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Abstract We introduce a new family of continuous distributions called the Kumaraswamy

Marshal-Olkin generalized family of distributions. We study some mathematical properties of this

family. Its density function is symmetrical, left-skewed, right-skewed and reversed-J shaped, and

has constant, increasing, decreasing, upside-down bathtub, bathtub and S-shaped hazard rate. We

present some special models and investigate the asymptotics and shapes of the family. We derive

a power series for the quantile function and obtain explicit expressions for the moments, generating

function, mean deviations, two types of entropies and order statistics. Some useful characterizations

of the family are also proposed. The method of maximum likelihood is used to estimate the model

parameters. We illustrate the importance of the family by means of two applications to real data sets.
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1. Introduction

There has be an increased interest in defining new generators or
generalized classes of univariate continuous distributions by

introducing additional shape parameter(s) to a baseline model.
The extended distributions have attracted several statisticians to
develop new models because the computational and analytical
facilities available in programming softwares such as R, Maple

and Mathematica can easily tackle the problems involved in
computing special functions in these extended distributions.
Several mathematical properties of the extended distributions
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may easily be explored using mixture forms of the exponentiat-
ed-G (‘‘exp-G’’ for short) distributions. The addition of para-
meters has been proved useful in exploring skewness and tail

properties, and also for improving the goodness-of-fit of the
generated family. The well-known generators are the following:
beta-G by Eugene et al. [1] and Jones [2], Kumaraswamy-G

(Kw-G) by Cordeiro and de Castro [3], McDonald-G (Mc-G)
by Alexander et al. [4], gamma-G type 1 by Zografos and
Balakrishanan [5], and Amini et al. [6], gamma-G type 2 by Ris-

tić and Balakrishanan [7], and Amini et al. [6], odd-gamma-G
type 3 by Torabi and Montazari [8], logistic-G by Torabi and
Montazari [9], transformed-transformer (T-X) (Weibull-X and
gamma-X) by Alzaatreh et al. [10], discrete T-X by Alzaatreh

et al. [11], exponentiated T-X by Alzaghal et al. [12], odd expo-
nentiated generalized (odd exp-G) by Cordeiro et al. [13], odd
Weibull-G by Bourguignon et al. [14], exponentiated half-logis-

tic by Cordeiro et al. [15], T-X{Y}-quantile based approach by
Aljarrah et al. [16] and T-R{Y} by Alzaatreh et al. [17], Lomax-
G by Cordeiro et al. [18], logistic-X by Tahir et al. [19] and new

Weibull-G by Tahir et al. [20].
Marshall and Olkin [21] proposed a flexible semi-paramet-

ric family of distributions and defined a new survival function

GMOðxÞ by introducing an additional parameter �p such that

p ¼ 1� �p and �p > 0. They called the parameter �p the tilt para-
meter and interpreted �p in terms of the behavior of the hazard

rate function (hrf) of GMOðxÞ. Their ratio is increasing in x for
�p P 1 and decreasing in x for �p 2 ð0; 1Þ.

For any arbitrary continuous probability density function
(pdf) gðx; nÞ and cumulative distribution function (cdf)

Gðx; nÞ, the cdf and pdf of the Marshall-Olkin (MO) family
of distributions are defined by (x 2 R; �p > 0 and p ¼ 1� �p).

GMOðxÞ ¼
Gðx; nÞ

1� pGðx; nÞ
ð1Þ

and

gMOðxÞ ¼
ð1� pÞgðx; nÞ
1� pGðx; nÞ
� �2 ; x 2 R;

respectively. For p ¼ 0, we have GMOðxÞ ¼ Gðx; nÞ.
For a baseline random variable having pdf gðxÞ and cdf

GðxÞ, Cordeiro and de Castro [3] defined the two-parameter

Kw-G cdf by

FðxÞ ¼ 1� 1� GðxÞaf gb: ð2Þ

The pdf corresponding to (2) becomes

fðxÞ ¼ abgðxÞGðxÞa�1 f1� GðxÞagb�1; ð3Þ

where gðxÞ ¼ dGðxÞ=dx and a > 0 and b > 0 are two extra

shape parameters whose role is to govern skewness and tail
weights.

Now, we propose a new extension of the MO family for a

given baseline distribution with cdf Gðx; nÞ, survival function
Gðx; nÞ ¼ 1� Gðx; nÞ and pdf gðx; nÞ depending on a para-
meter vector n. Inserting (1) in (2), we define the cdf of the
new Kumaraswamy Marshal-Olkin (‘‘KwMO’’) family of dis-

tributions by

FðxÞ ¼ Fðx; a; b; p; nÞ ¼ 1� 1� Gðx; nÞ
1� p Gðx; nÞ

� �a� �b

; ð4Þ

where a > 0; b > 0 and �p > 0 are three additional shape para-
meters. For each baselineG, the ‘‘KwMO-G’’ cdf is given by (4).
Eq. (4) provides a wider family of continuous distributions.
It includes the Kw-G family of distributions, the proportional
and reversed hazard rate models, the MO family of distribu-

tions and other sub-families. In Table 1, we provide some spe-
cial models of the KwMO family of distributions.

The density function corresponding to (4) is given by

fðxÞ¼ fðx;a;b;p;nÞ¼ abð1�pÞgðx;nÞGðx;nÞa�1

1�pGðx;nÞ
� �aþ1 1� Gðx;nÞ

1�pGðx;nÞ

� �a� �b�1

: ð5Þ

Eq. (5) will be most tractable when the cdf GðxÞ and the pdf
gðxÞ have simple analytic expressions. Hereafter, a random

variable X with density function (5) is denoted by
X � KwMO�Gða; b; p; nÞ. Further, we omit sometimes the
dependence on the vector n of the parameters and write simply
GðxÞ ¼ Gðx; nÞ;FðxÞ ¼ Fðx; a; b; p; nÞ and so on.

