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Abstract The problem of fully developed natural convective micropolar fluid flow is investigated.

The slip boundary conditions for fluid velocity are applied. Non-dimensional variables are

introduced. The closed form solutions of the field equations are represented graphically. As

expected, it can be seen that the increase in micropolarity parameter results in a decrease in the

velocity and an increase in the microrotation. Also, it is observed that the increase in the slip param-

eter increases the velocity and decreases the microrotation. The no slip case can be recovered as a

limiting case of this work when the slip parameter goes to infinity.
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1. Introduction

The theory of micropolar fluids is proposed by Eringen [1] to
recover the inadequacy of Navier–Stokes theory to describe
the correct behavior of some types of fluids with microstruc-
ture such as animal blood, muddy water, colloidal fluids,

lubricants and chemical suspensions [1]. In the mathematical
theory of micropolar fluids there is, in general, six degrees of
freedom, three for translation and three for microrotation of
microelements. Extensive reviews of the theory and applica-
tions can be found in the review articles [2,3] and in the recent

books [1,4].
Buoyancy forces, which results from density differences in a

fluid caused by the temperature gradients, are responsible for

the fluid motion in natural (or free) convection. Natural con-
vection fluid flows play a significant rule in many practical
applications including, for example, cooling of electronic com-

ponents. Natural convection of micropolar fluid flow has
attracted the attention of many researchers because of its wide
area of applications such as dilute suspensions of polymer
fluids, liquid crystals, and chemical suspensions. Gorla et al

studied the natural convection boundary layer flow of a micro-
polar fluid over a vertical plate with a uniform heat flux [5].
Chamkha et al. [6] considered the problem of fully developed

free convection of a micropolar fluid in a vertical channel
applying the classical no-slip boundary conditions. The free
convective laminar flow in a vertical channel with one region
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Fig. 1 Geometrical sketch of the problem.
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filled with micropolar fluid and the other region with a viscous
fluid assuming no-slip condition is investigated in [7]. Rohni
et al. [8] discussed the problem of mixed convection boundary

layer flow near the stagnation point on a heated permeable ver-
tical surface embedded in a saturated porous medium with
temperature slip effects.

In the last century, several studies have shown that the clas-
sical no-slip condition for velocity might not always hold and
that fluid slippage might happen at the solid boundary [9–12].

In the literature, many researchers showed that the no-slip
boundary condition may lead to singular or nonrealistic
behavior (e.g. [13–15]). A general slip boundary condition that
allows the possibility of fluid slip at a solid boundary has been

proposed by Navier [16]. It states that the tangential relative
velocity of the fluid at a point on the solid boundary is propor-
tional to the tangential stress acting at that point. The constant

of proportionality is called the slip coefficient and is assumed
to depend only on the nature of the fluid and bounding surface
[17]. Recently, the slip condition has been used extensively for

viscous fluids [17–23], micropolar fluids [24,25], Maxwell fluids
[26] and Ferrofluids [27].

Ahmadi [28] and others restricted gyro-viscosity parameter

c by assuming that c ¼ ðlþ j=2Þj. One may wonder about the
effect of this assumption especially for steady fluid flows [1].
This restriction may be used when studying time dependent
fluid flows to allow the field equations to predict the correct

behavior of viscous fluid flows in the limiting case when
micro-structure effects become negligible and microrotation
reduces to the angular velocity [1,25]. This motivated the

author to investigate the problem of fully developed free con-
vective micropolar fluid flow in a vertical channel without tak-
ing this restriction into consideration. Moreover, the more

realistic velocity slip boundary conditions are applied at the
two vertical walls and its influence is studied.

