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Abstract Let R be a prime ring with characteristic different from 2 and L be a Lie ideal of R. In

this paper, we characterize generalized left derivation, which acts as a homomorphisms or an anti-

homomorphisms on L.
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1. Introduction

Throughout the present paper R will denote an associative ring
with center ZðRÞ. Recall that R is prime if aRb ¼ ð0Þ implies
that either a ¼ 0 or b ¼ 0, and R is semiprime if aRa ¼ ð0Þ im-

plies a ¼ 0. As usual ½x; y� will denote the commutator xy� yx.
We shall make an extensive use of commutator identities;
½x; yz� ¼ ½x; y�zþ y½x; z� and ½xy; z� ¼ ½x; z�yþ x½y; z�. An addi-

tive subgroup L of R is said to be a Lie ideal of R it
½L;R�#L. A Lie ideal L is said to be square closed if a2 2 L
for all a 2 L. An additive mapping d : R! R is called a
derivation (resp. Jordan derivation) if dðxyÞ ¼ dðxÞyþ xdðyÞ
(resp. dðx2Þ ¼ dðxÞxþ xdðxÞ) holds for all x; y 2 R. An

additive mapping H : R! R is called a generalized derivation
if there exists a derivation d : R! R such that
HðxyÞ ¼ HðxÞyþ xdðyÞ holds for all x; y 2 R. In 1990, Bresar

and Vukman [6] introduced the concept of left derivation as
follows: An additive mapping d : R! R is called left deriva-
tion (resp. Jordan left derivation) if dðxyÞ ¼ xdðyÞ þ ydðxÞ
(resp. dðx2Þ ¼ 2xdðxÞ) holds for all x; y 2 R. They proved that

a prime ring which admits a nonzero left derivation is commu-
tative. Obviously in commutative ring, derivations (resp.
generalized derivations) act as a left derivations (resp. general-

ized left derivations). However in noncommutative ring, the
case is quite different in general. According to [2], an additive
mapping F : R! R is called a generalized left derivation (resp.

generalized Jordan left derivation) if there exists a Jordan left
derivation d : R! R such that FðxyÞ ¼ xFðyÞ þ ydðxÞ (resp.
Fðx2Þ ¼ xFðxÞ þ xdðxÞ) holds for all x; y 2 R.

Let S be a nonempty subset of R and d : R! R be a deri-

vation of R. If dðxyÞ ¼ dðxÞdðyÞ (resp. ðdðxyÞ ¼ dðyÞdðxÞ)
holds for all x; y 2 S, then d is said to act as a homomorphism
(resp. anti-homomorphism) on S. In [7] Bell and Kappe proved
icense.
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that, if I is a nonzero right ideal of a prime ring R and
d : R! R is a derivation of R such that d acts as a homomor-
phism or an ant-homomorphism on I, then d ¼ 0 on R. In the

present paper we study the generalized left derivation of a
prime ring which acts either homomorphism or ant-homomor-
phism on a certain well behaved subset of R.

2. Preliminaries

We collect some known results and review a few important

facts about the left Martindale ring of quotients that will be
needed in the subsequent discussions of a ring, QlðRÞ will de-
note the left Martindale ring of quotients of a prime ring R.

This ring was introduced by Martindale in [8] as a tool in
the study of prime rings satisfying generalized polynomial
identities (e.f. [4]). The center of QlðRÞ, will be denoted by C,

and called the extended centroid of R. It is well known that
C is a field. Also, it is easily seen that C is the centralizer of
R in QlðRÞ. In particular, ZðRÞ ¼ C. The subring of QlðRÞ
generated by R and C is called the central closure of R and will

be denoted by RC. Another subring of QlðRÞ is QsðRÞ ¼
fq 2 QlðRÞjqI#R for some nonzero ideal Iof Rg. This ring
is known as the symmetric Martindale ring of quotients. It is

easy to verify that R#RC #QsðRÞ#QlðRÞ. Note that
aRb ¼ f0g with a; b 2 QlðRÞ implies that a ¼ 0 or b ¼ 0.
Whence we can see that RC;QlðRÞ and QsðRÞ are prime rings.