The hrf of X becomes

hðx; a; b; p; nÞ ¼ ab ð1� pÞgðx; nÞGðx; nÞa�1

1� pG ðx; nÞ
� �

1� pG ðx; nÞ
� �a � Gðx; nÞa
� 	 :

ð6Þ

This paper is organized as follows. Four special cases of this
family are presented in Section 2. Some mathematical proper-
ties are provided in Section 3 such as the shapes of the density
and hazard rate functions, useful expansions for the cdf, pdf

and quantile function (qf), explicit expressions for the
moments, generating function, mean deviations, Rényi and
Shannon entropies and order statistics. Section 4 refers to

some characterizations of the KwMO family. Estimation of
the model parameters by maximum likelihood is performed
in Section 5. Two applications to real data sets illustrate the

potentiality of the new family in Section 6. The paper is con-
cluded in Section 7.

2. Special models

Here, we provide a few examples of the KwMO-G family of
distributions.

2.1. The KwMO-Exponential (KwMO-E) distribution

Let the parent distribution be exponential with parameter

k > 0; gðx; kÞ ¼ ke�k x; x > 0 and Gðx; kÞ ¼ 1� e�k x. Then,
the pdf of the KwMO-E (for x > 0) model is given by

fKwMOEðxÞ¼
abke�kxð1�pÞð1� e�kxÞa�1

ð1�pe�kxÞaþ1
1� 1� e�kx

1�pe�kx

� �a� �b�1

:

2.2. The KwMO-Lomax (KwMO-L) distribution

Consider the parent Lomax distribution with positive para-
meters a and b and pdf and cdf given by gðx; a; bÞ ¼ a=bð Þ
1þ x=bð Þ½ ��ðaþ1Þ; x > 0, Gðx; a; bÞ ¼ 1� 1þ x=bð Þ½ ��a

. Then,

the pdf of the KwMO-L distribution reduces to

fKwMOLðxÞ ¼
aba 1þ x=bð Þ½ ��ðaþ1Þ ð1� pÞ 1� 1þ x=bð Þ½ ��af ga�1

b 1� p 1þ x=bð Þ½ ��af gaþ1

� 1� 1� 1þ x=bð Þ½ ��a

1� p 1þ x=bð Þ½ ��a

� �a� �b�1

:



Table 1 Some special models.

S. no. a b p GðxÞ Reduced model

1 – – 0 GðxÞ The Kw-G family of distributions [3]

2 1 1 – GðxÞ The MO family of distributions [21]

3 1 1 – GðxÞ The exponentiated MO family of distributions [22]

4 1 – 0 GðxÞ The proportional reversed hazard rate model [23]

5 – 1 0 GðxÞ The proportional hazard rate model [24]

6 1 1 0 GðxÞ GðxÞ
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2.3. The KwMO-Weibull (KwMO-W) distribution

Consider the parent Weibull distribution with positive para-
meters k and b. Then, the pdf and cdf are given by

gðxÞ ¼ kbxb�1 e�k xb
and GðxÞ ¼ 1� e�k xb

, respectively. Then,
the pdf of KwMO-W distribution becomes

fKwMOWðxÞ ¼
abkbxb�1 e�k xb ð1� pÞ 1� e�k xb

n oa�1

1� pe�k xb
� 	aþ1

� 1� 1� e�k xb

1� pe�k xb

" #a( )b�1

:

For b ¼ 2, we obtain as special case the KwMO-Rayleigh

(KwMO-R) distribution.
2.4. The KwMO-Fréchet (KwMO-Fr) distribution

Now, suppose the parent Fréchet distribution with pdf and cdf

given by gðxÞ ¼ kdk x�ðkþ1Þ e� d=xð Þk and GðxÞ ¼ e� d=ð Þk ; x > 0,
respectively, then the pdf of the KwMO-Fr model reduces to

fKwMOFrðx;a;b;p;k;dÞ¼
abð1�pÞkdkx�ðkþ1Þe� d=xð Þk e� d=xð Þk

h ia�1
1�p 1� e� d=xð Þk

h in oaþ1

� 1� e� d=xð Þk

1�p 1� e� d=xð Þk

 �

2
4

3
5

a8<
:

9=
;

b�1

:

Figs. 1 and 2 display some plots of the pdf and hrf of the
KwMO-E, KwMO-L, KwMO-W and KwMO-Fr distributions

for selected parameter values. Fig. 1 indicates that the KwMO
family generates distributions with various shapes such as sym-
metric, left-skewed, right-skewed and reversed-J. Further,

Fig. 2 shows that the KwMO family produces flexible hazard
rate shapes such as constant, increasing, decreasing, bathtub,
upside-down bathtub and S. This indeed reveals that the
KwMO family is very useful in fitting different data sets with

various shapes.
3. Mathematical properties

3.1. Asymptotics and shapes

Proposition 1. The asymptotics of Eqs. (4)–(6) as GðxÞ ! 0 are
given by
FðxÞ � bGðxÞa

ð1� pÞa as GðxÞ ! 0;

fðxÞ � abgðxÞGðxÞa�1

ð1� pÞa as GðxÞ ! 0;

hðxÞ � abgðxÞGðxÞa�1

ð1� pÞa as GðxÞ ! 0:

Proposition 2. The asymptotics of Eqs. (4)–(6) as x!1 are
given by

1� FðxÞ � að1� pÞGðxÞ
� �b

as x!1;
fðxÞ � b að1� pÞ½ �b gðxÞGðxÞb�1 as x!1;

hðxÞ � bgðxÞ
GðxÞ

as x!1:

The shapes of the density and hazard rate functions are

described analytically. The critical points of the density of
the KwMO-G model are the roots of the equation:

g0ðxÞ
gðxÞ þ ða� 1Þ gðxÞ

GðxÞ � pðaþ 1Þ gðxÞ
1� pGðxÞ

¼ að1� bÞ gðxÞGðxÞa�1

1� pGðx; nÞ
� �

1� pGðx; nÞ
� �a � GðxÞa
� 	 : ð7Þ

There may be more than one roots to (7). Let kðxÞ ¼ d2 log½fðxÞ�
dx2

.

