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Abstract In this paper, we present the covering rough sets based on neighborhoods by approxima-

tion operations as a new type of extended covering rough set models. In fact, we have introduced

generalizations to W. Zhu approaches (Zhu, 2007). Based on the notion of neighborhood induced

from any binary relation, four different pairs of dual approximation operators are defined with their

properties being discussed. The relationships among these operators are investigated. Finally, an

interesting theorem to generate different topologies is provided. Comparisons between these

topologies are discussed. In addition, several examples and counter examples to indicate counter

connections are investigated.
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Figure 1.1 [59]: Schematic diagram of different formulations of

approximation operators.
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1. Introduction

In order to extract useful information hidden in voluminous
data, many methods in addition to classical logic have been

proposed. These include fuzzy set theory [2], rough set theory
[3], computing with words [4–7] and computational theory for
linguistic dynamic systems [8]. Rough set theory, proposed by

Pawlak in the early 1980s [3,9], is a mathematical tool to deal
with uncertainty and incomplete information. Since then we
have witnessed a systematic, world-wide growth of interest in
rough set theory [10–26] and its applications [27–34].

Nowadays, it turns out that this approach is of fundamen-
tal importance to artificial intelligence and cognitive sciences,
especially in the areas of data mining, machine learning, deci-

sion analysis, knowledge management, expert systems, and
pattern recognition. Rough set theory bears on the assumption
that some elements of a universe may be indiscernible in view

of the available information about the elements. Thus, the
indiscernibility relation is the starting point of rough set the-
ory. Such a relation was first described by equivalence relation

in the way that two elements are related by the relation if and
only if they are indiscernible from each other. In this frame-
work, a rough set is a formal approximation of a subset of
the universe in terms of a pair of unions of equivalence classes

which give the lower and upper approximations of the subset.
However, the requirement of equivalence relation as the indis-
cernibility relation is too restrictive for many applications. In

other words, many practical data sets cannot be handled well
by classical rough sets. In light of this, equivalence relation
has been generalized to characteristic relation [35–37] similar-

ity relation [38], tolerance relation [39–42], and even arbitrary
binary relation [43–49] in some extensions of the classical
rough sets. Another approach is the relaxation of the partition

arising from equivalence relation to a covering. The covering
of a universe is used to construct the lower and upper approx-
imations of any subset of the universe [11,15,19,25,50]. In the
literature, several different types of covering-based rough sets

have been proposed and investigated; see, for example,
[1,23,26,51–54] and the bibliographies therein. It is well-known
that coverings are a fundamental concept in topological spaces

and play an important role in the study of topological proper-
ties. This motivates the research of covering rough sets from
the topology point of view. Some initial attempts have already

been made along the way. For example, Zhu and Wang exam-
ined the topological properties of the lower and upper approx-
imation operations for covering generalized rough sets in
[34,55]. Wu et al. combined the notion of topological spaces

into rough sets and then discussed the properties of topological
rough spaces [56]. In [1], neighborhoods, another elementary
concept in topology, have been used to define an upper

approximation; some properties of approximation operations
for this type of covering rough sets have been explored as well
[1,24,52,57].

So, we can say that there are two directions (see Fig. 1.1) for
generalizing rough set theory one of them is replacing the
equivalence relation by an arbitrary binary relation such as

Yao [58]; the other direction is replacing the partition arising
from the equivalence relation to cover the universe such as
Zakowski [45], Pomykala [28] and Willim Zhu [1]. But most
of them had failed to achieve all the properties of original rough

set theory and thus they put some conditions and restrictions.
In the present paper, we introduce a framework for gener-
alizing the two directions. In fact, we introduce the generalized

covering approximation space ‘‘Gn � CAS’’ as a generalization
to rough set theory and covering approximation space. More-
over, in our approaches Gn � CAS, four different approxima-

tions that satisfy all properties of original rough set theory
without any conditions or restrictions are constructed.

Most real life situations need some sort of approximation

to fit mathematical models. The beauty of using topology in
approximation is achieved via obtaining approximation for
qualitative concepts (i.e. subsets) without coding or using
assumption. General topology is the appropriated mathemati-

cal model for every collection connected by relations. Rela-
tions were used in the construction of topological structures
in several fields such as, structural analysis [60], general view

of space time [61], biochemistry [62], biology [63], and rough
set theory [3,9]. Recently, some topological concepts such as
subbase, neighborhood and separation axioms have been

applied to study covering-based rough sets. However, the
topological space on covering-based rough sets and the corre-
sponding topological properties on the topological covering-
based rough space are not studied. This paper studies some

of these problems. We introduce new method to generate
different general topologies from any neighborhood space.
The provided method can be considered an easy method to

generate different topologies directly from the binary relation
without using subbase or base. The used technique is useful
in rough context or in covering-based rough sets since the con-

cepts and the properties of generated topologies can be applied
in rough set theory and covering-based rough set theory. We
believe that the using of this method is easier in application

field and it is useful for applying many topological concepts
in future studies. This research not only can form the theoret-
ical basis for further applications of topology on covering-
based rough sets but also lead to the development of the rough

set theory and artificial intelligence.
2. Basic concepts

In this section, we introduce the fundamental concepts which
used through this paper.

Definition 2.1. ‘‘Binary Relation’’ [64]

Let A and B be sets, then a ‘‘binary relation’’R from A to B
(or between A and BÞ is a subset of a Cartesian product A� B,
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namely the set of ordered pairs ða; bÞ 2 R such that a 2 A

and b 2 B.

The binary relation R can be from the set A to itself, and

then we say that R is a binary relation on A. Moreover, if R is a
binary relation from A to B (or from the set to itself) we say
that a 2 A is related to b 2 B if ða; bÞ 2 R, sometimes written

aRb.

