

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE Generalized ψ^* -closed sets in bitopological spaces

H.M. Abu Donia^{a,*}, M.A. Abd Allah^b, A.S. Nawar^b

^a Department of Mathematics, Faculty of Science, Zagazig University, Egypt ^b Department of Mathematics, Faculty of Science, Minoufia University, Egypt

Received 25 January 2014; revised 4 December 2014; accepted 18 December 2014 Available online 2 February 2015

KEYWORDS

 $ij \cdot \psi^*$ -closed sets; $ij \cdot \psi^*$ -continuous functions; $ij - T_{1/5}$ spaces; $ij - T_{1/5}^{\psi^*}$ spaces; $ij - \psi^* T_{1/5}$ spaces **Abstract** In this paper, we introduce and study a new class of sets in a bitopological space (X, τ_1, τ_2) , namely, $ij \cdot \psi^*$ -closed sets, which settled properly in between the class of ji- α -closed sets and the class of ij- $g\alpha$ -closed sets. We also introduce and study new classes of spaces, namely, $ij - T_{1/5}$ spaces, ij- T_e spaces, ij- αT_e spaces, ij- αT_l spaces and ij- αT_l spaces. As applications of ij- ψ^* -closed sets, we introduce and study four new classes of spaces, namely, $ij - T_{1/5}^{\psi^*}$ spaces, $ij - \alpha T_e$ spaces, $ij - \alpha T_e$ spaces), $ij - \alpha T_l$ spaces and ij- αT_l spaces. The class of ij- ψ^* range (both classes contain the class of $ij - T_{1/5}$ spaces), ij- αT_e spaces and ij- αT_k spaces. The class of ij- T_k spaces is properly placed in between the class of ij- T_e spaces and the class of ij- αT_k spaces and the dual of the class of $ij - T_{1/5}^{\psi^*}$ spaces to the class of ij- αT_e spaces and the dual of the class of ij- T_l spaces to the class of ij- T_l spaces is the class of $ij - T_{1/5}^{\psi^*}$ spaces and also that the dual of the class of ij- T_l spaces to the class of ij- T_k spaces is the class of $ij - \alpha T_k$ spaces. Further we introduce and study ij- ψ^* -continuous functions and ij- ψ^* -irresolute functions.

2010 MATHEMATICAL SUBJECT CLASSIFICATION: 54 C 55; 54 C 10; 54 C 10; 54 E 55

© 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

Recently the topological structure τ on a set X has a lot of applications in many real life applications. The abstractness of a set X enlarges the range of its applications. For example, a special type of this structure is the basic structure for rough set theory [1]. Alexandroff topologies are widely applied in the field of digital topologies [2]. Moreover, τ and its generalizations are applied in biochemical studies [3].

Peer review under responsibility of Egyptian Mathematical Society.

The work presented in this paper will open the way for using two viewpoints in these applications. That is, to apply two topologies at the same time. The concepts of g-closed sets, gsclosed sets, sg-closed sets, α g-closed sets, α gclosed sets, gsp-closed sets, α g-closed sets, gpclosed sets, gsp-closed sets and spg-closed sets have been introduced in topological spaces (cf. [4–10]). El-Tantawy and Abu-Donia [11] introduced the concepts of (*ij*-GC(X), *ij*-GSC(X), *ij*-SGC(X), *ij*- α GC(X), *ij*- α GC(X), *ij*-GPC(X), *ij*-GSPC(X), and *ij*-SPGC(X)) subset of (X, τ_1 , τ_2). Abd Allah and Nawar [12] introduced The concept of ψ^* -open sets and studied The properties of $T_{1/5}$, T_e , αT_e , T_l , αT_l . In this paper, we introduce a new class of sets in a bitopological space (X, τ_1 , τ_2), namely, *ij*- ψ^* closed sets, which settled properly in between the class of *ji*- α closed sets and the class of *ij*- α -closed sets. And we extend the properties to a bitopological space (X, τ_1 , τ_2). Also we use

http://dx.doi.org/10.1016/j.joems.2014.12.005

1110-256X © 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

^{*} Corresponding author.