We have

kðxÞ ¼ g00ðxÞgðxÞ� g0ðxÞ2

gðxÞ2
þða� 1Þg

0ðxÞGðxÞ� gðxÞ2

GðxÞ2

� pðaþ 1Þ
g0ðxÞ 1� pGðxÞ

� �
þ pgðxÞ2

1� pGðxÞ
� �2

� aðb� 1Þ g0ðxÞGðxÞa�1

1� pGðxÞ
� �

1� pGðxÞ
� �a�GðxÞa
� 	

� aða� 1Þðb� 1Þ gðxÞ2GðxÞa�2

1� pGðxÞ
� �

1� pGðxÞ
� �a�GðxÞa
� 	

þ paðb� 1Þ gðxÞ2GðxÞa�1

1� pGðx;nÞ
� �2

1� pGðx;nÞ
� �a�GðxÞa
� 	

� a2ðb� 1Þ
gðxÞGðxÞa�1 p 1� pGðx;nÞ

� �a�1�GðxÞa�1
n o

1� pGðx;nÞ
� �

1� pGðx;nÞ
� �a�GðxÞa
� 	2 :

If x ¼ x0 is a root of (7) then it corresponds to a local maxi-

mum if kðxÞ > 0 for all x < x0 and kðxÞ < 0 for all x > x0. It
corresponds to a local minimum if kðxÞ < 0 for all x < x0

and kðxÞ > 0 for all x > x0. It refers to an inflexion point if
either kðxÞ > 0 for all x – x0 or kðxÞ < 0 for all x – x0.
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Fig. 1 Density plots: (a) KwMO-E, (b) KwMO-L, (c) KwMO-W and (d) KwMO-Fr models.
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The critical point of hðxÞ is the roots of the equation

g0ðxÞ
gðxÞ þ

ða� 1ÞgðxÞ
GðxÞ � pgðxÞ

1� pGðx; nÞ

¼ agðxÞ
p 1� pGðx; nÞ
� �a�1 � GðxÞa�1

1� pGðx; nÞ
� �a � GðxÞa

: ð8Þ

There may be more than one roots to (8). Let sðxÞ ¼
d2 log½hðxÞ�=dx2. We have
sðxÞ ¼ g00ðxÞgðxÞ � g0ðxÞ2

gðxÞ2
þ ða� 1Þ½g0ðxÞGðxÞ � gðxÞ2�

GðxÞ2

� p
g0ðxÞ 1� pGðxÞ

� �
þ pgðxÞ2

1� pGðxÞ
� �2

� ag0ðxÞ
p 1� pGðx; nÞ
� �a�1 � GðxÞa�1

1� pGðx; nÞ
� �a � GðxÞa

� aða� 1ÞgðxÞ2
p2 1� pGðx; nÞ
� �a�2 � GðxÞa�2

1� pGðx; nÞ
� �a � GðxÞa

� agðxÞ
p 1� pGðx; nÞ
� �a�1 � GðxÞa�1

1� pGðx; nÞ
� �a � GðxÞa

( )2

:

If x ¼ x0 is a root of (8) then it refers to a local maximum if
sðxÞ > 0 for all x < x0 and sðxÞ < 0 for all x > x0. It corre-
sponds to a local minimum if sðxÞ < 0 for all x < x0 and

sðxÞ > 0 for all x > x0. It gives an inflexion point if either
sðxÞ > 0 for all x – x0 or sðxÞ < 0 for all x – x0.

3.2. Useful expansions

We can demonstrate that the cdf (4) admits the expansion

FðxÞ ¼ 1�
X1
i¼0
ð�1Þi

b

i

� 
GðxÞa i

1� pGðxÞ
� �a i : ð9Þ

We can obtain an expansion for GðxÞb (b > 0 real non-integer)
as

GðxÞb ¼
X1
r¼0

srðbÞGðxÞr; ð10Þ

where

srðbÞ ¼
X1
j¼r
ð�1Þrþj

b

j

� 
j

r

� 
:

Then, using (10), we obtain

GðxÞa i

1� pGðxÞ
� �a i ¼

P1
k¼0ak GðxÞkP1
k¼0bk GðxÞ

k
¼
X1
k¼0

ck GðxÞ
k
; ð11Þ
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Fig. 2 Hazard plots: (a) KwMO-E, (b) KwMO-L, (c) KwMO-W and (d) KwMO-Fr models.
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where

ak ¼ akða; iÞ ¼
X1
j¼k
ð�1Þjþk

a i

j

� 
j

k

� 
;

bk ¼ bkða; p; iÞ ¼
X1
j¼k
ð�1Þjþk p j

a i

j

� 
j

k

� 
;

and for k � 1

ck ¼ ckða; p; iÞ ¼
1

b0

ak �
1

b0

Xk
r¼1

ar bk�r

 !
;

and c0 ¼ a0=b0. Then, we obtain

FðxÞ ¼ Fðx; a; b; p; nÞ ¼
X1
k¼0

bk GðxÞk; ð12Þ

where ak ¼
P1

i¼0ð�1Þ
i b

i

� 
ckða; p; iÞ; b0 ¼ 1� a0 and, for

k P 1; bk ¼ �ak, and HaðxÞ ¼ GðxÞa denotes the exponentiat-
ed-G (‘‘exp-G’’ for short) cdf with power parameter a > 0.

The last results hold for real non-integer a. For integer a, it
is clear that the indices should stop in integers and we can easi-
ly update the formula.