Remark 2.1. Let L be a square closed Lie ideal of R. Notice

that xyþ yx ¼ ðxþ yÞ2 � x2 � y2 for all x; y 2 L. Since x2 2 L
for all x 2 L; xyþ yx 2 L for all x; y 2 L. Hence we find that
2xy 2 L for all x; y 2 L. Therefore, for all r 2 R, we get

2r½x; y� ¼ 2½x; ry� � 2½x; r�y 2 L and 2½x; y�r ¼ 2½x; yr� � 2½y; r�
2 L, so that 2R½L;L�#L and 2½L;L�R#L.

This remark will be freely used in the whole paper without
specific mention.

We begin with the following lemmas which are essential for

developing the proof of our results.

Lemma 2.1 [5, Lemma 4]. Let R be a prime ring of character-
istic different from 2 and L�ZðRÞ be a Lie ideal of R and if
aLb ¼ f0g, then a ¼ 0 or b ¼ 0.

Lemma 2.2 [3, Theorem 4]. Let R be a prime ring of character-
istic different from 2 and L be a square closed Lie ideal of R. If
d : R! R is an additive mapping such that dðx2Þ ¼ 2xdðxÞ for
all x 2 L, then dðxyÞ ¼ xdðyÞ þ ydðxÞ for all x; y 2 L.

Lemma 2.3 [1, Proposition 2.10]. Let R be a prime ring and
F : R! RC be an additive mapping satisfying FðrsÞ ¼ rFðsÞ
for all r; s 2 R. Then there exists q 2 QlðRCÞ such that

FðrÞ ¼ rq for all r 2 R.
3. Main result

Let S be a nonempty subset of R and F be a generalized left
derivation on R. If FðxyÞ ¼ FðxÞFðyÞ or FðxyÞ ¼ FðyÞFðxÞ
for all x; y 2 S, then F is said to be generalized left derivation
which acts as a homomorphism or an anti-homomorphism on
S, respectively. Of course, derivation which acts as an endo-
morphism or an anti-endomorphism of a ring R may behave
as such on certain subset of R, for example, any derivation d
behaves as zero endomorphism on a subring consisting of all

constants (i.e., element x for which dðxÞ ¼ 0). In fact, in a
semiprime ring R; d may behave as an endomorphism on a
proper ideal of R. As an example of such R and d, let R1 be

any semiprime ring with non zero derivation d1, take
R ¼ R1 � R1 and define dðr1; r2Þ ¼ ðd1ðr1Þ; 0Þ. However in the
case of prime rings, Bell and Kappe [7] showed that the behav-

ior of d is somewhat more restricted. By proving that if R is
prime ring and d is a derivation of R which acts as a homomor-
phism or an anti-homomorphism on a nonzero right ideal of
R, then d ¼ 0 on R. Further, the first author obtained in [9]

the above mentioned result for generalized derivation acting
on ideals in prime ring. In the present section, our objective
is to extend the above result to the setting of generalized left

derivations in the case the underlying subset of R is Lie ideal
of R.

Theorem 3.1. Let R be a prime ring of characteristic different

from 2 and L be a noncommutative square closed Lie ideal of R.
Suppose that F : R! R be a generalized left derivation with
associated Jordan left derivation d : R! R. If F acts as a
homomorphism or as an anti-homomorphism on L, then

FðrÞ ¼ rq for all r 2 R and q 2 QlðRCÞ.
Proof. Suppose F acts a homomorphisms on L, then we have
FðxyÞ ¼ FðxÞFðyÞ for all x; y 2 L. Which can be re-written as

FðxÞFðyÞ ¼ FðxyÞ ¼ xFðyÞ þ ydðxÞ for all x; y 2 L. Now, our
aim is to prove d ¼ 0 on R. Let us consider

FðxyzÞ ¼ FðxðyzÞÞ ¼ xFðyzÞ þ yzdðxÞ
¼ xFðyÞFðzÞ þ yzdðxÞ ð3:1Þ

On the other hand,

FðxyzÞ ¼ FðxyðzÞÞ ¼ FðxyÞFðzÞ
¼ xFðyÞFðzÞ þ ydðxÞFðzÞ ð3:2Þ

Combining (3.1) and (3.2), we obtain yzdðxÞ ¼ ydðxÞFðzÞ
for all x; y; z 2 L, i.e., yðzdðxÞ � dðxÞFðzÞÞ ¼ 0 for all
x; y; z 2 L. On left multiplication by zdðxÞ � dðxÞFðzÞ to the