Definition 2.2. ‘‘Inverse Relation’’ [64]

Let R be a relation from A to B. Then

R�1 ¼ fðb; aÞjða; bÞ 2 Rg is a relation from B toA and it is
called the inverse of the relation R.

Definition 2.3. [64] A binary relation R on a set A is:

(i) Serial if for every a 2 A; 9b 2 A; aRb.
(ii) Reflexive if for every a 2 A; aRa.
(iii) Symmetric if for every a; b 2 A; if aRb ) bRa.
(iv) Transitive if for every a; b; c 2 A; if aRb and bRc
) aRc.

(v) Equivalence if it is reflexive, symmetric and transitive

relation.

Definition 2.4 [65]. Let U be any set, and R be any binary rela-

tion on U. Then the ‘‘after set’’ (resp.‘‘fore set’’) of the element
x 2 U is the class xR ¼ fy 2 U : xRyg (resp. Rx ¼ fy 2
U : yRxgÞ.

Definition 2.5 [66]. A topological space is the pair ðU; sÞ con-
sisting of a set U and family s of subsets of U satisfying the fol-
lowing conditions:

(T1) ; 2 s and U 2 s.
(T2) s is closed under finite intersection.
(T3) s is closed under arbitrary union.

The pair ðU; sÞ is called ‘‘space’’, the elements of U are
called ‘‘points’’ of the space, the subsets of U that belonging to
s are called ‘‘open’’ sets in the space and the complement of the

subsets of U belonging to s are called ‘‘closed’’ sets in the
space; the family s of open subsets of U is also called a
‘‘topology’’ for U.

Definition 2.6. ‘‘Pawlak Approximation Space’’ [3,9]

Let U be a finite set, the universe of discourse, and R be an

equivalence relation on U, called an indiscernibility relation.
The pair A ¼ ðU;RÞ is called Pawlak approximation space.
The relation R will generate a partition U=R ¼ f½x�R : x 2 Ug
on U, where ½x�R is the equivalence class with respect to R

containing x.

For any X#U the upper approximation AprðXÞ and the

lower approximation AprðXÞ of a subset X are defined
respectively as follows [3,9]:

AprðXÞ ¼ \fY#U=R : Y \ X – ;g and
AprðXÞ ¼ [fY#U=R : Y#Xg.

Let ; be the empty set, Xc is the complement of X in U, we
have the following properties of the Pawlak’s rough sets [3,9]:
(L1) AprðXÞ ¼ ½AprðXcÞ�c. (U1) AprðXÞ ¼ ½AprðXcÞ�c.
(L2) AprðUÞ ¼ U. (U2) AprðUÞ ¼ U.

(L3) AprðX \ YÞ ¼
AprðXÞ \ AprðYÞ.

(U3) AprðX [ YÞ ¼
AprðXÞ [ AprðYÞ.

(L4) AprðX [ YÞ �
AprðXÞ [ AprðYÞ.

(U4) AprðX \ YÞ#
AprðXÞ \ AprðYÞ.

(L5) If X#Y, then

AprðXÞ#AprðYÞ.
(U5) If X#Y, then

AprðXÞ#AprðYÞ.
(L6) Aprð;Þ ¼ ;. (U6) Aprð;Þ ¼ ;.
(L7) AprðXÞ#X. (U7) X#AprðXÞ.
(L8) AprðAprðXÞÞ ¼ AprðXÞ. (U8) AprðAprðXÞÞ ¼ AprðXÞ.
(L9) AprðAprðXÞÞ ¼ AprðXÞ. (U9) AprðAprðXÞÞ ¼ AprðXÞ.
Definition 2.7. ‘‘Covering’’ [1]

Let U be a domain of discourse, C ¼ fCkjk 2 Kg a family of
subsets of U. If none subsets in C is empty, and [k2KCk ¼ U,
then C is called a covering of U. The pair hU; Ci is called a

‘‘covering approximation space’’ if C is a covering of U.

It follows from the above definition that any partition of U

is certainly a covering of U. For convenience, the members of a
general covering (not necessarily a partition) are also called
elementary sets, and any union of elementary sets is called a

definable set. In the literature, there are several kinds of rough
sets induced by a covering [1,11,15,19,23,25,26,50,53].

For our purpose, we only recall the covering rough sets
based on the following concept of neighborhoods [1].

Definition 2.8 [1]. Let hU; Ci be a ‘‘covering approximation

space’’. For any x 2 U, we define the neighborhood of xas fol-

lows: NðxÞ ¼ \fK 2 Cjx 2 Kg.

Definition 2.9 [1]. Let hU; Ci be a covering approximation
space. For any X 2 U, the lower approximation of X is defined

as: X� ¼ [fKjK 2 C and K#Xg

And the upper approximation of X is defined as:

X� ¼ X� [ fNðxÞjx 2 X� X�g.

Remark 2.1. It is clear that, we can give another representa-
tion of the upper approximation as follows:

X� ¼ [fNðxÞjx 2 Xg:
The above representation was proved in [1].

The following proposition introduces the fundamental
properties of the above approximations that were proved in [1].

Proposition 2.1 [1]. Let hU; Cia be a covering approximation
space. Then for any X;Y#U, the lower (resp. the upper)

approximation of X have the following properties:

(i) U � ¼ U .

(ii) ðX �Þ� ¼ X �.
(iii) ;� ¼ ;� ¼ ;.
(iv) ðX �Þ� ¼ X �.
(v) X � # X # X �.
(vi) X # Y ) X �# Y �.
(vii) ðX [ Y Þ� ¼ X � [ Y �.
(viii) X # Y ) X �# Y �.
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Remark 2.2. The following properties do not hold generally:

(i) ðX \ Y Þ� ¼ X � \ Y �.
(ii) ð�ðX �ÞÞ� ¼ �ðX �Þ.
(iii) ð�X Þ� ¼ �ðX Þ

�
.

