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Abstract Let R be an associative ring. An additive mapping d : R! R is called a Jordan deriva-

tion if dðx2Þ ¼ dðxÞxþ xdðxÞ holds for all x 2 R. The objective of the present paper is to character-

ize a prime ring R which admits Jordan derivations d and g such that ½dðxmÞ; gðynÞ� ¼ 0 for all

x; y 2 R or dðxmÞ � gðynÞ ¼ 0 for all x; y 2 R, where m P 1 and n P 1 are some fixed integers. This

partially extended Herstein’s result in [6, Theorem 2], to the case of (semi)prime ring involving pair

of Jordan derivations. Finally, we apply these purely algebraic results to obtain a range inclusion

result of continuous linear Jordan derivations on Banach algebras.
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1. Introduction

Throughout this paper R will denote an associative ring with
center ZðRÞ. Recall that a ring R is said to be prime if for any
a; b 2 R; aRb ¼ f0g implies a ¼ 0 or b ¼ 0, and R is semiprime
if for any a 2 R; aRa ¼ f0g implies a ¼ 0. A ring R is said to

be n-torsion free, where n > 1 is an integer, in case nx ¼ 0 im-
plies x ¼ 0 for all x 2 R. For any x; y 2 R, the symbol ½x; y� will
denote the commutator xy� yx and the symbol x � y will stand
for the anti-commutator xyþ yx. Following [1], an additive
mapping d : R! R is said to be a derivation (resp. Jordan der-
ivation) on R if dðxyÞ ¼ dðxÞyþ xdðyÞ (resp. dðx2Þ ¼ dðxÞxþ
xdðxÞ) holds for all x; y 2 R. Let S be a nonempty subset of R.
A mapping f : R! R is called centralizing on S if ½fðxÞ; x� 2
ZðRÞ for all x 2 S and is called commuting on S if ½fðxÞ; x� ¼ 0

for all x 2 S. The study of such mappings were initiated by Pos-
ner. In [2, Lemma 3], Posner proved that if a prime ring R has a
nonzero commuting derivation on R, then R is commutative.
This result was subsequently refined and extended by a number

of algebraists; we refer the reader to [3–5] for a state-of-art
account and a comprehensive bibliography.

In [6], Herstein proved the following result: If R is a prime

ring of characteristic not two admitting a nonzero derivation d
such that ½dðxÞ; dðyÞ� ¼ 0 for all x; y 2 R, then R is commuta-
tive. Further, Daif [7] showed that a 2-torsion free semiprime
icense.
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ring R admits a derivation d such that ½dðxÞ; dðyÞ� ¼ 0 for all
x; y 2 I, where I is a nonzero ideal of R and d is nonzero on
I, then R contains a nonzero central ideal. Motivated by the

above result, Ashraf and Rehman [8] proved that if R is a 2-
torsion free prime ring admitting a nonzero derivation d such
that dðxÞ � dðyÞ ¼ 0 for all x; y 2 I, where I is a nonzero ideal

of R, then R is commutative. This result was further extended
by first author together with Shuliang [9, Theorem 3.2] for
semiprime rings. In Section 3, our aim is to generalize these re-

sults for pair of Jordan derivations d and g. More precisely, it
was shown that if R is a maxfm; n; 2g!-torsion free prime ring,
where m P 1 and n P 1 are some fixed integers, and d; g are
nonzero Jordan derivations of R such that ½dðxmÞ; gðynÞ� ¼ 0

for all x; y 2 R, then R is commutative. Further, some more re-
lated results have also been discussed. In Section 4, we apply
purely algebraic results from Section 3 to discuss the range

inclusion problems in the setting of continuous linear Jordan
derivations on Banach algebras. Throughout this paper, we as-
sume that m P 1 and n P 1 are some fixed integers.
2. Some preliminaries

We shall do a great deal of calculations with commutators and

anti-commutators, routinely using the following basic identi-
ties: For all x; y; z 2 R;

½xy; z� ¼ x½y; z� þ ½x; z�y and ½x; yz� ¼ ½x; y�zþ y½x; z�
ðxþ yÞ � z ¼ x � zþ y � z and x � ðyþ zÞ ¼ x � yþ x � z
x � ðyzÞ ¼ ðx � yÞz� y½x; z� ¼ yðx � zÞ þ ½x; y�z
ðxyÞ � z ¼ xðy � zÞ � ½x; z�y ¼ ðx � zÞyþ x½y; z�:

We begin with the following lemmas which are essential for
developing the proof of our results.