The density function of X can be expressed as an infinite
linear combination of exp-G densities, namely
fðxÞ ¼ fðx; a; b; p; nÞ ¼
X1
k¼0

bkþ1 hkþ1ðxÞ; ð13Þ

where hkþ1ðxÞ is the exp-G density with power parameter
kþ 1. Thus, some mathematical properties of the new distribu-
tion can be derived from those properties of the exp-G distri-
bution based on (13). For example, the ordinary and

incomplete moments and generating function of X can be
obtained from those quantities of the exp-G distribution.

3.3. Quantile power series

Let QGð�Þ ¼ G�1ð�Þ be the baseline qf. The KwMO-G distribu-
tion is easily simulated by inverting (4) as follows: if u has a

uniform Uð0; 1Þ distribution, the solution of the non-linear
equation

x ¼ QG

ð1� pÞ 1� ð1� uÞ
1
b

h i1
a

1� p 1� 1� ð1� uÞ
1
b

h i1
a

� �
0
BB@

1
CCA ð14Þ

has the density function (5).
The effects of the shape parameters a and b on the skewness

and kurtosis can be considered based on quantile measures.

Now, we derive a power series for the qf x ¼ QðuÞ ¼ F�1ðuÞ
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of X by expanding (14). First, if QGðuÞ does not have an explic-
it expression, it can usually be expressed as a power series

QGðuÞ ¼
X1
i¼0

ai u
i; ð15Þ

where the coefficients ai’s are suitably chosen real numbers
which depend on the parameters of the G distribution. For

several important distributions, such as the normal, Student
t, gamma and beta distributions, QGðuÞ does not have explicit
expressions but it can be expanded as in Eq. (15).

From now on, we use a result by Gradshteyn and Ryzhik

[25] for a power series raised to a positive integer n (for n � 1)

QGðuÞ
n ¼

X1
i¼0

ai u
i

 !n

¼
X1
i¼0

cn;i u
i; ð16Þ

where the coefficients cn;i (for i ¼ 1; 2; . . .) are determined from

the recurrence equation (with cn;0 ¼ an0)

cn;i ¼ ði a0Þ�1
Xi

m¼1
½mðnþ 1Þ � i�am cn;i�m: ð17Þ

Clearly, the quantity cn;i is obtained from cn;0; . . . ; cn;i�1 and

then from the quantities a0; . . . ; ai.
Next, we derive an expansion for the argument of QGð�Þ in

(14)

A ¼
ð1� pÞ 1� ð1� uÞ

1
b

h i1
a

1� p 1� 1� ð1� uÞ
1
b

h i1
a

� � ¼ P1
k¼0a

�
k u

kP1
k¼0 b

�
k u

k
;

where a�k ¼ ð1� pÞ
P1

i¼0ð�1Þ
iþk 1

a

i

� 
i
b

k

� 
; b�0 ¼ 1� p and

b�k ¼ p
X1
i;k¼0
ð�1Þiþkþ1

1
a

i

�  i
b

k

� 
:

The ratio of the two power series can be expressed as

A ¼
X1
k¼0

c�k u
k; ð18Þ

where c�0 ¼ a�0=b
�
0 and the coefficients c�k’s (for k P 0) follow

from the recurrence equation

ck ¼
1

b�0
a�k �

1

b�0

Xk
r¼1

b�r c
�
k�r

 !
:

Then, the qf of X follows from (14) by combining (15) and (18)

as

QðuÞ ¼ QG

X1
k¼0

c�k u
k

 !
¼
X1
i¼0

ai
X1
k¼0

c�k u
k

 !i

: ð19Þ

Further, using (16) and (17), we obtain

QðuÞ ¼
X1
k¼0

ek u
k; ð20Þ

where ek ¼
P1

i¼0ai di;k; di;0 ¼ c�0
i and (for k > 1)

di;k ¼ ðkc�0Þ
�1Xk

m¼1
½mðiþ 1Þ � k�c�m di;k�m:
Eq. (20) is the main result of this section since it allows to

obtain various mathematical quantities for the KwMO family
as demonstrated in the next sections. The formulae derived
throughout the paper can be easily handled in most symbolic

computation software platforms such as Maple, Mathematica
and Matlab.

3.4. Moments

Let Ykþ1(k P 0) be a random variable having the exp-G pdf
hkþ1ðxÞ with power parameter kþ 1. A first formula for the
nth moment of X follows from (13) as

EðXnÞ ¼
X1
k¼0

bkþ1EðYn
kþ1Þ: ð21Þ

Moments of some exp-G distributions are given by Nadarajah

and Kotz [26], which can be used to obtain EðXnÞ.
A second formula for EðXnÞ follows from (21) as

EðXnÞ ¼
X1
k¼0
ðkþ 1Þbkþ1 sðn; kÞ; ð22Þ

where sðn; kÞ ¼
R 1

0
QGðuÞ

n
ukdu.

The nth incomplete moment of X is determined as

mnðyÞ ¼
Z y

�1
xn fðxÞdx

¼
X1
k¼0
ðkþ 1Þbkþ1

Z GðyÞ

0

QGðuÞ
n
ukdu; ð23Þ

where the integral can be computed numerically for most G

distributions.

3.5. Generating function

Here, we provide two formulae for the moment generating

function (mgf) MðtÞ ¼ Eðet XÞ of X. Clearly, the first one can
be expressed from (13) as

MðtÞ ¼
X1
k¼0

bkþ1Mkþ1ðtÞ; ð24Þ

where Mkþ1ðtÞ is the mgf of Ykþ1. Hence, MðtÞ can be deter-

mined from the exp-G generating function. A second formula
for MðtÞ can be derived from (13) as

MðtÞ ¼
X1
i¼0
ðkþ 1Þbkþ1 qðt; kÞ; ð25Þ

where qðt; kÞ ¼
R 1

0
exp½tQGðuÞ�ukdu.

So, we can obtain the mgf’s of several distributions directly

from Eqs. (24) and (25).