(iv) ð�X Þ� ¼ �ðX �Þ.
(v) ð�ðX �ÞÞ ¼ �ðX Þ�.

The following example illustrates this remark.

Example 2.1. Let hU; Ci be a covering approximation space

where U ¼ fa; b; c; dg and

K1 ¼ fa; bg;K2 ¼ fa; b; cg;K3 ¼ fc; dg such that C ¼ fK1;
K2;K3g.

Now consider X ¼ fa; b; cg and Y ¼ fc; dg. Thus we get

X \ Y ¼ fcg; so ðX \ YÞ� ¼ ;. But X� ¼ X and Y� ¼ Y, so

X� \ Y� – ;.

Also ð�XÞ� ¼ ðfdgÞ� ¼ fc; dg – X�.

By similar way we have: �ðXÞ� ¼ fdg; so ð�X�Þ� ¼ ;
this implies ð�X�Þ� – � ðXÞ�.
3. Generalized covering approximation space

In this section, we introduce the new generalized covering
approximation space ‘‘Gn� covering approximation space’’
Gn � CAS as a generalization for covering approximation

space by using binary relation. Moreover, we give some new
notions of neighborhoods. In addition, four different pairs of
dual approximation operators are investigated and their prop-

erties being discussed. Comparisons between our approaches
and some of others approaches are discussed. Many examples
and counter examples are provided.

Definition 3.1. Let U – ; be a finite set and R be a binary

relation on U. Then, we can define two different coverings for
U induced from the binary relation R as follows:

ðiÞ Right Covering (briefly, r-cover): Cr ¼ fxR : 8x 2 U
and U ¼ [x2UxRg.

ðiiÞ Left Covering (briefly, l-cover): Cl ¼ fRx : 8x 2 U
and U ¼ [x2URxg.

Definition 3.2. Let U – ; be a finite set, R be a binary relation

on U and Cn be n-cover of U associated to R, where n 2 fr; lg .
Then the triple hU;R; Cni is called ‘‘Gn� Covering approxima-
tion space’’ (briefly, Gn � CASÞ.

Lemma 3.1. Let U be any set and R (resp.R�1Þ is a serial rela-
tion on U. Then we get:U ¼ [x2URx (resp. U ¼ [x2UxRÞ.

Proof. Let R be a serial relation on U, then
for every x 2 U; 9y 2 U; xRy. Thus for each x 2 U; 9y 2 U;
such that y 2 xR and this implies U ¼ [x2URx.

By similar way, we can show that if R�1 is a serial relation

on U, then U ¼ [x2UxR. h
From the above lemma, we can notice that: IfR (resp.R�1Þ
is a serial relation on U, then Rx (resp. xRÞ represents a left
covering (resp. right covering) of U.

Remark 3.1. IfR is a serial relation on U, then xR need not be
right covering of U as the following example illustrates.

Example 3.1. Let U ¼ fa; b; c; dg andR be serial relation on U
where,

R ¼ fða; aÞ; ðb; aÞ; ðb; cÞ; ðc; cÞ; ðd; aÞg. Thus we get

aR ¼ fag; bR ¼ fa; cg; cR ¼ fcg and dR ¼ fag. Also,
Ra ¼ fa; b; dg;Rb ¼ ;;Rc ¼ fb; cg and Rd ¼ ;. It is clear

that: U – [x2UxR, but U ¼ [x2URx.

The following definition is very interesting since it intro-

duces different types of neighborhoods (generated from any
binary relation) which represent the basic notions in our
approaches.

Definition 3.3. Suppose that the triple hU;R; Cni is Gn � CAS.

For every element x 2 U, we can define four different
neighborhoods NjðxÞ, as follows: For each j 2 fr; l; i; ug

ðiÞ r-neighborhood: NrðxÞ ¼ \fK 2 Crjx 2 Kg.

ðiiÞ l-neighborhood: NlðxÞ ¼ \fK 2 Cljx 2 Kg.

ðiiiÞ i-neighborhood: NiðxÞ ¼ NrðxÞ \NlðxÞ.

ðivÞ u-neighborhood: NuðxÞ ¼ NrðxÞ [NlðxÞ.

Remark 3.2. In the Gn � CAS, hU;R; Cni, if R is an equiva-
lence relation on U, thus both of the right and left cover of

U have become a partition on U and thus they are equivalent
to equivalence classes of the relation R. In addition, all j-
neighborhoods of x;NjðxÞ for every j 2 fr; l; i; ug, are identical
to equivalence classes of x, that is: NjðxÞ ¼ ½x�R; 8j 2 fr; l; i; ug.
Accordingly, in this case, Gn � CAS; hU;R; Cni has become
Pawlak approximation space. Thus we can say that Pawlak

approach represents a special case of our approaches. Hence
Gn � CAS represents a generalization to Pawlak approxima-
tion space.

Lemma 3.2. Let the triple hU;R; Cni be Gn � CAS. Thus, for

each j 2 fr; l; i; ug:ðiÞNjðxÞ– ;; 8x 2 U:ðiiÞx 2 NjðxÞ; 8x 2 U:

Proof. From Definitions 3.1 and 3.3,
8x 2 U; there exists at least y 2 U such that x 2 yR and
x 2 Ry. Thus NjðxÞ– ;; 8x 2 U. Similarly, x 2 NjðxÞ;
8x 2 U. h

Lemma 3.3. Let the triple hU;R; Cni be Gn � CAS. Thus, for
each j 2 fr; l; i; ug if x 2 NjðyÞ, then NjðxÞ#NjðyÞ.