Lemma 2.1 [4, Theorem 4]. Let R be a prime ring and I a
nonzero left ideal of R. If R admits a nonzero derivation d which

is centralizing on I, then R is commutative.

Lemma 2.2 [10, Lemma 4]. Let R be a 2-torsion free semiprime
ring and a; b 2 R. If for all x 2 R the relation axbþ bxa ¼ 0

holds, then axb ¼ bxa ¼ 0 is fulfilled for all x 2 R.

Lemma 2.3 [11, Lemma 1]. Let R be an m!-torsion free ring.
Suppose y1; y2; . . . ; ym 2 R satisfying ay1 þ a2y2 þ . . .þ
amym ¼ 0 for a ¼ 1; 2; . . . ;m. Then yi ¼ 0 for all i.

Lemma 2.4 [12, Lemma 3.2]. A continuous Jordan derivation

on a Banach algebra leaves invariant the primitive ideals in the
algebra.
3. Generalizations of the condition dðxÞdðyÞ ¼ dðyÞdðxÞ

To state our results precisely, we fix some notations. From
now, Q always denotes the maximal right ring of quotients
of R. If R is a (semi)prime ring, then Q is also a (semi)prime
ring. The center of Q is called the extended centroid of R

and is denoted by C. For the explanation of maximal right ring
of quotients we refer the reader to [13]. We shall use the fact
that any semiprime ring R and its maximal right ring of quo-

tients Q satisfy the same differential identities which is very
useful since Q contains the identity element (see Theorem 3
in [14]). For the explanation of differential identities we refer
the reader to [15,16]. Throughout this section, we will use

the fact that image of the identity of a ring R is zero under
any derivation. We begin our investigations with the following
theorem which generalizes Theorem 2 in [6].

Theorem 3.1. Let R be a maxfm; n; 2g!-torsion free prime ring,
and d; g be nonzero Jordan derivations of R. If ½dðxmÞ; gðynÞ� ¼ 0
holds for all x; y 2 R, then R is commutative.

Proof. Since d and g are Jordan derivations on R; d and g also

are derivations on R by Herstein’s theorem [1]. By the assump-
tion, we have

½dðxmÞ; gðynÞ� ¼ 0 for all x; y 2 R:

It is well known that R and Q satisfy the same differential
identities [14, Theorem 3]. Therefore

½dðxmÞ; gðynÞ� ¼ 0 for all x; y 2 Q: ð3:1Þ

Note that Q has the identity element. Replacing x by 1þ x
in (3.1), we get

m

1

 !
½dðxÞ; gðynÞ� þ

m

2

 !
½dðx2Þ; gðynÞ� þ � � �

þ
m

m

 !
½dðxmÞ; gðynÞ� ¼ 0: ð3:2Þ

Substituting px for x in (3.2), where p ¼ 1; 2; . . . ;m, we get

p
m

1

� �
½dðxÞ; gðynÞ� þ p2

m

2

� �
½dðx2Þ; gðynÞ� þ � � �

þ pm
m

m

� �
½dðxmÞ; gðynÞ� ¼ 0:

Using Lemma 2.3, we obtain
m
r

� �
½dðxrÞ; gðynÞ� ¼ 0 for all

x; y 2 Q and r ¼ 1; 2; . . . ;m. In particular for r ¼ 1, we have

m½dðxÞ; gðynÞ� ¼ 0 for x; y 2 Q. By applying torsion free fact
of Q, we are forced to conclude that

½dðxÞ; gðynÞ� ¼ 0 for all x; y 2 Q:

Now, replacing y by yþ 1 and using similar approach as
above, we obtain

½dðxÞ; gðyÞ� ¼ 0 for all x; y 2 Q: ð3:3Þ

Again replace y by yz in (3.3) to get

½dðxÞ; gðyÞ�zþ gðyÞ½dðxÞ; z� þ y½dðxÞ; gðzÞ� þ ½dðxÞ; y�gðzÞ ¼ 0

for all x; y; z 2 Q: ð3:4Þ

Application of (3.3) yields that

gðyÞ½dðxÞ; z� þ ½dðxÞ; y�gðzÞ ¼ 0 for all x; y; z 2 Q: ð3:5Þ

Substituting rz for z in (3.5) and using it, we get

gðyÞr½dðxÞ; z� þ ½dðxÞ; y�rgðzÞ ¼ 0 for all r; x; y; z 2 Q:

In particular, for y ¼ z, we have
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gðyÞr½dðxÞ; y� þ ½dðxÞ; y�rgðyÞ ¼ 0 for all r; x; y 2 Q:

By Lemma 2.2, we conclude that

gðyÞQ½dðxÞ; y� ¼ f0g for all x; y 2 Q:

The primeness of Q forces that either gðyÞ ¼ 0 or
½dðxÞ; y� ¼ 0. For each fixed y 2 Q, we set U ¼ fy 2 Q j
gðyÞ ¼ 0g and V ¼ fy 2 Q j ½dðxÞ; y� ¼ 0 for all x 2 Qg.
Clearly, U and V both are additive subgroups of Q whose
union is Q, but a group cannot be the union of its two proper
subgroups. Hence, either Q ¼ U or Q ¼ V. Suppose Q ¼ U,

then gðyÞ ¼ 0 for all y 2 Q, which gives a contradiction as g
is nonzero. Thus, we have Q ¼ V, which implies that
½dðxÞ; y� ¼ 0 for all x; y 2 Q. That is, ½dðxÞ; x� ¼ 0 for all
x 2 Q. Therefore, in view of Lemma 2.1, Q is commutative

and hence R is commutative. This proves the theorem
completely. h

As direct corollaries of Theorem 3.1 we immediately get:

Corollary 3.2. Let R be a maxfm; n; 2g!-torsion free prime ring.
If R admits a Jordan derivation d such that ½dðxmÞ; dðynÞ� ¼ 0 for

all x; y 2 R, then either d ¼ 0 or R is commutative.

Corollary 3.3 [6, Theorem 2]. Let R be a prime ring such that
char R–2. If R admits a nonzero derivation d such that
½dðxÞ; dðyÞ� ¼ 0 for all x; y 2 R, then R is commutative.

In case of semiprime ring we have the following result:

Theorem 3.4. Let R be a maxfm; n; 2g!-torsion free semiprime

ring. If R admits a nonzero Jordan derivation d such that
½dðxmÞ; dðynÞ� ¼ 0 for all x; y 2 R, then R contains a nonzero
central ideal.

Proof. In view of Theorem 1 of [10], we conclude that d is der-

ivation on R. Further we have

½dðxmÞ; dðynÞ� ¼ 0 for all x; y 2 R:

This implies that

½dðxmÞ; dðynÞ� ¼ 0 for all x; y 2 Q:

Henceforth, using the similar approach as we have used to

get (3.3) from relation (3.1) in Theorem 3.1, we find that

½dðxÞ; dðyÞ� ¼ 0 for all x; y 2 Q:

Hence, we obtain

½dðxÞ; dðyÞ� ¼ 0 for all x; y 2 R:

In view of Theorem 2.2 in [7], we conclude that R contains a
nonzero central ideal. This completes the proof of the

theorem. h

If we replace commutator by anti-commutator in Theo-
rem 3.1, the corresponding result also holds, which is a partial
generalization of Theorem 4.3 in [8].

Theorem 3.5. Let R be a maxfm; n; 2g!-torsion free prime ring,

and d; g be nonzero Jordan derivations of R. If dðxmÞ � gðynÞ ¼ 0
holds for all x; y 2 R, then R is commutative.
Proof. We are given that d; g are Jordan derivations on R and

hence by Theorem 3.1 of [1], d and g are derivations on R. It is
well known that R and Q satisfy the same differential identities
[14, Theorem 3]. Thus, our assumption implies that

dðxmÞ � gðynÞ ¼ 0 for all x; y 2 Q:

Now, using the same arguments as we have used to get relation
(3.3) from (3.1) in the proof of Theorem 3.1, we conclude that

dðxÞ � gðyÞ ¼ 0 for all x; y 2 Q: ð3:6Þ

Putting x ¼ xz in (3.6), we get

0 ¼ dðxzÞ � gðyÞ
¼ dðxÞz � gðyÞ þ xdðzÞ � gðyÞ
¼ ðdðxÞ � gðyÞÞzþ dðxÞ½z; gðyÞ� þ xðdðzÞ � gðyÞÞ � ½x; gðyÞ�dðzÞ

for all x; y; z 2 Q. Application of (3.6) yields that

dðxÞ½z; gðyÞ� ¼ ½x; gðyÞ�dðzÞ for all x; y; z 2 Q:

Taking x ¼ gðyÞ in above, we obtain

dðgðyÞÞ½z; gðyÞ� ¼ 0 for all y; z 2 Q: ð3:7Þ

Replacing z by rz in (3.7) and using it, we get

dgðyÞQ½z; gðyÞ� ¼ f0g for all y; z 2 Q:

SinceQ is prime, the last relation forces that either dgðyÞ ¼ 0 or
½z; gðyÞ� ¼ 0. For fixed y 2 Q, we set U ¼ fy 2 Q j dgðyÞ ¼ 0g
and V ¼ fy 2 Q j ½z; gðyÞ� ¼ 0 for all z 2 Qg. Clearly, U and
V both are additive subgroups of Q whose union is Q, but a
group cannot be the union of its two proper subgroups. Hence,

eitherQ ¼ U orQ ¼ V. First we consider the case whenQ ¼ U,
then dg ¼ 0. In view of [2, Theorem 1], we conclude that either
d ¼ 0 or g ¼ 0, which is a contradiction as neither d ¼ 0 nor

g ¼ 0. Therefore, we have the only case Q ¼ V, which implies
that ½z; gðyÞ� ¼ 0 for all y; z 2 Q. In particular, we have
½y; gðyÞ� ¼ 0 for all y 2 Q. Thus, in view of Lemma 2.1, we con-
clude that Q is commutative and hence R is commutative. h

The following corollary is an immediate consequence of

above theorem.

Corollary 3.6. Let R be a maxfm; n; 2g!-torsion free prime ring.
If R admits a Jordan derivation d such that dðxmÞ � dðynÞ ¼ 0 for
all x; y 2 R, then either d ¼ 0 or R is commutative.

Theorem 3.7. Let R be a maxfm; n; 2g!-torsion free semiprime
ring. If R admits a nonzero Jordan derivation d such that
dðxmÞ � dðynÞ ¼ 0 for all x; y 2 R, then R contains a nonzero
central ideal.

Proof. By Theorem 1 of [10], we conclude that d is a derivation
on R. From relation (3.6), we obtain dðxÞ � gðyÞ ¼ 0 for all
x; y 2 R. Substituting g ¼ d in the last relation, we get

dðxÞ � dðyÞ ¼ 0 for all x; y 2 R. Hence, in view of Theorem 3.2
in [9], we conclude that R contains a nonzero central ideal. The
theorem is thereby proved. h

If prime ring is replaced by semiprime ring in Theorems 3.1
and 3.5, then results may not be necessarily true. The following
example justifies the fact:
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Example 3.8. Let R1;R2 be noncommutative prime rings and

d1; g1 be nonzero Jordan derivations of R1 and R2, respec-
tively. Consider, R ¼ R1 � R2, then R is a semiprime ring.
Define mappings d; g : R�!R such that dðr1; r2Þ ¼ ðd1ðr1Þ; 0Þ
and gðr1; r2Þ ¼ ð0; g1ðr2ÞÞ for all r1 2 R1 and r2 2 R2. Clearly, d
and g are nonzero Jordan derivations of R. For some fixed
integers m; n P 1, and d; g satisfying the identities
½dðxmÞ; gðynÞ� ¼ 0, and dðxmÞ � gðynÞ ¼ 0 for all x; y 2 R, but

R is not commutative. Thus, the hypothesis of primeness in
Theorems 3.1 and 3.5 is crucial.

Example 3.9. Let R ¼ a b
0 c

� �
ja; b; c 2 Z

� �
. Clearly, R is a

ring under usual matrix operations which is not semiprime.

Next, let d; g : R�!R be mappings such that

d
a b

0 c

� �
¼

0 b

0 0

� �
and g

a b

0 c

� �

¼
0 c� a

0 0

� �
for all

a b

0 c

� �
2 R:

Then it is straightforward to check that d and g are Jordan der-
ivations of R such that ½dðxmÞ; dðynÞ� ¼ 0, and

dðxmÞ � dðynÞ ¼ 0 for all x; y 2 R. However, R contains no
nonzero central ideal. Hence in Theorems 3.4 and 3.7 the con-
dition of semiprimeness cannot be omitted.
4. Range inclusion problems

In the present section we will use the previous algebraic results
to study the range inclusion problems involving continuous
linear Jordan derivations on a Banach algebra. Let us recall

some elementary notions for the sake of completeness. A al-
ways denotes a Banach algebra which is a complex normed
algebra and its underlying vector space is a Banach space.

