant.

Remark 3.1. By taking n=1, u=6=0, b=/1+ p and
¢ = a in Corollary 3.8, we obtain Corollary 5 in [40], which
contains, as its special case, the result obtained earlier by Pom-
merenke [34].
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