above relation, we find ðzdðxÞ � dðxÞFðzÞÞyðzdðxÞ � dðxÞ
FðzÞÞ ¼ 0 for all x; y; z 2 L. Then, by Lemma 2.1, we have that

zdðxÞ � dðxÞFðzÞ ¼ 0 for all x; y; z 2 L: ð3:3Þ

By Lemma 2.2, d will be a left derivation on L. Now, replac-
ing x by 2xy in the above relation and using charR–2, we find
that zxdðyÞ þ zydðxÞ � xdðyÞFðzÞ � ydðxÞFðzÞ ¼ 0 for all

x; y; z 2 L. Using relation (3.3), we arrive at
½x; z�dðyÞ þ ½y; z�dðxÞ ¼ 0 for all x; y; z 2 L. In particular, putt-
ing z ¼ y, we get

½x; y�dðyÞ ¼ 0 for all x; y 2 L: ð3:4Þ

for all x; y 2 L. Then, linearizing the above relation, we obtain
dðxÞ½z; y� þ dðzÞ½x; y� ¼ 0 for all x; y; z 2 L, and hence

dðxÞ½z; y� ¼ �dðzÞ½x; y� for all x; y; z 2 L: ð3:5Þ

Replacing y by 2uy in (3.4) and using (3.4), we get
2dðxÞu½x; y� ¼ 0 for all x; y; u 2 L. Since charR–2, we find that
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dðxÞu½x; y� ¼ 0. Now, replace u by 2½z; y�r and use the fact that

charR–2, to get dðxÞ½z; y�r½x; y� ¼ 0 for all x; y; z 2 L and r 2 R
and hence application of (3.5), we obtain dðzÞ½x; y�r½x; y� ¼ 0
for all x; y; z 2 L and r 2 R. Again replacing r by rdðzÞ in the

above expression, we get dðzÞ½x; y�rdðzÞ½x; y� ¼ 0 for all
x; y; z 2 L and r 2 R, that is, dðzÞ½x; y�RdðzÞ½x; y� ¼ f0g for
all x; y; z 2 L. Thus primeness of R forces that dðzÞ½x; y� ¼ 0
for all x; y; z 2 L. Again, replacing x by 2tx and using the fact

that charR–2, we get dðzÞt½x; y� ¼ 0 for all x; y; z; t 2 L. Since
L is a noncommutative Lie ideal of R and hence by Lemma
2.1, we get dðzÞ ¼ 0 for all z 2 L. Replacing z by 2r½y; z� and
using charR–2, we obtain ½y; z�dðrÞ ¼ 0 for all y; z 2 L and
r 2 R. Again, replacing y by 2yx and using charR–2, we get
½y; z�xdðrÞ ¼ 0 for all x; y; z 2 L and r 2 R. Therefore, by Lem-

ma 2.1, we get d ¼ 0 on R. Hence, there exists q 2 QlðRCÞ such
that FðrÞ ¼ rq for all r 2 R by Lemma 2.3.

If F acts as an anti-homomorphism on L, then,
FðxyÞ ¼ FðyÞFðxÞ for all x; y 2 L. This can written as

xFðyÞ þ ydðxÞ ¼ FðyÞFðxÞ for all x; y 2 L. Replacing y by
2xy in above expression and using charR–2, we find that

xydðxÞ ¼ ydðxÞFðxÞ holds for all x; y 2 L: ð3:6Þ

Again, replacing y by 2zy in (3.6) and using charR–2, we get

xzydðxÞ ¼ zydðxÞFðxÞ holds for all x; y; z 2 L: ð3:7Þ

Multiplying left side by z to the relation (3.6), we obtain

zxydðxÞ ¼ zydðxÞFðxÞ holds for all x; y; z 2 L: ð3:8Þ

Now, combining relation (3.7) and (3.8), we get ½x; z�ydðxÞ ¼ 0
for all x; y; z 2 L. By Lemma 2.1, we get dðxÞ ¼ 0 for all x 2 L.
Now, using the same argument as we have used the above, we
get the required result. This completes the proof of the

theorem. h
Corollary 3.1. Let R be a prime ring of characteristic different

from two and L be a noncommutative square closed Lie ideal of
R. Suppose that d is a Jordan left derivation on R. If d acts as a
homomorphism or as an anti-homomorphism on L, then d ¼ 0

on R.
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