3.6. Mean deviations

The mean deviations about the mean (d1 ¼ Eðj X� l01 jÞ) and
about the median (d2 ¼ Eðj X�M jÞ) of X are given by
d1 ¼ 2l01Fðl01Þ � 2m1ðl01Þ and d2 ¼ l01 � 2m1ðMÞ, respectively,
where l01 ¼ EðXÞ;M ¼MedianðXÞ ¼ Qð0:5Þ is the median,

Fðl01Þ is easily calculated from (4) and m1ðzÞ is the first incom-

plete moment given by (23) with n ¼ 1.
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Now, we provide two alternative ways to compute d1 and
d2. First, a general equation for m1ðzÞ can be derived from
(13) as

m1ðzÞ ¼
X1
k¼0

bkþ1 Jkþ1ðzÞ; ð26Þ

where Jkþ1ðzÞ ¼
R z

�1 xhkþ1ðxÞdx is the basic quantity to com-

pute the first incomplete moment of the exp-G distribution.

A second general formula for m1ðzÞ can be derived by set-
ting u ¼ GðxÞ in (13) as

m1ðzÞ ¼
X1
k¼0
ðkþ 1Þbkþ1TkðzÞ; ð27Þ

where TkðzÞ ¼
R GðzÞ
0

QGðuÞukdu can be computed numerically.

Eqs. (26) and (27) may be applied to construct Bonferroni
and Lorenz curves defined for a given probability p by

BðpÞ ¼ m1ðqÞ=ðpl01Þ and LðpÞ ¼ m1ðqÞ=l01, respectively, where
l01 ¼ EðXÞ and q ¼ QðpÞ is the qf of X at p.

3.7. Entropies

An entropy is a measure of variation or uncertainty of a ran-
dom variable X. Two popular entropy measures are the Rényi
and Shannon entropies [27,28]. The Rényi entropy of a ran-

dom variable with pdf fðxÞ is defined as

IRðcÞ ¼
1

1� c
log

Z 1

0

fcðxÞdx
� 

;

for c > 0 and c – 1. The Shannon entropy of a random vari-

able X is defined by E � log½fðXÞ�f g. It is the special case of
the Rényi entropy when c " 1. Direct calculation yields

E � log fðXÞ½ �f g ¼ � log abð1� pÞ½ � � E log gðX; nÞ½ �f g
þ ð1� aÞE log GðX; nÞ½ �f g
þ ð1þ aÞE log 1� pGðX; nÞ

� �� 	
þ ð1� bÞE log 1� GðX; nÞ

1� pGðX; nÞ

� �a� �� �
:

First, we define

Aða1;a2;a3;p;aÞ ¼
Z 1

0

ua1

1�pð1�uÞ½ �a2 1� u

1�pð1�uÞ

� �a� �a3

du

¼
X1
i¼0
ð�1Þi

a3

i

� Z 1

0

X1
k¼0

a1;ku
k

X1
k¼0

b1;ku
k

¼
X1
i¼0
ð�1Þi

a3

i

� Z 1

0

X1
k¼0

c1;ku
kdu

¼
X1
i;k¼0

ð�1Þi
a3

i

� 
c1;k

kþ1
;

ð28Þ

where

a1;k ¼
X1
j¼k
ð�1Þjþk

a1 þ a i

j

� 
j

k

� 
;

b1;k ¼
X1
j¼k
ð�1Þjþkp j

a2 þ a i

j

� 
j

k

� 
and

c1;k ¼
1

b1;0

a1;k �
1

b1;0

Xk
r¼1

a1;rb1;k�r

" #
:

After some algebraic manipulations, we obtain

Proposition 3. Let X be a random variable with pdf (5). Then,

E log GðXÞ½ �f g¼ abð1�pÞ @
@t

Aðaþ t�1;aþ1;b�1;p;aÞjt¼0;

E log 1�pGðX;nÞ
� �� 	

¼ abð1�pÞ @
@t

Aða�1;aþ1� t;b�1;p;aÞjt¼0;

E log 1� GðX;nÞ
1�pGðX;nÞ

� �a� �� �
¼ abð1�pÞ @

@t
Aða�1;aþ1;bþ t�1;p;aÞjt¼0;

where Aðaþ t� 1; aþ 1; b� 1; p; aÞ;Aða� 1; aþ 1� t; b� 1;
p; aÞ and Aða� 1; aþ 1; bþ t� 1; p; aÞ are defined by Eq. (28).

The simplest formula for the entropy of X is given by

E � log½fðXÞ�f g¼� log½abð1�pÞ��E log½gðX;nÞ�f g

þð1�aÞabð1�pÞ @
@t

Aðaþ t�1;aþ1;b�1;p;aÞjt¼0

þð1þaÞabð1�pÞ @
@t

Aða�1;aþ1� t;b�1;p;aÞjt¼0

þð1�bÞabð1�pÞ @
@t

Aða�1;aþ1;bþ t�1;p;aÞjt¼0:

After some algebraic developments, we obtain an alterna-
tive expression for IRðcÞ as

IRðcÞ ¼
c

1� c
log½abð1� pÞ� þ 1

1� c

� log
X1
i;k¼0

w�i;j;kEZk
gc�1½QGðZkÞ�
� 	( )

; ð29Þ

where Zk is a beta random variable with parameters kþ 1 and

one, w�i;j;k ¼
ð�1Þi c2;k

kþ1
ðb� 1Þc
i

� 
and

a2;k ¼
X1
j¼k
ð�1Þjþk

cða� 1Þ þ a i

j

� 
j

k

� 
;

b2;k ¼
X1
j¼k
ð�1Þjþkp j

cðaþ 1Þ þ a i

j

� 
j

k

� 
and

c2;k ¼
1

b2;0

a2;k �
1

b2;0

Xk
r¼1

a2;rb2;k�r

 !
:

3.8. Order statistics

Order statistics make their appearance in many areas of
statistical theory and practice. Suppose X1; . . . ;Xn is a random
sample from X, then the pdf fi:nðxÞ of the ith order statistic, say

Xi:n, is given by

fi:nðxÞ ¼ K
Xn�i
j¼0
ð�1Þ j

n� i

j

� 
fðxÞFðxÞjþi�1;

where K ¼ n!=½ði� 1Þ! ðn� iÞ!�.
Following Nadarajah et al. [29], the density function of Xi:n

can be given as

fi:nðxÞ ¼
X1
r;k¼0

mr;k hrþkþ1ðxÞ; ð30Þ

where hrþkþ1ðxÞ denotes the exp-G density function with para-
meter rþ kþ 1,
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mr;k ¼
n! ðrþ 1Þ ði� 1Þ!brþ1

ðrþ kþ 1Þ
Xn�i
j¼0

ð�1Þ j fjþi�1;k
ðn� i� jÞ! j! ;

and bk is defined in Eq. (12). Here, the quantities fjþi�1;k are

obtained recursively from fjþi�1;0 ¼ bjþi�10 and (for k � 1)

fjþi�1;k ¼ kb0ð Þ�1
Xk
m¼1
½mðjþ iÞ � k�bm fjþi�1;k�m:

Based on Eq. (30), we can easily obtain ordinary and incom-
plete moments and generating function of Xi:n for any parent

G distribution.

4. Characterization of the KwMO family

Characterizations of distributions are important to many
researchers in the applied fields. An investigator will be
vitally interested to know whether their model fits the

requirements of a particular distribution. To this end, one
will depend on the characterizations of this distribution
which provide conditions under which the underlying

distribution is indeed that particular distribution. Various
characterizations of distributions have been established in
many different directions. In this section, several charac-

terizations of (KwMO) distribution are presented. These
characterizations are based on: (i) a simple relationship
between two truncated moments; (ii) a single function of
the random variable.

4.1. Characterizations based on truncated moments

In this subsection we present characterizations of (KwMO)

distribution in terms of a simple relationship between two
truncated moments. Our characterization results presented
here will employ an interesting result due to Glänzel [30]

(Theorem 1, below). The advantage of the characterizations
given here is that, cdf F need not have a closed form and
are given in terms of an integral whose integrand depends

on the solution of a first order differential equation, which
can serve as a bridge between probability and differential
equation.

Theorem 1. Let X;R;Pð Þ be a given probability space and let

H ¼ a; b½ � be an interval for some a < b a ¼ �1;ð
b ¼ 1might as well be allowedÞ. Let X : X! H be a con-
tinuous random variable with the distribution function F and let

q1 and q2 be two real functions defined on H such that

E q1 Xð ÞjX P x½ � ¼ E q2 Xð ÞjX P x½ �g xð Þ; x 2 H;

is defined with some real function g. Assume that q1;

q2 2 C1 Hð Þ; g 2 C2 Hð Þ and G are twice continuously differen-
tiable and strictly monotone function on the set H. Finally,
assume that the equation q2g ¼ q1 has no real solution in the

interior of H. Then G is uniquely determined by the functions
q1 ; q2 and g, particularly

G xð Þ ¼
Z x

a

C
g0 uð Þ

g uð Þq2 uð Þ � q1 uð Þ

����
���� exp �s uð Þð Þdu;
where the function s is a solution of the differential equation

s0 ¼ g0q2
gq2�q1

and C is a constant, chosen to make
R
H
dG ¼ 1.

Clearly, Theorem 1 can be stated in terms of two functions
q1 and g by taking q2 xð Þ 	 1, which will reduce the condi-
tion given in Theorem 1 to E q1 Xð Þ j X P x½ � ¼ g xð Þ. Howev-

er, adding an extra function will give a lot more flexibility, as
far as its application is concerned.

Proposition 4. Let X : X! R be a continuous random

variable and let q2 xð Þ ¼ 1� G xð Þ
1�pG xð Þ

h ian o1�b
G xð Þ½ �1�a and

q1 xð Þ ¼ q2 xð Þ 1� pG xð Þ
� ��a

for x 2 R. The pdf of X is 5ð Þ if and
only if the function g defined in Theorem 1 has the form
g xð Þ ¼ 1

2
1þ 1� pG xð Þ

� ��a� 	
; x 2 R:

Proof. Let X have density 5ð Þ, then

1�F xð Þð ÞE q2 Xð ÞjXPx½ � ¼ b 1�pð Þ
p

1�pG xð Þ
� ��a�1
� 	

; x2R;

and

1�F xð Þð ÞE q1 Xð ÞjXPx½ � ¼ b 1�pð Þ
2p

1�pG xð Þ
� ��2a�1
n o

; x2R;

and finally

g xð Þq2 xð Þ�q1 xð Þ¼ 1

2
q2 xð Þ 1� 1�pG xð Þ

� ��a� 	
– 0 for x2R:

Conversely, if g is given as above, then

s0 xð Þ¼ g0 xð Þq2 xð Þ
g xð Þq2 xð Þ�q1 xð Þ¼

�apg xð Þ 1�pG xð Þ
� �� aþ1ð Þ

1� 1�pG xð Þ
� ��a� 	 ; x2R;

and hence

s xð Þ ¼ � ln 1� 1� pG xð Þ
� ��a� 	

; x 2 R:

Now, in view of Theorem 1, X has density function 5ð Þ. h

Corollary 1. Let X : X! R be a continuous random variable
and let q2 xð Þbe as in Proposition 4. The pdf of X is 5ð Þif and only
if there exist functions q1 and g defined in Theorem 1 satisfying

the differential equation

g0 xð Þq2 xð Þ
g xð Þq2 xð Þ � q1 xð Þ ¼

�apg xð Þ 1� pG xð Þ
� �� aþ1ð Þ

1� 1� pG xð Þ
� ��a� 	 ; x 2 R:

Remark 1. að Þ The general solution of the differential equation
in Corollary 1 is

g xð Þ ¼ 1� 1� pG xð Þ
� ��a� 	�1Z

apg xð Þ 1� pG xð Þ
� �� aþ1ð Þ

q2 xð Þ½ ��1q1 xð ÞdxþD

� �
;

where D is a constant. One set of appropriate functions is given

in Proposition 4 with D ¼ 1
2
.