the family of $ij - \psi^*$ -closed sets to introduce some types of properties in (X, τ_1, τ_2) , and we study the relation between these properties. The concepts of pre-continuous, semi-continuous, α -continuous, sp-continuous, g-continuous, α g-continuous, ga-continuous, gs-continuous, sg-continuous, gsp-continuous, spg-continuous, gp-continuous, gc-irresolute, gs-irresolute, α g-irresolute and g α -irresolute functions have been introduced in topological spaces (cf. [7,10,13-22]). El-Tantawy and Abu-Donia [11] introduced the concepts of (ij-pre-continuous, ijsemi-continuous, *ij-α*-continuous, *ij-sp*-continuous, *ij-g*-continuous, ij-ag-continuous, ij-ga-continuous, ij-gs-continuous, ijsg-continuous, ij-gsp-continuous, ij-spg-continuous, ij-gp-continuous, *ij*-gc-irresolute, *ij*-gs-irresolute, *ij*-ag-irresolute and *ij* $g\alpha$ -irresolute) functions in bitopological spaces. In this paper, we introduce a new functions in a bitopological space (X, τ_1, τ_2) τ_2), namely, $ij \cdot \psi^*$ -continuous functions and $ij \cdot \psi^*$ -irresolute functions.

2. Preliminaries

Definition 2.1. [23] A subset A of a bitopological space (X, τ_1, τ_2) is called:

- (1) *ij*-preopen if $A \subseteq \tau_i$ -int(τ_j -cl(A)) and *ij*-preclosed if τ_i -cl(τ_j -int(A)) $\subseteq A$.
- (2) *ij*-semi-open if A ⊆ τ_j-cl(τ_i-int(A)) and *ij*-semi-closed if τ_jint(τ_i-cl(A)) ⊆ A.
- (3) *ij*- α -open if $A \subseteq \tau_r$ -int(τ_r -cl(τ_r -int(A))) and *ij*- α -closed if τ_r cl(τ_r -int(τ_i -cl(A))) $\subseteq A$.
- (4) *ij*-semi-preopen if $A \subseteq \tau_{\tau} \operatorname{cl}(\tau_{\tau} \operatorname{int}(\tau_{\tau} \operatorname{cl}(A)))$ and *ij*-semi preclosed if $\tau_{\tau} \operatorname{int}(\tau_{\tau} \operatorname{cl}(\tau_{\tau} \operatorname{int}(A))) \subseteq A$.

The class of all *ij*-preopen (resp. *ij*-semi-open, *ij*- α -open and *ij*-semi-preopen) sets in a bitopological space (X, τ_1, τ_2) is denoted by *ij*-PO(X) (resp. *ij*-SO(X), *ij*- $\alpha O(X)$ and *ij*-SPO(X)). The class of all *ij*-preclosed (resp. *ij*-semi-closed, *ij*- α -closed and *ij*-semi-preclosed) sets in a bitopological space (X, τ_1, τ_2) is denoted by *ij*-PC(X) (resp. *ij*-SC(X), *ij*- $\alpha C(X)$ and *ij*-SPC(X)).

Definition 2.2. [23] For a subset *A* of a bitopological space (*X*, τ_1 , τ_2), the *ij*-pre-closure (resp. *ij*-semi-closure, *ij*- α -closure and *ij*-semi-pre-closure) of *A* are denoted and defined as follow:

- (1) $ij-pcl(A) = \cap \{F \subset X: F \in ij-PC(X), F \supseteq A\}.$
- (2) ij-scl $(A) = \cap \{F \subset X: F \in ij$ -SC $(X), F \supseteq A\}$.
- (3) $ij \alpha cl(A) = \cap \{F \subset X: F \in ij \alpha C(X), F \supseteq A\}.$
- (4) ij-spcl(A) = $\cap \{F \subset X: F \in ij$ -SPC(X), $F \supseteq A\}$.