Proof. ðiÞ If x 2 NrðyÞ; then NrðxÞ#NrðyÞ :

Firstly, from Definitions 3.1 and 3.3, if x 2 NrðyÞ then x

belongs to every after set that contains y.

Now, let z 2 NrðxÞ, then z belongs to every after set that

contains x which means that z belongs to every after set that
contains y. Thus z 2 NrðyÞ and then NrðxÞ#NrðyÞ.
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ðiiÞ If x 2 NlðyÞ; then NlðxÞ#NlðyÞ: By similar way as

inðiÞ.

ðiiiÞ If x 2 NiðyÞ; then NiðxÞ#NiðyÞ :

Firstly, if x 2 NiðyÞ, then x 2 NrðyÞ and x 2 NlðyÞ. Thus by
using ðiÞ and ðiiÞ, we get

NrðxÞ#NrðyÞ and NlðxÞ#NlðyÞ which implies
NiðxÞ#NiðyÞ.

ðivÞ If x 2 NuðyÞ; then NuðxÞ#NuðyÞ: By similar way as in
ðiiiÞ. h

Lemma 3.4. Let the triple hU;R; Cni be Gn � CAS. Thus, for
each j 2 fr; l; u; ig : NjðxÞ represent different coverings of
U; 8x 2 U.

Proof. From Lemma 3.3,x 2 NjðxÞ; 8x 2 U. Then

U ¼ [x2UNjðxÞ; 8j 2 fr; l; u; ig and hence NjðxÞ represent
coverings of U; 8x 2 U. h

The following proposition introduces the relationships
between different types of the j-neighborhoods.

Proposition 3.1. Let the triple hU;R; Cni be Gn � CAS. Then,

for each x 2 U:

(i) NiðxÞ# N rðxÞ# N uðxÞ.
(ii) NiðxÞ# N lðxÞ# NuðxÞ.

Proof. From Definition 3.3, the proof is obvious. h

The following definition is very interesting since it intro-
duces new approximation operators as a generalization to
Pawlak approximations.

Definition 3.4. Suppose the triple hU;R; Cni be Gn � CAS. For
each j 2 fr; l; i; ug and A#U, the j-lower and the j-upper
approximations of A are defined respectively as follows:

RjðAÞ ¼ fx 2 AjNjðxÞ#Ag and

RjðAÞ ¼ fx 2 UjNjðxÞ \ A – ;g.

Definition 3.5. Suppose the triple hU;R; Cni be Gn � CAS and
A#U. Thus, for each j 2 fr; l; i; ug, the subset A is called
‘‘j-exact’’ set if RjðAÞ ¼ RjðAÞ ¼ A. Otherwise, A is called

‘‘j-rough set’’.

Definition 3.6. Suppose the triple hU;R; Cni be Gn � CAS. For

each j 2 fr; l; i; ug and A#U, the j-boundary, j-positive and
j-negative regions of A are defined respectively as follows:

BjðAÞ ¼ RjðAÞ � RjðAÞ

POSjðAÞ ¼ RjðAÞ and

NEGjðAÞ ¼ U�RjðAÞ

Definition 3.7. Suppose the triple hU;R; Cni be Gn � CAS. For
each j 2 fr; l; i; ug and A#U, the j-accuracy of the approxima-
tions of A is defined as follows:
djðAÞ ¼ jRjðAÞj
jRjðAÞj

where jRjðAÞj – 0 and jAj denotes the

cardinality of A.

Remarks 3.3 From the above definitions, we notice that:

(i) Obviously, 0 6 djðAÞ 6 1, for every A # U .
(ii) A is j-exact set if djðAÞ ¼ 1 and BjðAÞ ¼ ;. Otherwise, it

is j-rough set.

The following proposition introduces the fundamental
properties of j-approximations.

Proposition 3.2. Let the triple hU;R; Cni be Gn � CAS and
A;B#U. Then

(1) RjðAÞ# A #RjðAÞ.
(2) RjðUÞ ¼ RjðUÞ ¼ U .
(3) Rjð;Þ ¼ Rjð;Þ ¼ ;:
(4) If A # B then RjðAÞ#RjðBÞ; RjðAÞ#RjðBÞ.
(5) RjðAÞ ¼ ½RjðAcÞ�c; where Ac is the complement of A.
(6) RjðAÞ ¼ ½RjðAcÞ�c; where Ac is the complement of A.
(7) RjðRjðAÞÞ ¼ RjðAÞ and RjðRjðAÞÞ ¼ RjðAÞ.
(8) RjðA \ BÞ ¼ RjðAÞ \ RjðBÞ and RjðA [ BÞ ¼
RjðAÞ [ RjðBÞ.

(9) RjðAÞ[RjðBÞ#RjðA[BÞ and RjðA\BÞ#RjðAÞ\RjðBÞ.

Proof. First, from Definition 3.4, the proof of ð1Þ; ð2Þ and ð3Þ
is obvious.