554 M. Alizadeh et al.
bð Þ Clearly there are other triplets of functions q2; q1; gð Þ
satisfying the conditions of Theorem 1. We presented one such
triplet in Proposition 4.
4.2. Characterizations based on single function of the random

variable

In this subsection we employ a single function w of X and state
characterization results in terms of w Xð Þ. The following propo-
sition has already appeared in [31] Theorem 2.1.3, so we will
just state it here for the sake of completeness.

Theorem 2. 1� F xð Þ ¼ cw xð Þ þ d½ �e if and only if

E w Xð ÞjX P x½ � ¼ 1

eþ 1
ew xð Þ � d

c

� �
; x 2 d; 1ð Þ;

where c – 0; d; e > 0 are finite constants.

Remark 2. Taking, e.g., c ¼ �1, d ¼ 1, e ¼ b, w xð Þ ¼
G xð Þ

1�pG xð Þ

h ia
and d; 1ð Þ ¼ R, Theorem 2 provides a characteriza-

tion of the cdf 4ð Þ.
5. Estimation

Here, we determine the maximum likelihood estimates (MLEs)

of the model parameters of the new family from complete sam-
ples only. Let x1; . . . ; xn be observed values from the KwMO-
G distribution with parameters a; b; p and n. Let

H ¼ ða; b; p; nÞ> be the ðr� 1Þ parameter vector. The total
log-likelihood function for H is given by

‘n ¼ ‘nðHÞ ¼ n log abð1� pÞ½ � þ
Xn
i¼1

log gðxi; nÞ½ �

þ ða� 1Þ
Xn
i¼1

log Gðxi; nÞ½ �

� ðaþ 1Þ
Xn
i¼1

log 1� pGðxi; nÞ
� �

þ ðb� 1Þ
Xn
i¼1

log 1� Gðxi; nÞ
1� pGðxi; nÞ

� �a� �
: ð31Þ

The log-likelihood function can be maximized either directly by
using the R (AdequecyModel), SAS (PROCNLMIXED) or the

Ox program (sub-routine MaxBFGS) [32] or by solving the
nonlinear likelihood equations obtained by differentiating (31).

The score function UnðHÞ ¼ @‘n=@a; @‘n=@b; @‘n=@p;ð
@‘n=@nÞ> has components given by

@‘n
@a
¼n
a
þ
Xn
i¼1

log
Gðxi;nÞ

1�pGðxi;nÞ

� �
þð1�bÞ

Xn
i¼1

Gðxi ;nÞ
1�pGðxi ;nÞ

h ia
log Gðxi ;nÞ

1�pGðxi ;nÞ

h i
1� Gðxi ;nÞ

1�pGðxi ;nÞ

h ia ;

@‘n
@b
¼n
b
þ
Xn
i¼1

log 1� Gðxi;nÞ
1�pGðxi;nÞ

� �a� �
;

@‘n
@p
¼ �n
1�p

þðaþ1Þ
Xn
i¼1

Gðxi;nÞ
1�pGðxi;nÞ

;

@‘n
@n
¼
Xn
i¼1

gðnÞðxi;nÞ
gðxi;nÞ

þða�1Þ
Xn
i¼1

GðnÞðxi;nÞ
Gðxi;nÞ

þpðaþ1Þ
Xn
i¼1

GðnÞðxi;nÞ
1�pGðxi;nÞ

það1�pÞ
Xn
i¼1

GðnÞðxi;nÞGðxi;nÞa�1

1�pGðxi;nÞ
� �

1�pGðxi;nÞ
� �a�Gðxi;nÞa
� 	 ;
where hðnÞð�Þmeans the derivative of the function h with respect
to n. The observed information matrix can be obtained from
the authors under request.

6. Applications

In this section, we provide two applications to real data to

illustrate the importance of the KwMO-W and KwMO-Fr dis-
tributions presented in Section 3. The MLEs of the model
parameters are computed and goodness-of-fit statistics for the-

se models are compared with other competing models. The
first real data set is a subset of data reported by Bekker
et al. [33] which corresponds to the survival times (in years)

of a group of patients given chemotherapy treatment alone.
The data consisting of survival times (in years) for 46 patients
are: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282,

0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507, 0.529, 0.534,
0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271,
1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416,
2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033.

The second real data set was originally reported by Badar
and Priest [34], which represents the strength measured in
GPa for single carbon fibers and impregnated at gauge lengths

of 1, 10, 20 and 50 mm. Impregnated tows of 100 fibers were
tested at gauge lengths of 20, 50, 150 and 300 mm. Here, we
consider the data set of single fibers of 20 mm in gauge with

a sample of size 63. The data are: 1.901, 2.132, 2.203, 2.228,
2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518,
2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659,
2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977,

2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243,
3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493,
3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971,