2. Formulation of the problem

Let us consider the laminar free convection flow of an incom-
pressible micropolar fluid between two vertical plates. The

motion is assumed to be steady and fully developed and the
walls are heated with different uniform temperatures. Working
with the Cartesian coordinates ðx; y; zÞ, with z axis normal to
xy-plane, as shown in Fig. 1, the field equations governing

the problem at hand will take the following forms [1].
Balance of momentum:

ðlþ jÞ d
2u

dy2
þ j

dm
dy
þ qgbðT� T0Þ ¼ 0; ð1Þ

Balance of angular momentum:

c
d2m

dy2
� j

du

dy
� 2jm ¼ 0; ð2Þ

Equation of energy:

d2T

dy2
¼ 0; ð3Þ

where uðyÞ is the velocity component along x direction and
mðyÞ is the microrotation about z direction. Also, TðyÞ repre-
sents the fluid temperature. ðl; jÞ are the viscousity coefficients
and c is the gyro-viscosity parameter. q; b; g and T0 are,
respectively, fluid density, thermal expansion coefficient, grav-
itational acceleration and temperature of the plane surface.

The following slip and no-spin boundary conditions are
proposed

a u ¼ syx; T ¼ T1; m ¼ 0 on y ¼ 0; ð4Þ
a u ¼ syx; T ¼ T2; m ¼ 0 on y ¼ h; ð5Þ

where T1 and T2 are the temperatures of the two walls y ¼ 0
and y ¼ h, respectively. 0 6 a 6 1 is the slip parameter

and h is the distance between the two walls. The shear stress
syx is given by [1]

syx ¼ ðlþ jÞ du
dy
þ jm: ð6Þ

We now introduce the following non-dimensional variables

Y¼ y

h
; U¼ u

U0

; N¼ h

U0

m; h¼ T�T0

T2�T0

; Tyx¼
h

lU0

syx; ð7Þ

where U0 ¼ qgbðT2 � T1Þh2=l .

3. Solution of the problem

Substituting the non-dimensional variables (7) into Eqs. (1)–

(3), we get

ð1þ KÞ d
2U

dY2
þ K

dN

dY
þ h ¼ 0; ð8Þ

C
d2N

dY2
� K

dU

dY
� 2KN ¼ 0; ð9Þ

d2h

dY2
¼ 0; ð10Þ

where K ¼ j=l and C ¼ c=lh2.
Note that, if we assumed that C ¼ 1þ K=2, Eq. (9) returns

to the classical form assumed by Ahmadi and others who
restricted themselves to the relation c ¼ ðlþ j=2Þj.



Fig. 2 Velocity profile for M=1, C = l and h1 = 0.5.

Fig. 3 Microrotation profile for M =1, C = l and h1 = 0.5.

Fig. 4 Velocity Profile for M=1, C = l and K = l.
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Integrating Eq. (10) twice and using boundary conditions
(4) and (5) with the aid of non-dimensional variables (7) we
arrive at

h ¼ ð1� h1ÞYþ h1; ð11Þ

where h1 ¼ ðT1 � T0Þ=ðT2 � T0Þ.
Substituting for h from Eq. (11) into Eq. (8) then integrat-

ing, we arrive at

ð1þ KÞ dU
dY
þ KNþ ð1� h1Þ

2
Y2 þ h1Yþ C0 ¼ 0; ð12Þ

where C0 is an arbitrary constant.
Eliminating dU

dY
between Eqs. (9) and (12), we get an ordin-

ary differential equation of the unknown N that can be solved

to give

N ¼ A1e
gY þ B1e

�gY þ ð1� h1Þ
2ð2þ KÞY

2 þ h1

ð2þ KÞYþ C1; ð13Þ

Then substituting the obtained result of N into Eq. (12) and
integrating we obtain

U ¼ �K
gð1þ KÞ A1e

gY � B1e
�gY

� �
� ð1� h1Þ
3ð2þ KÞY

3

� h1

ð2þ KÞY
2 þ A2

ð1þ KÞYþ
B2

ð1þ KÞ ; ð14Þ

where g2 ¼ Kð2þ KÞ=Cð1þ KÞ.
Applying the imposed boundary conditions (4) and (5), in

non-dimensional form, and then substituting for U and N into

Eq. (9), we get a system of five linear algebraic equations that
can be solved simultaneously to give