(4) Let A # B; x 2 RjðAÞ. Then x 2 A and N jðxÞ# A, which
means that x 2 B and N jðxÞ# B. Thus, x 2 RjðBÞ and
this implies RjðAÞ#RjðBÞ. By the same way,

RjðAÞ#RjðBÞ.
(5) ½RjðAcÞ�c ¼ ½fx 2 U jNjðxÞ \ Ac ¼ ;g�c ¼ fx 2 U jN jðxÞ\

Ac ¼ ;g ¼ fx 2 AjNjðxÞ# Ag ¼ RjðAÞ.
(6) By similar way ; as in ð5Þ.
(7) First, it is clear that RjðRjðAÞÞ#RjðAÞ. Now, let

x 2 RjðAÞ. Then x 2 A and NjðxÞ# A. We must prove
that x 2 RjðAÞ and N jðxÞ#RjðAÞ as follows: Let

z 2 N jðxÞ, then N jðzÞ# NjðxÞ, (By Lemma 3.3), which
implies N jðzÞ# A. Thus z 2 RjðAÞ and this means that
NjðxÞ#RjðAÞ. Hence, RjðAÞ#RjðRjðAÞÞ and then

RjðRjðAÞÞ ¼ RjðAÞ.
(8) By similar way; as in ð7Þ.
(9) Let x 2 ðRjðAÞ \ RjðBÞÞ, then x 2 RjðAÞ and x 2 RjðBÞ.

Thus x 2 A;NjðxÞ# A and x 2 B; N jðxÞ# B which

means that x 2 A \ B, NjðxÞ# ðA \ BÞ. Then x 2
RjðA \ BÞ and this implies RjðAÞ \ RjðBÞ#RjðA \ BÞ.
Now, let x 2 RjðA \ BÞ, then x 2 ðA \ BÞ and N jðxÞ#
ðA \ BÞ. Thus x 2 A;N jðxÞ# A and x 2 B;N jðxÞ# B
which implies x 2 RjðAÞ and x 2 RjðBÞ. Then,
x 2 RjðAÞ \ RjðBÞ and thus, RjðA \ BÞ#RjðAÞ\
RjðBÞ. Hence, RjðA \ BÞ ¼ RjðAÞ \ RjðBÞ. Similarly,
RjðA [ BÞ ¼ RjðAÞ [ RjðBÞ.

(10) Since A # A [ B and B # A [ B. Then RjðAÞ#RjðA [ BÞ
and RjðBÞ#RjðA [ BÞ and thus RjðAÞ [ RjðBÞ#
RjðA [ BÞ. Similarly, RjðA \ BÞ#RjðAÞ \ RjðBÞ. h

In the above proposition, the converse of the property (10)
is not true in general as the following example illustrates.



Table 3.1 Comparison between our approaches and some of the others approaches. A sign ð�Þ indicates that property is satisfied.

Property

of Pawlak [3,9]

Yao [58] and others [67–71,75–77,79] Covering

[1,57,59,72–74]

Gn � CAS

(L1) * *

(L2) * * *

(L3) * *

(L4) * * *

(L5) * * *

(L6) * *

(L7) * *

(L8) *

(L9) *

(U1) * * *

(U2) * *

(U3) * *

(U4) * * *

(U5) * * *

(U6) * *

(U7) * *

(U8) *

(U9) *
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Example 3.3. Let the triple hU;R; Cni be Gn � CAS, where
U ¼ fa; b; c; d; eg and R ¼ fða; aÞ; ða; dÞ; ðb; aÞ; ðb; cÞ; ðc; cÞ;
ðd; eÞ; ðe; bÞ; ðe; dÞg. Then we get NrðaÞ ¼ fag;NrðbÞ ¼ fb; dg;
NrðcÞ ¼ fcg;NrðdÞ ¼ fdg and NrðeÞ ¼ feg. We will give the

j-approximations in the case of j ¼ r and the other cases
similarly:

Now, let X ¼ fa; b; cg and Y ¼ fc; dg. Then
X [ Y ¼ fa; b; c; dg;X \ Y ¼ fcg and thus RrðXÞ ¼ fa; cg;
RrðYÞ ¼ fc; dg; RrðX [ YÞ ¼ fa; b; c; dg; RrðXÞ ¼ fa; b; cg;
RrðYÞ ¼ fb; c; dg and RrðX \ YÞ ¼ fcg. Clearly, RrðX [ YÞ
–RrðXÞ [ RrðYÞ and RrðX \ YÞ –RrðXÞ \ RrðXÞ.

Remark 3.3. Proposition 3.2 is very interesting because it illus-
trates that our approaches Gn � CAS represent the actual gen-

eralizations for Pawlak approximation space, specifically for
covering-based models. Moreover, it can be considered as a
one of differences between our approaches and the others gen-

eralizations such as (see: [1,57,59,67–79]). Although many
authors have introduced many sorts to generalize Pawlak
approximation space, but most of them had failed to achieve
all properties of the original rough set theory. In our

approaches most of these properties which has never been real-
ized, is achieved. So, we can say that our approaches represent
the actual generalization of Pawlak approximation space [3,9]

and the other generalizations in [1,57,59,67–79].

Table 3.1 shows a comparison between our approaches and

some of others generalizations.
The following example illustrates the comparison between

our approaches and Yao’s method [58].

Example 3.3. Let the triple hU;R; Cni be Gn � CAS, where
U ¼ fa; b; c; dg and

R¼fða;aÞ;ða;bÞ;ðb;cÞ;ðb;dÞ;ðc;aÞ;ðd;aÞg. Then we can get:

aR ¼ fa; bg; bR ¼ fc; dg; cR ¼ fag and dR ¼ fag: Also,

Ra ¼ fa; c; dg;Rb ¼ fag,
Rc ¼ fbg and Rd ¼ fbg and this implies NrðaÞ ¼ fag;
NrðbÞ ¼ fa; bg; NrðcÞ ¼ fc; dg; NrðdÞ ¼ fc; dg; NlðaÞ ¼ fag;
NlðbÞ ¼ fbg;NlðcÞ ¼ fa; c; dg;NlðdÞ ¼ fa; c; dg,

NuðaÞ¼fag;NuðbÞ¼fa;bg;NuðcÞ¼fa;c;dg;NuðdÞ¼fa;c;dg
and

NiðaÞ ¼ fag;NiðbÞ ¼ fbg;NiðcÞ ¼ fc; dg;NiðdÞ ¼ fc; dg:

Yao [58] defines the approximations of any subset X#U as
follows:

aprðXÞ ¼ fx 2 U : xR#Xg and aprðXÞ
¼ fx 2 U : xR\ X – ;g:

The following table shows the differences between Yao
approach and our approaches ‘‘Gn � CAS’’:

From Table 3.2, we can notice that:
ðiÞ apr ðXÞ� X � aprðXÞ, for example the subsets fc; dg

and fb; c; dg but in our approaches RjðXÞ#X#RjðXÞ for

any X#U.
ðiiÞ In Yao’s approach, all subsets in U are rough (except

UÞ, but in our approaches Gn � CAS, there are many subsets
are j-exacts such as the shaded sets in above table. Moreover,
the boundary region was reduced and became smaller than

Yao approach. Hence, we can say that our approaches are
more accurate than Yao approach.

4. The relationships between different types of the Gn � CAS

The present section is devoted to introduce comparisons
between different types of the Gn � CAS. In addition, the best

approach is provided with best accuracy.
The following results, introduce the relationships

between the j-approximations, j-accuracy and j-boundary

respectively.

Proposition 4.1.

Let the triple hU;R; Cni be Gn � CAS and A#U. Then



Table 3.2 Comparisons between of Yao approach and our approaches.

On generalizing covering approximation space 541
(i) RuðAÞ#RrðAÞ#RiðAÞ.
(ii) RuðAÞ#RlðAÞ#RiðAÞ.
(iii) RiðAÞ#RrðAÞ#RuðAÞ.
(iv) RiðAÞ#RlðAÞ#RuðAÞ.

Proof. ðiÞ Let x 2 RuðAÞ, then x 2 A and NuðxÞ#A. Thus
x 2 A and NrðxÞ#A and this implies

x 2 RrðAÞ. Hence, RuðAÞ#RrðAÞ: Also, if x 2 RrðAÞ then
x 2 A and NrðxÞ#A which means that x 2 A and NiðxÞ#A.

Hence, x 2 RiðAÞ and then RrðAÞ#RiðAÞ.

ðiiÞ By similar way as in ðiÞ.

ðiiiÞ & ðivÞ By the duality of approximations. h

The converse of the above results is not true in general as
the following example illustrates.

Example 4.1. Let the triple hU;R; Cni be Gn � CAS, where

U ¼ fa; b; c; dg and

R ¼ fða; dÞ; ðb; bÞ; ðb; cÞ; ðc; bÞ; ðd; aÞ; ðd; cÞg. Then we can

get:
NrðaÞ¼fa;cg;NrðbÞ¼fbg;NrðcÞ¼fcg;NrðdÞ¼fdg;NlðaÞ¼
fag;NlðbÞ¼fbg;NlðcÞ¼fb;cg;NlðdÞ¼fdg;NuðaÞ¼fa;cg;NuðbÞ
¼fbg;NuðcÞ¼fb;cg;NuðdÞ¼fdg and NiðaÞ¼fag;NiðbÞ¼fbg;
NiðcÞ¼fcg;NiðdÞ¼fdg. Now, let A¼fc;dg. Then we get

RuðAÞ¼fdg;butRrðAÞ¼fc;dg: Also, if B¼fa;dg then
RrðBÞ¼fdg;butRiðBÞ¼fa;dg. Similarly, if D¼fag then
RuðDÞ¼;;butRlðDÞ¼fag.

Also, RlðAÞ ¼ fb; c; dg and RuðAÞ ¼ fb; c; dg, but
RiðAÞ ¼ fc; dg.

Similarly, RiðBÞ ¼ fa; dg but RrðBÞ ¼ fa; c; dg and
RuðBÞ ¼ fa; c; dg.

Corollary 4.1. Let the triple hU;R; Cni be Gn � CAS and A#U .
ThenðiÞ BiðAÞ#BrðAÞ#BuðAÞ.ðiiÞ BiðAÞ#BlðAÞ#BuðAÞ.

Proof. By using Proposition 4.1, the proof is obvious. h

Corollary 4.2. Let the triple hU;R; Cni be Gn � CAS and A#U.

ThenðiÞ duðAÞ 6 drðAÞ 6 diðAÞ.ðiiÞ duðAÞ 6 dlðAÞ 6 diðAÞ.

Proof. By using Propositions 4.1 and 4.2, the proof is obvious.
h
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The converse of the above results is not true in general as
shown in Example 4.1.

Proposition 4.2. Let the triple hU;R; Cni be Gn � CAS and

A#U. Then the following statements are true in general:

(i) A is u-exact ) A is r-exact ) A is i-exact.
(ii) A is u-exact ) A is l-exact ) A is i-exact.
Proof. ðiÞ Let A is u-exact, then BuðAÞ ¼ ;. By using Corollary

4.1, we get BrðAÞ ¼ ; and this implies A is r-exact. Also
BiðAÞ ¼ ;, which means that A is i-exact.

ðiiÞ By similar way, as in ðiÞ. h

The converse of the above proposition is not true in
general, as the following example illustrates.

Example 4.2. In Example 4.1, the subset fag is i-exact but it is
r-rough, l-rough and u-rough.