Dually, the *ij*-preinterior (resp. *ij*-semi-interior, *ij*- α -interior and *ij*-semi-preinterior) of A, denoted by *ij*-*pint*(A) (resp. *ij*-sint(A), *ij*- α int(A) and *ij*-spint(A)) is the union of all *ij*-preopen (resp. *ij*-semi-open, *ij*- α -open and *ij*-semi-preopen) subsets of X contained in A.

Definition 2.3. [11] A subset A of a bitopological space (X, τ_1, τ_2) is called:

- (1) *ij-g*-closed (denoted by *ij-GC(X)*) if, $A \subseteq U$, $U \in \tau_i \Rightarrow j$ cl $(A) \subseteq U$.
- (2) *ij-gs-*closed (denoted by *ij-GSC(X)*) if, $A \subseteq U$, $U \in \tau_i \Rightarrow ji-\text{scl}(A) \subseteq U$.

- (3) *ij-sg*-closed (denoted by *ij-SGC(X)*) if, $A \subseteq U$, $U \in ij$ - $SO(X) \Rightarrow ji$ -scl $(A) \subseteq U$.
- (4) *ij-ga*-closed (denoted by *ij-GaC(X)*) if, $A \subseteq U$, $U \in ij$ - $\alpha O(X) \Rightarrow ji$ - $\alpha cl(A) \subseteq U$.
- (5) *ij*- αg -closed (denoted by *ij*- $\alpha GC(X)$) if, $A \subseteq U$, $U \in \tau_i \Rightarrow ji$ - $\alpha cl(A) \subseteq U$.
- (6) *ij-gp*-closed (denoted by *ij-GPC(X)*) if, $A \subseteq U$, $U \in \tau_i \Rightarrow ji\text{-pcl}(A) \subseteq U$.
- (7) *ij-gsp*-closed (denoted by *ij-GSPC(X)*) if, $A \subseteq U$, $U \in \tau_i \Rightarrow ji$ -spcl $(A) \subseteq U$.
- (8) *ij-spg*-closed (denoted by *ij-SPGC(X)*) if, $A \subseteq U$, $U \in ji$ -SPO(X)) $\Rightarrow ji$ -spcl $(A) \subseteq U$.

The complement of an ij-GC(X) (resp. ij-GSC(X), ij-SGC(X), ij- $G\alpha C(X)$, ij- $\alpha GC(X)$, ij-GPC(X), ij-GSPC(X), and ij-SPGC(X)) subset of (X, τ_1, τ_2) is called an ij-GO(X) (resp. ij-GSO(X), ij-SGO(X), ij- $G\alpha O(X)$, ij- $\alpha GO(X)$, ij-GPO(X), ij-GSPO(X), and ij-SPGO(X)) subset of (X, τ_1, τ_2) .

Definition 2.4. [11] A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called:

- (1) *ij*-pre-continuous if $\forall V \in i$ -C(Y), $f^{-1}(V) \in ij$ -PC(X). (2) *ij*-semi-continuous if $\forall V \in i$ -C(Y), $f^{-1}(V) \in ij$ -SC(X).
- (3) *ij*- α -continuous if $\forall V \in i$ -C(Y), $f^{-1}(V) \in ij$ - $\alpha C(X)$.
- (4) *ij-sp*-continuous if $\forall V \in i$ -C(Y), $f^{-1}(V) \in ij$ -SPC(X).
- (5) *ij-g*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -GC(X).
- (6) *ij*- αg -continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ - $\alpha GC(X)$.
- (7) *ij-ga-continuous* if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ - $G\alpha C(X)$.
- (8) *ij-gs*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -GSC(X).
- (9) *ij-sg*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -SGC(X).
- (10) *ij-gsp*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -GSPC(X).
- (11) *ij-spg*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -SPGC(X).
- (12) *ij-gp*-continuous if $\forall V \in j$ -C(Y), $f^{-1}(V) \in ij$ -GPC(X).
- (13) *i*-continuous if $\forall V \in i C(Y), f^{-1}(V) \in i C(X)$.
- (14) *ij-gc*-irresolute if $\forall V \in ij$ -GC(Y), $f^{-1}(V) \in ij$ -GC(X).
- (15) *ij-gs-*irresolute if $\forall V \in ij$ -GSC(Y), $f^{-1}(V) \in ij$ -GSC(X).
- (16) *ij*- αg -irresolute if $\forall V \in ij$ - $\alpha GC(Y), f^{-1}(V) \in ij$ - $\alpha GC(X)$.
- (17) *ij-ga*-irresolute if $\forall V \in ij$ - $G\alpha C(Y)$, $f^{-1}(V) \in ij$ - $G\alpha C(X)$.