The Jacobson radical of A is the intersection of all primitive
ideals of A and is denoted by radðAÞ. Throughout the balance
of this paper, we assume that all mappings on Banach algebra

A are linear mappings.
In 1955 Singer and Wermer [17] proved that a continuous

linear derivation on a commutative Banach algebra maps the

algebra into its radical. Johnson and Sinclair [18] have proved
that any linear (Jordan) derivation on a semisimple Banach
algebra is continuous. According to these two results, one
can conclude that there are no nonzero linear Jordan deriva-

tions on a commutative semisimple Banach algebras. Singer
and Wermer conjectured in [17] that the continuity assumption
in their result is superfluous. It took more than thirty years un-

til this conjecture was finally proved by Thomas [19]. Obvi-
ously, from Thomas’s result it follows directly that there are
no nonzero linear derivations on a commutative semisimple

Banach algebra. By our knowledge the first noncommutative
extension of Singer–Wermer theorem has been proved by
Yood [20] who showed that if for all pairs x; y 2 A, where A
is a noncommutative Banach algebra, the element ½DðxÞ; y� lies
in radðAÞ, then D maps A into radðAÞ. Brešar and Vukman
[21] have generalized Yood’s result by proving that in case
½DðxÞ; x� 2 radðAÞ for all x 2 A, then D maps A into radðAÞ.
The work of Mathieu and Murphy [22] and Runde [23] should
also be mentioned. Recently, Kim [24] has proved that in case
½DðxÞ; x�DðxÞ½DðxÞ; x� 2 radðAÞ for any x 2 A, then a
continuous derivation Dmaps A into radðAÞ. Kim’s result gen-
eralizes a result proved by Vukman [25]. For references con-
cerning range inclusion results of continuous derivations on

noncommutative Banach algebras we refer the reader to
([26–29] and reference therein). We proceed with the following
theorem.

Theorem 4.1. Let d be a continuous Jordan derivation of A. If
½dðxmÞ; dðynÞ� 2 radðAÞ holds for all x; y 2 A, then
dðAÞ# radðAÞ.

Proof. From the hypothesis, we have

½dðxmÞ; dðynÞ� 2 radðAÞ for all x; y 2 A:

By Lemma 2.4, every continuous linear Jordan derivation
of a Banach algebra A leaves the primitive ideals invariant

which means that one can introduce for any primitive ideal
P � A, derivation D : A=P�!A=P, where A=P is the factor
algebra, by Dð�xÞ ¼ dðxÞ þ P for all x 2 A and �x ¼ xþ P.

Since P is a primitive ideal, the quotient Banach algebra
A=P is prime and semisimple. Hence, D is derivation by The-
orem 3.1 of [1]. When A=P is commutative, then, by Singer–

Wermer Theorem, there is no nonzero linear derivation on a
commutative semisimple Banach algebra. Hence, we have
D ¼ �0. On the other hand, we assume that A=P is noncommu-
tative. Then the assumption of the theorem implies that

½Dð�xmÞ;Dð�ynÞ� ¼ �0 for all �x; �y 2 A=P:

In view of Corollary 3.2, we conclude that D ¼ �0. Thus for
any x 2 A, we are forced to conclude that dðxÞ 2 P, where P is

any primitive ideal of A. Since dðxÞ, where x is any element
from A, is in the intersection of all primitive ideals of A and
since the intersection of all primitive ideals of A is the radical,

one can conclude that dðAÞ# radðAÞ. Thereby the proof of
theorem is completed. h

Theorem 4.2. Let d be a continuous Jordan derivation of A. If
dðxmÞ � dðynÞ 2 radðAÞ for all x; y 2 A, then dðAÞ# radðAÞ.

Proof. The proof goes through using the same arguments as in
the proof of above theorem with the exception that one has to
use Corollary 3.6 instead of Corollary 3.2. This completes the

proof the theorem. h
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