Remark 4.1. From the above results, we can notice that:

There are four different methods to approximate the sets.
The best of these methods is that given by using j ¼ i in
constructing the approximations of sets, since the boundary

regions in this case are decreased or canceled by increasing the
lower approximation and decreasing the upper approximation,
that is for each A#U;BiðAÞ#BjðAÞ; 8j ¼ r; l; u. Accordingly,

this will play an important role for removing the vagueness
(uncertainty) of rough sets. Moreover, this method is
more accurate than others types, since for any subset

A#U; djðAÞ 6 diðAÞ and 8j ¼ r; l; u. Thus, this approach will
help to extract and discovery the hidden information in data
that were collected from real-life applications and hence it is
very useful in decision making.
5. Topologies induced from neighborhoods

Recently, the general topology has become an appropriate
frame for every collection connected by relations. It should

be noted that generating of topology by relations and the
representation of topological concepts via relations will nar-
row the gap between topologists and those who are inter-
ested in applications of topology in their fields. In the

present section, we introduce new method to generate differ-
ent topologies by using the notion of neighborhood. By
using this technique, we generate different topologies from

binary relation and then we generate different four topolo-
gies from Gn � CAS. The relationships between these topol-
ogies are discussed. Many examples and counter examples

to indicate the connections between these topologies are
provided.

The following theorem is very interesting since it gives new

method to generate general topology using the concept of
neighborhood. Moreover, the used technique does not depend
on the form of neighborhood. This technique opens the way
for more topological applications on covering-based rough

models.
Theorem 5.1. Suppose that U – ; be any finite set, if for each

p 2 U, there exists a neighborhood NðpÞ such that NðpÞ#U.
Then the collection

s ¼ fA#Uj8p 2 A;NðpÞ#Ag is a topology on U:

Proof. (T1) Clearly, U and ; belong to s.

(T2) Let fAk jk 2 Kg be a family of elements in s and let
p 2 [k2K Ak . Then there exists k0 2 K such that p 2 Ak0 .

Thus NðpÞ# Ak0 and this implies NðpÞ#[k2K Ak . Hence

[k2KAk 2 s.
(T3) Let A1;A2 2 s and p 2 A1 \ A2. Then p 2 A1 and p 2 A2

which implies NðpÞ# A1 and NðpÞ# A2. Thus

NðpÞ# A1 \ A2 and then A1 \ A2 2 sj. Accordingly s is

a topology on U . h

By using the above theorem, we can generate four different
topologies from Gn � CAS as the following corollary
illustrates.

Corollary 5.1. Let the triple hU;R; Cni be Gn � CAS. Then the

topologies associated with Gn � CAS are given by the following
families:sj ¼ fA#Uj8p 2 A;NjðpÞ#Ag, for eachj 2 fr; l; u; ig.

The following example is given to generate general topol-
ogy from covering approximation space as follows.

Example 5.1. Let hU; Ci be a covering approximation space,

where U ¼ fa; b; c; dg and C ¼ ffag; fa; bg; fb; cg; fdgg. Then
the neighborhoods of the elements of U are given, (by using
Definition 2.8 [1]), as follows: NðaÞ ¼ fag;NðbÞ ¼ fbg;
NðcÞ ¼ fb; cg and NðdÞ ¼ fdg. By using Proposition 5.1, the
associated topology of hU; Ci is given by the class:

s ¼ fU; ;; fag; fbg; fdg; fa; bg; fa; dg; fb; cg; fb; dg; fa; b; cg;
fa; b; dg; fb; c; dgg:

The following example is given to generate different topol-

ogies from the Gn � CAS as follows.

Example 5.2. Let the triple hU;R; Cni be Gn � CAS, where
U ¼ fa; b; c; dg and

R ¼ fða; aÞ; ða; bÞ; ðb; cÞ; ðb; dÞ; ðc; aÞ; ðd; aÞg. Then we can
get:

NrðaÞ ¼ fag;NrðbÞ ¼ fa; bg;NrðcÞ ¼ fc; dg;NrðdÞ ¼ fc; dg;

NlðaÞ ¼ fag;NlðbÞ ¼ fbg;NlðcÞ ¼ fa; c;dg;NlðdÞ ¼ fa; c; dg;

NuðaÞ¼fag;NuðbÞ¼fa;bg;NuðcÞ¼fa;c;dg;NuðdÞ¼fa;c;dg
and

NiðaÞ ¼ fag;NiðbÞ ¼ fbg;NiðcÞ ¼ fc; dg;NiðdÞ ¼ fc; dg:

Then, the topologies associated with hU;R; Cji are given by

the classes:

sr ¼ fU; ;; fag; fa; bg; fc; dg; fa; c; dgg; sl ¼ fU; ;; fag; fbg;
fa; bg; fa; c; dgg; su ¼ fU; ;; fag; fa; bg; fa; c; dgg and si ¼
fU; ;; fag; fbg; fa; bg; fc; dg; fa; c; dg; fb; c; dgg.
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Definition 5.1. Let the triple hU;R; Cni be Gn � CAS associated

with topologies sj. Then for each j 2 fr; l; u; ig, the subset
A#U is said to be j-open set if A 2 sj, and the complement
of j-open set is called j-closed set. The family Cj of all j-closed

sets of Gn � CAS is defined by

Cj ¼ fF#UjFc 2 sjg:

Definition 5.2. Let the triple hU;R; Cni be Gn � CAS associated

with topologies sj. Then for each j 2 fr; l; u; ig, we define the
j-interior and the j-closure of any subset A#U in the topolo-
gies sj respectively as follows:

intjðAÞ ¼ [fG 2 sjjG#Ag and

cljðAÞ ¼ \fH 2 CjjA#Hg:

It is clear that, intjðAÞ#A# cljðAÞ for any A#U. In addition,
intjðAÞ(resp. cljðAÞ ) is the largest j-open set contained in A

(resp. the smallest j-closed set contains AÞ.