Definition 2.5. [12] A subset A of (X, τ) is called ψ^* -closed if $A \subseteq U$, $U \in G \alpha O(X) \Rightarrow \alpha cl(A) \subseteq U$. The complement of ψ^* -closed set is said to be ψ^* -open.

Definition 2.6. [12] A space (X, τ) is called:

- (1) $T_{1/5}$ space if $G\alpha C(X) = \alpha C(X)$. (2) $T_{1/5}^{\psi^*}$ space if $\psi^* C(X) = \alpha C(X)$. (3) $\psi^* T_{1/5}$ space if $G\alpha C(X) = \psi^* C(X)$. (4) T_e space if $GSC(X) = \alpha C(X)$. (5) αT_e space if $\alpha GC(X) = \alpha C(X)$. (6) T_k space if $\alpha GC(X) = \psi^* C(X)$. (7) αT_k space if $\alpha GC(X) = \psi^* C(X)$. (8) T_l space if $GSC(X) = G\alpha C(X)$. (9) αT_e space if $\alpha GC(X) = G\alpha C(X)$.
- (9) αT_l space if $\alpha GC(X) = G\alpha C(X)$.

Definition 2.7. [12] A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called:

- (1) ψ^* -continuous if $\forall V \in C(Y), f^{-1}(V) \in \psi^*C(X)$.
- (2) ψ^* -irresolute if $\forall V \in \psi^* C(Y), f^{-1}(V) \in \psi^* C(X)$.
- (3) pre- ψ^* -closed if $A \in \psi^* C(X)$, $f(A) \in \psi^* C(Y)$.

3. Basic properties of $ij-\psi^*$ -closed sets

We introduce the following definition.

Definition 3.1. A subset A of a bitopological space (X, τ_1, τ_2) is called $ij \cdot \psi^*$ -closed set if, $A \subseteq U$, $U \in ji \cdot G\alpha O(X) \Rightarrow ji \cdot \alpha cl(A) \subseteq U$.

The class of ij- ψ^* -closed subsets of (X, τ_1, τ_2) is denoted by ij- $\psi^*C(X)$.

The following diagram shows the relationships of ij- ψ^* -closed sets with some other sets discussed in this section (see Diagram 1).

Definition 3.1 is a particular case of Definition 8 from Noiri [24].

Theorem 3.1. Every $ji - \alpha$ -closed set is an $ij - \psi^*$ -closed set.

The following example supports that an $ij-\psi^*$ -closed set need not be a $ji-\alpha$ -closed set in general.

Example 3.1. Let $X = \{a, b, c, d\}, \tau_1 = \{X, \phi, \{a\}, \{a, d\}\}$ and $\tau_2 = \{X, \phi, \{a, b\}, \{c, d\}\}$. Then we have $A = \{b, c\} \in ij$ - $\psi^*C(X)$ but $A \notin ji$ - $\alpha C(X)$.

Therefore the class of $ij-\psi^*$ -closed sets is properly contains the class of $ji-\alpha$ -closed sets. Next we show that the class of $ij-\psi^*$ - closed sets is properly contained in the class of ij-ga-closed set.

Theorem 3.2. Every $ij - \psi^*$ -closed set is an ij-g α -closed set.

The following example supports that the converse of the above theorem is not true in general.

Example 3.2. Let X, τ_1 , and τ_2 are as in the Example 3.1. Then the subset $B = \{b\} \in ij$ - $G\alpha C(X)$ but $B \notin ij$ - $\psi^* C(X)$.

Remark 3.1. The intersection of two sets in $ij-\psi^*$ -closed set is not in general a set in $ij-\psi^*$ -closed set, as shown by the following example.