A1 ¼
1

D1

½3Mð1� egÞf2Cgð1þ KÞðh1 � 1Þ � K2ðh1 þ 1Þg

þ gKð1þ KÞf2Mððh1 þ 2Þeg þ 2ðh1 þ 1ÞÞ
� 3ðh1 þ 1Þð3Kþ 2Þð1� egÞg�; ð15Þ

B1 ¼
eg

D1

½3Mð1� egÞf2Cgð1þ KÞðh1 � 1Þ þ K2ðh1 þ 1Þg

� gKð1þ KÞf2Mðð2h1 þ 1Þeg þ h1 þ 2Þ
þ 3ðh1 þ 1Þð3Kþ 2Þð1� egÞg�; ð16Þ

C1 ¼
�1
D2

½2Mgð1þ KÞð1þ egÞf3Cðh1 � 1Þ þ Kð2h1 þ 1Þg

þ 3Kðh1 þ 1Þð1� egÞfgð1þ KÞð3Kþ 2Þ �MKg�; ð17Þ

A2¼
2Kð1þKÞ

D2

½gð1þKÞð1þ egÞf2Mð2h1þ1Þ�3ðh1þ1Þ

�ð3Kþ2Þgþ3Mð1� egÞf2Cðh1�1Þ�Kðh1þ1Þg�; ð18Þ

B2 ¼
1

D1

½2M2gð1þ KÞð1þ e2gÞf3Cðh1 � 1Þ þ Kð2h1 þ 1Þg

þ ð1� e2gÞfgð1þ KÞ2ð3gðh1 þ 1Þð3Kþ 2Þ2

� 2M½3Cðh1 � 1Þðgþ 2Þ þ gð2h1 þ 1Þð3Kþ 2Þ�Þ

� 3M2K2ðh1 þ 1Þg�; ð19Þ

where

D1 ¼ �12MKð3Kþ 2Þfgð1þ KÞð1� e2gÞ � Kð1� egÞ2g;
D2 ¼ 12MKð3Kþ 2Þfgð1þ KÞð1þ egÞ � Kð1� egÞg;
M ¼ ha=l:
4. Results and discussion

The system of differential Eqs. (8)–(10) governing the laminar
free convection flow of an incompressible micropolar fluid

between two vertical plates under the imposed slip and no-spin
boundary conditions (4) and (5) have been solved analytically.
The closed form solutions given by (11), (13) and, (14) are

represented graphically. The non-vanishing components of
velocity and microrotation are graphed for different values



Fig. 5 Microrotation profile for M=1, C = 1 and K = 1.

Fig. 6 Velocity profile for K = 1, C = 2 and h1 = 0.5.

Fig. 7 Microrotation profile for K= 1, C = 2 and h1 = 0.5.

Fig. 8 Velocity profile for M = 10, K = 2 and h1 = 0.5.

Fig. 9 Microrotation profile for M= 10, K= 2 and h1 = 0.5.

Fig. 10 Velocity profile for M= 10, K = 2 and C = 3.
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of the non-dimensional physical parameters K; h1; M and C
in Figs. 2–10, respectively. Also, the temperature distribution

is represented in Fig. 12. From Figs. 2 and 3, it can be observed
that the increase in micropolarity parameter K decreases the
velocity values but increases the microrotation which means,

as expected, that the resistance of the fluid increases with the
increase of K. The velocity and microrotation increases mono-
tonically with the increase of h1 as seen in Figs. 4 and 5. Figs. 6

and 7 show the velocity and microrotation profiles for different
values of the slip parameter M. The classical case of no-slip is
recovered when the slip parameter M goes to infinity. It is

observed that the increase in slip parameter increases the
velocity and decreases the microrotation as shown in the fig-
ures. Also, from Figs. 8 and 9 it is seen that the velocity and
microrotation values decrease monotonically with the increase

in non-dimensional gyro-viscosity coefficient C. The increase
of h1 increases the velocity and microrotation as shown in
Figs. 10 and 11. The heat distribution is represented by

Fig. 12. The results of Chamkha et al [6] can be recovered as
a special case of this work when we let C ¼ 1þ K=2 and M
goes to infinity.



Fig. 11 Microrotation profile for M= 10, K= 2, C = 3 and

h1 = 0.5.

Fig. 12 Temperature distribution.
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