Proposition 5.1. Let the triple hU;R; Cni be Gn � CAS associ-
ated with topologies sj. Then the j-lower approximation (resp.
the j-upper approximation) represents the j-interior (resp. the

j-closure) ofsj; that is:RjðAÞ ¼ fx 2 AjNjðxÞ#Ag ¼ intjðAÞ
and

RjðAÞ ¼ fx 2 UjNjðxÞ \ A – ;g ¼ cljðAÞ

Proof. We shall prove the first statement and the second by
duality of the approximations:

First, let x 2 RjðAÞ. Then x 2 A;NjðxÞ#A and this implies
A 2 sj such that x 2 A. Thus, from Definition 5.2, A# intjðAÞ
and then x 2 intjðAÞ. Hence RjðAÞ# intjðAÞ.

Conversely, from Definition 5.2, since intjðAÞ is the largest

j-open set contained in A then 8x 2 intjðAÞ;NjðxÞ# intjðAÞ
which means that x 2 A;NjðxÞ#A and then x 2 RjðAÞ. Hence
intjðAÞ#RjðAÞ and accordingly RjðAÞ ¼ intjðAÞ. h

Corollary 5.2. Let the triple hU;R; Cni be Gn � CAS associated

with topologiessj. Then for each j 2 fr; l; u; ig, the subset A#U
is j-open set (resp. j-closed set) if RjðAÞ ¼ A (resp.
RjðAÞ ¼ A).

Remark 5.1. According to the above results, we can introduce

another method to generate different topologies induced from
relation as follows: For each j 2 fr; l; u; ig, the classes

sj ¼ fA#UjRjðAÞ ¼ Ag are topologies on U.

The following propositions introduce the relationships

between the different topologies sj.

Proposition 5.2. Let the triple hU;R; Cni be Gn � CAS associ-
ated with topologies sj. Then:ðiÞ sr # si.ðiiÞ sl # si.

Proof. Let A 2 sr, then 8p 2 A;NrðpÞ#A. Thus,

8p 2 A;NiðpÞ#A which implies A 2 si. Hence sr # si. Simi-
larly, we can prove that sl # si: h
Remark 5.2. Let the triple hU;R; Cni be Gn � CAS associated

with topologies sj. Then the following statements are not nec-
essarily true in general.

ðiÞ sr ¼ si.

ðiiÞ sl ¼ si.

Remark 5.3. Let the triple hU;R; Cni be Gn � CAS associated
with topologies sj. Then sr and sl are not necessarily
comparable.

The following example shows Remarks 5.2 and 5.3.

Example 5.3. Let the triple hU;R; Cni be Gn � CAS, where
U ¼ fa; b; c; dg and

R ¼ fða; dÞ; ðb; bÞ; ðb; cÞ; ðc; bÞ; ðd; aÞ; ðd; cÞg. Then we can
get:

sr ¼ fU; ;; fbg; fcg; fdg; fa; cg; fb; cg; fb; dg; fc; dg; fa; b; cg;
fb; c; dg; fa; c; dgg;

sl ¼ fU;;; fag;fbg;fdg; fa; bg;fa; dg; fb; cg;fb; dg;fa;b; cg;
fa; b;dg; fb; c;dgg, and si ¼ PðUÞ.

Proposition 5.3. Let the triple hU;R; Cni be Gn � CAS

associated with topologies sj. Then:ðiÞ su # sr.ðiiÞ su # sl.
ðiiiÞ su # si.

Proof. Suppose A 2 su, then 8p 2 A;NuðpÞ#A. Thus,
8p 2 A;NrðpÞ#A and NlðpÞ#A which implies A 2 sr and
A 2 sl . Hence su # sr and su # sl.

By using Proposition 5.2, we can get su # si: h

Remark 5.4. Let the triple hU;R; Cni be Gn � CAS associated
with topologies sj. Then the following statements are not true

in general.

ðiÞ su ¼ sr.

ðiiÞ su ¼ sl.

ðiiiÞ su ¼ si.

The following example shows Remark 5.4.

Example 5.4. Let the triple hU;R; Cni be Gn � CAS, where

U ¼ fa; b; c; dg and

R ¼ fða; aÞ; ða; bÞ; ðb; cÞ; ðb; dÞ; ðc; aÞ; ðd; aÞg. Then we can

get:

sr ¼ fU; ;; fag; fa; bg; fc; dg; fa; c; dgg; sl ¼ fU; ;; fag; fbg;
fa; bg; fa; c; dgg;

su ¼ fU; ;; fag; fa; bg; fa; c; dgg and si ¼ fU; ;; fag; fbg;
fa; bg; fc; dg; fa; c; dg; fb; c; dgg.

Remark 5.5. Let the triple hU;R; Cni be Gn � CAS associated
with topologies sj. Then the implications between different

topologies sj can be given in the following diagram (where
the arrow ! means # ).
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6. Conclusion and future works

In this paper, we have introduced Gn� covering approximation
space Gn � CAS as a generalization to classical rough set theory
and covering-based rough set theory using general binary rela-

tion. Accordingly, four different pairs of dual approximation
operators have been defined and their properties have been dis-
cussed. The relationships among these operators were investi-

gated. The best approximations of Gn � CAS are in the case of
j ¼ i, since the approximations in this case are more accurate
than the other cases j 2 fu; r; lg. In addition, the boundary
region is decreased by increasing the lower approximation and

decreasing the upper approximation. Moreover, we have intro-
duced comparisons between our approaches and some of the
other approaches.

Finally, considering the notion of neighborhood, we have
introduced a new method to generate general topological
spaces. Using this technique, we have generated different

topologies from any binary relation (directly from relations
without using subbase or base) which will narrow the gap
between topologists and applications.

In the future works, we will introduce many topological
applications in rough context and also many real life
applications by using the suggested structures in this
paper.
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