Example 3.3. Let X, τ_1 , and τ_2 be as in the Example 3.1. Then we have $\{a, b\}$ and $\{b, c\} \in ij - \psi^* C(X)$ but $\{a, b\} \cap \{b, c\} = \{b\} \notin ij - \psi^* C(X)$.

Theorem 3.3. For any bitopological space (X, τ_1, τ_2) .

- (1) $ij \cdot \psi^* C(X) \cap ji \cdot G \alpha O(X) \subseteq ji \cdot \alpha C(X)$.
- (2) If $A \in ij \cdot \psi^* C(X)$ and $A \subseteq B \subseteq ji \cdot \alpha cl(A)$, then $B \in ij \cdot \psi^* C(X)$.

Proof.

- (1) Let $A \in ij \psi^* C(X) \cap ji G \alpha O(X)$. Then we have $ji \alpha cl(A) \subseteq A$. Consequently, $A \in ji \alpha C(X)$.
- (2) Let $U \in ji G\alpha O(X)$ such that $B \subseteq U$. Since $A \subseteq B$ and $A \in ij \psi^* C(X)$, then $ji \alpha \operatorname{cl}(A) \subseteq U$. Since $B \subseteq ji \alpha \operatorname{cl}(A)$, then we have $ji \alpha \operatorname{cl}(B) \subseteq ji \alpha \operatorname{cl}(A) \subseteq U$. Therefore, $B \in ij \psi^* C(X)$. \Box

Theorem 3.4. Let (X, τ_1, τ_2) be a bitopological space, $A \in ij$ - $G\alpha C(X)$. Then $A \in ij - \psi^* C(X)$ if $ij - \alpha O(X) = ji - G\alpha O(X)$.

Proof. Let $A \in ij$ - $G\alpha C(X)$ i.e. $A \subseteq U$ and $U \in ij$ - $\alpha O(X)$, then ji- $\alpha cl(A) \subseteq U$. Since ij- $\alpha O(X) = ji$ - $G\alpha O(X)$. Consequently, $A \subseteq U$ and $U \in ji$ - $G\alpha O(X)$, then ji- $\alpha cl(A) \subseteq U$ i.e. $A \in ij$ - $\psi^* C(X)$. \Box

Theorem 3.5. Let (X_1, τ_1, τ_2) and $(X_2, \tau_1^*, \tau_2^*)$ be two bitopological spaces. Then the following statement is true. If $A \in ij$ - $\psi^*O(X_1)$ and $B \in ij$ - $\psi^*O(X_2)$, then $A \times B \in ij$ - $\psi^*O(X_1 \times X_2)$.

Proof. Let $A \in ij$ - $\psi^*O(X_1)$ and $B \in ij$ - $\psi^*O(X_2)$ and $W = A \times B \subseteq X_1 \times X_2$. Let $F = F_1 \times F_2 \subseteq W$, $F \in ji$ - $G\alpha C(X_1 \times X_2)$. Then there are $F_1 \in ji$ - $G\alpha C(X_1)$, $F_2 \in ji$ - $G\alpha C(X_2)$, $F_1 \subseteq A$, $F_2 \subseteq B$ and so, $F_1 \subseteq \tau_{ji} - \alpha int(A)$ and $F_2 \subseteq \tau_{ji}^* - \alpha int(B)$. Hence $F_1 \times F_2 \subseteq A \times B$ and $F_1 \times F_2 \subseteq \tau_{ji} - \alpha int(A) \times \tau_{ii}^* - \alpha int(B) = \tau_{ji} \times \tau_{ii}^* - \alpha int(A \times B)$.

Therefore $A \times B \in ij \cdot \psi^* O(X_1 \times X_2)$. \Box

Theorem 3.6. A subset A of X is $ij \cdot \psi^* O(X)$ if and only if F is a subset of $ij \cdot aint(A)$ whenever $F \subseteq A$ and $F \in ji \cdot G\alpha C(X)$.