4.024, 4.027, 4.225, 4.395, 5.020.
In the first application, we shall compare the KwMO-W

model with other comparative models: the beta-Weibull

(BW) [35], the Kumaraswamy-Weibull (KwW) [36], the expo-
nentiated-Weibull (EW) [37], the Marshall-Olkin extended
Weibull (MOW) [38] and the Weibull (W). In the second appli-

cation, we compare the KwMO-Fr model with other com-
parative models: the beta-Fréchet (BFr) [39], the
exponentiated-Fréchet (EFr) [40], the Marshall-Olkin extend-
ed Fréchet (MOFr) [41] and the Fréchet (Fr). The MLEs are

computed using the Limited-Memory Quasi-Newton Code
for Bound-Constrained Optimization (L-BFGS-B) as well as
the measures of goodness-of-fit including the log-likelihood

function evaluated at the MLEs (‘̂). The measures of good-
ness-of-fit including the Akaike information criterion (AIC),
consistent Akaike information criterion (CAIC), Bayesian

information criterion (BIC), Hannan-Quinn information crite-
rion (HQIC), Anderson–Darling (A�), Cramér–von Mises
(W�) and Kolmogorov–Smirnov (K–S) statistics are computed

to compare the fitted models. The statistics A* and W* are
described in details in Chen and Balakrishnan [42]. In general,
the smaller the values of these statistics, the better the fit to the
data. The required computations are carried out using a script

of the R-language [43].
The numerical values of the AIC, CAIC, BIC, HQIC, A*,

W* and K–S statistics are listed in Tables 2 and 4, whereas

Tables 3 and 5 list the MLEs and their corresponding standard
errors (in parentheses) of the model parameters.



Table 2 The statistics AIC, CAIC, BIC, HQIC, A*, W* and K–S for the survival times of cancer patients data.

Distribution AIC CAIC BIC HQIC A* W* K–S P-value

KwMO-W 119.134 120.672 128.167 122.501 0.217 0.027 0.064 0.988

BW 123.995 124.995 131.222 126.689 0.455 0.066 0.098 0.742

KwW 124.189 125.189 131.416 126.884 0.463 0.068 0.099 0.729

EW 122.087 122.673 127.507 124.108 0.470 0.069 0.100 0.717

MOW 121.716 122.301 127.136 123.736 0.444 0.065 0.087 0.858

W 120.247 120.533 123.861 121.594 0.544 0.081 0.109 0.615

Table 3 MLEs and their standard errors (in parentheses) for survival times of cancer patients data.

Distribution a b p a b k

KwMO-W 0.461 0.167 0.003 – 3.256 0.143

(0.412) (0.046) (0.002) – (0.776) (0.173)

BW 2.045 4.763 – – 0.691 0.350

(3.287) (21.219) – – (0.633) (1.381)

KwW 5.023 21.029 – – 0.302 0.723

(30.532) (144.337) – – (1.288) (3.247)

EW – – – 1.612 0.807 1.124

– – – (1.977) (0.527) (1.117)

MO-W – – 0.428 – 0.328 1.278

– – (0.182) – (0.282) (0.214)

EE – – – – 1.053 0.718

– – – – (0.124) (0.125)
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Fig. 3 Plots of the estimated pdf’s and cdf’s for the KwMO-W, BW, KW, MOW, EW and W models.

Table 4 The statistics AIC, CAIC, BIC, HQIC, A*, W* and K–S for single carbon fibers data.

Distribution AIC CAIC BIC HQIC A* W* K–S P-value

KwMO-Fr 121.867 122.920 132.583 126.082 0.236 0.042 0.067 0.941

BFr 120.594 121.283 129.166 123.965 0.324 0.061 0.079 0.822

EFr 118.700 119.107 125.130 121.229 0.330 0.061 0.081 0.803

MOFr 119.746 120.153 126.175 122.275 0.394 0.074 0.083 0.782

Fr 121.804 122.004 126.091 123.490 0.642 0.115 0.100 0.553
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Table 5 MLEs and their standard errors (in parentheses) for single carbon fibers data.

Distribution a b p a k d

KwMO-Fr 0.053 1.046 0.0203 – 4.066 6.038

(0.084) (0.901) (0.054) – (1.941) (1.612)

BFr 12.547 20.762 – – 1.167 2.937

(91.822) (64.327) – – (1.926) (10.150)

EFr – – – 7.031 2.364 4.295

– – – (8.504) (1.027) (1.611)

MOFr – – 10.343 – 7.906 2.203

– – (12.421) – (1.142) (0.234)

Fr – – – – 5.433 2.721

– – – – (0.508) (0.067)

(c) Estimated pdf’s  (d) Estimated cdf’s
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Fig. 4 Plots of the estimated pdf’s and cdf’s for the KwMO-Fr, BFr, MOFr, EFr and Fr models.
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In Table 2, we compare the fits of the KwMO-W model

with the BW, KW, MOW, EW and W models. We note that
the KwMO-W model gives the lowest values for the AIC,
BIC, CAIC, HQIC, A*, W* and K–S statistics (for the survival

times of cancer patients data) among the fitted models. So,
the KwMO-W model could be chosen as the best model. The
histogram of the data and the estimated densities and cdfs

are displayed in Fig. 3. In Table 4, we compare the fits of the
KwMO-Fr model with the BFr, MOFr, EFr and Fr models.
We note that the KwMO-Fr model gives the lowest values for

the AIC, BIC, CAIC, HQIC, A*, W* and K–S statistics (for
single carbon fibers data) among all fitted models. So, the
KwMO-Fr model can be chosen as the best model. The his-
togram of the data and the estimated pdfs and cdfs for the fitted

models are displayed in Fig. 4. It is very clear from Tables 2 and
4, and Figs. 3 and 4 that the KwMO-W and KwMO-Fr models
provide the best fits to the histogram of these data sets.

7. Concluding remarks

In this paper, we propose the new Kumaraswamy Marshall-

Olkin family of distributions. We study some of its structural
properties including an expansion for the density function
and explicit expressions for the moments, generating function,

mean deviations, quantile function and order statistics. The
maximum likelihood method is employed for estimating the
model parameters. We fit two special models of the proposed
family to real data sets to demonstrate the usefulness of the

new family. These special models provide consistently better
fits than other competing models. We hope that the proposed
family and its generated models will attract wider applications

in several areas such as engineering, survival and lifetime data,
hydrology, economics, among others.
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