Theorem 3.7. For each $x \in X$, either $\{x\}$ is ji- $G\alpha C(X)$ or $\{x\}$ is ij- $\psi^* O(X)$.

Theorem 3.8. A subset A of X is $ij \cdot \psi^* C(X)$ if and only if $ji \cdot \alpha C(A) \cap F = \emptyset$, whenever $A \cap F = \emptyset$, where F is $ji \cdot G\alpha C(X)$.

4. Applications of $ij-\psi^*$ -closed sets

As applications of $ij - \psi^*$ -closed sets, four new classes of spaces, namely, $ij - T_{1/5}^{\psi^*}$ spaces, $ij - \psi^* T_{1/5}$ spaces, $ij - T_k$ spaces and $ij - \alpha T_k$ spaces are introduced.

We introduce the following definitions.

Definition 4.1. A bitopological space (X, τ_1, τ_2) is called an $ij - T_{1/5}$ space if ij- $G\alpha C(X) = ji$ - $\alpha C(X)$.

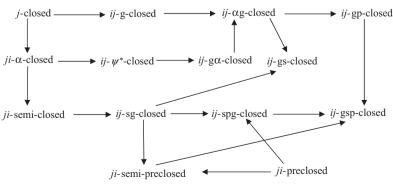


Diagram 1

Definition 4.2. A bitopological space (X, τ_1, τ_2) is called an $ij - T_{1/5}^{\psi^*}$ space if $ij \cdot \psi^* C(X) = ji \cdot \alpha C(X)$.

We prove that the class of $ij - T_{1/5}^{\psi^*}$ spaces properly contains the class of $ij - T_{1/5}$ spaces.

Theorem 4.1. Every $ij - T_{1/5}$ space is an $ij - T_{1/5}^{\psi^*}$ space.

Proof. Follows from the fact that every $ij - \psi^*$ -closed set is an ij-g α -closed set. \Box

The converse of the above theorem is not true as it can be seen from the following example.

Example 4.1. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{b\}\}$. Then (X, τ_1, τ_2) is an $ij - T_{1/5}^{\psi}$ space but not an $ij - T_{1/5}$ space since $\{b, c\} \in ij$ - $G\alpha C(X)$ but $\{b, c\} \notin ji$ - $\alpha C(X)$.

We introduce the following definition.

Definition 4.3. A bitopological space (X, τ_1, τ_2) is called an $ij - {}^{\psi^*}T_{1/5}$ space if ij- $G\alpha C(X) = ij$ - $\psi^* C(X)$.

Theorem 4.2. Every $ij - T_{1/5}$ space is an $ij - \psi^* T_{1/5}$ space.

Proof. Let (X, τ_1, τ_2) be an $ij - T_{1/5}$ space. Let $A \in ij$ - $G\alpha C(X)$. Since (X, τ_1, τ_2) is an $ij - T_{1/5}$ space, then $A \in ji$ - $\alpha C(X)$. Hence, by using Theorem 3.1, we have $A \in ij$ - $\psi^* C(X)$. Therefore (X, τ_1, τ_2) is an $ij - \psi^* T_{1/5}$ space. \Box

The converse of the above theorem is not true as we see in the following example.

Example 4.2. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$. Then (X, τ_1, τ_2) is an $ij - \psi^* T_{1/5}$ space but not an $ij - T_{1/5}$ space since $\{a, b\} \in ij$ - $G\alpha C(X)$ but $\{a, b\} \notin ji$ - $\alpha C(X)$.

We show that $ij - T_{1/5}^{\psi^*}$ ness is independent from $ij - {}^{\psi^*}T_{1/5}$ ness.

Remark 4.1. $ij - T_{1/5}^{\psi^*}$ ness and $ij - \psi^* T_{1/5}$ ness are independent as it can be seen from the next two examples.

Example 4.3. Let X, τ_1 , and τ_2 be as in the Example 4.1. Then (X, τ_1, τ_2) is an $ij - T_{1/5}^{\psi^*}$ space but not an $ij - {\psi^*} T_{1/5}$ space since $\{b, c\} \in ij$ - $G\alpha C(X)$ but $\{b, c\} \notin ij$ - $\psi^* C(X)$.

Example 4.4. Let X, τ_1 , and τ_2 be as in the Example 4.2. Then (X, τ_1, τ_2) is an $ij - \psi^* T_{1/5}$ space but not an $ij - T_{1/5}^{\psi^*}$ space since $\{a, c\} \in ij - \psi^* C(X)$ but $\{a, c\} \notin ji - \alpha C(X)$.

Theorem 4.3. If (X, τ_1, τ_2) is an $ij - \psi^* T_{1/5}$ space, then for each $x \in X$, $\{x\}$ is either ji- α -closed or $ij - \psi^*$ -open.

Proof. Suppose that (X, τ_1, τ_2) is an $ij - {}^{\psi^*}T_{1/5}$ space. Let $x \in X$ and assume that $\{x\} \notin ji \cdot \alpha C(X)$. Then $\{x\} \notin ji \cdot G\alpha C(X)$ since every $ji \cdot \alpha \cdot \text{closed}$ set is an $ij \cdot g\alpha \cdot \text{closed}$ set. So $X \cdot \{x\} \notin ji \cdot \alpha O(X)$. Therefore $X \cdot \{x\} \in ij \cdot G\alpha C(X)$ since X is the only $ji \cdot \alpha \cdot O(X)$. Therefore $X \cdot \{x\} \in ij \cdot G\alpha C(X)$ since X is the only $ji \cdot \alpha \cdot O(X)$. Therefore $X \cdot \{x\} \in ij \cdot G\alpha C(X)$ since (X, τ_1, τ_2) is an $ij - {}^{\psi^*}T_{1/5}$ space, then $X \cdot \{x\} \in ij \cdot {\psi^*}C(X)$ or equivalently $\{x\} \in ij \cdot {\psi^*}O(X)$. \Box

Theorem 4.4. A space (X, τ_1, τ_2) is an $ij - T_{1/5}$ space if and only if it is $ij - \psi^* T_{1/5}$ and $ij - T_{1/5}^{\psi^*}$ space.

Proof. The necessity follows from the Theorems 4.1 and 4.2. For the sufficiency, suppose that (X, τ_1, τ_2) is both $ij - \psi^* T_{1/5}$ and $ij - T_{1/5}^{\psi^*}$ space. Let $A \in ij$ - $G\alpha C(X)$. Since (X, τ_1, τ_2) is an $ij - \psi^* T_{1/5}$ space, then $A \in ij$ - $\psi^* C(X)$. Since (X, τ_1, τ_2) is an $ij - T_{1/5}^{\psi^*}$ space, then $A \in ji$ - $\alpha C(X)$. Thus (X, τ_1, τ_2) is an $ij - T_{1/5}$ space. \Box

We introduce the following definitions $ij T_e$ spaces and $ij \alpha T_e$ spaces respectively and show that every $ij T_e$ ($ij \alpha T_e$) space is an $ij - T_{1/5}$ space.

Definition 4.4. A space (X, τ_1, τ_2) is called an *ij*- T_e space if ij-GSC(X) = ji- $\alpha C(X)$.

Definition 4.5. A space (X, τ_1, τ_2) is called an ij- αT_e space if ij- $\alpha GC(X) = ji$ - $\alpha C(X)$.

Theorem 4.5. Every ij- T_e space is an $ij - T_{1/5}$ space.

Proof. Follows from the fact that every *ij*-g α -closed set is an *ij*-gs-closed set. \Box

An $ij - T_{1/5}$ space need not be an ij- T_e space as we see the next example.

Example 4.5. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{a, b\}\}$. Then (X, τ_1, τ_2) is an $ij - T_{1/5}$ space but not an ij- T_e space since $\{b\} \in ij$ -GSC(X) but $\{b\} \notin ji$ - $\alpha C(X)$.

Theorem 4.6. Every $ij - \alpha T_e$ space is an $ij - T_{1/5}$ space.

Proof. Follows from the fact that every *ij*- $g\alpha$ -closed set is an *ij*- α g-closed set. \Box

An $ij - T_{1/5}$ space need not be an ij- αT_e space as we see the next example.

Example 4.6. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, a, c\}\}$. Then (X, τ_1, τ_2) is an $ij - T_{1/5}$ space but not an ij- αT_e space since $\{a, c\} \in ij$ - $\alpha GC(X)$ but $\{a, c\} \notin ji$ - $\alpha C(X)$.

Theorem 4.7. Every ij- T_e space is an ij- αT_e space.

Proof. Follows from the fact that every ij- α g-closed set is an ij-gs-closed set. \Box

The converse of the above theorem is not true in general as the following example supports.

Example 4.7. Let X, τ_1 , and τ_2 be as in the Example 4.5. Then (X, τ_1, τ_2) is an ij- αT_e space but not an ij- T_e space since $\{b\} \in ij$ -GSC(X) but $\{b\} \notin ji$ - $\alpha C(X)$.

Theorem 4.8. Every ij- T_e space is an $ij - T_{1/5}^{\psi^*}$ space.

Proof. Follows from the fact that every $ij - \psi^*$ -closed set is an ij-gs-closed set. \Box

The converse of the above theorem is not true in general as the following example supports.

Example 4.8. Let $X = \{a, b, c, d, e\}, \tau_1 = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{a, b\}, \{a, b, e\}, \{a, c, d\}, \{a, b, c, d\}\}$. Then (X, τ_1, τ_2) is an $ij - T_{1/5}^{\psi^*}$ space but not an ij- T_e space since $\{d\} \in ij$ -GSC(X) but $\{d\} \notin ji$ - $\alpha C(X)$.

Theorem 4.9. Every $ij \cdot \alpha T_e$ space is an $ij - T_{1/5}^{\psi^*}$ space.

Proof. Follows from the fact that every $ij - \psi^*$ -closed set is an $ij - \alpha g$ -closed set. \Box

An $ij - T_{1/5}^{\psi^*}$ space need not be an ij- αT_e space as we see the next example.

Example 4.9. Let X, τ_1 , and τ_2 be as in the Example 4.8. Then (X, τ_1, τ_2) is an $ij - T_{1/5}^{\psi}$ space but not an $ij - \alpha T_e$ space $\{c\} \in ij - \alpha GC(X)$ but $\{c\} \notin ji - \alpha C(X)$.

We introduce the following definitions.

Definition 4.6. A space (X, τ_1, τ_2) is called an *ij*- T_k space if ij-GSC(X) = ij- $\psi^*C(X)$.

Definition 4.7. A space (X, τ_1, τ_2) is called an $ij \cdot \alpha T_k$ space if $ij \cdot \alpha GC(X) = ij \cdot \psi^* C(X)$

Definition 4.8. A space (X, τ_1, τ_2) is called an *ij*- T_i space if ij-GSC(X) = ij- $G\alpha C(X)$.

Definition 4.9. A space (X, τ_1, τ_2) is called an *ij*- αT_l space if ij- $\alpha GC(X) = ij$ - $G\alpha C(X)$.

We show that the class of $ij - \alpha T_k$ spaces properly contains the class of $ij - \alpha T_e$ spaces and is properly contained in the class of $ij - \alpha T_l$ spaces. We also show that the class of $ij - \alpha T_k$ spaces is the dual of the class of $ij - T_{1/5}^{\psi^*}$ spaces to the class of $ij - \alpha T_e$ spaces. Moreover we prove that $ij - \alpha T_k$ ness and $ij - T_{1/5}^{\psi^*}$ ness are independent from each other.

Theorem 4.10. Every $ij - \alpha T_e$ space is an $ij - \alpha T_k$ space.

Proof. Let (X, τ_1, τ_2) be an $ij - \alpha T_e$ space. Let $A \in ij - \alpha GC(X)$. Since (X, τ_1, τ_2) is an $ij - \alpha T_e$ space, then $A \in ji - \alpha C(X)$. Hence, by using Theorem 3.1, we have $A \in ij - \psi^* C(X)$. Therefore (X, τ_1, τ_2) is an $ij - \alpha T_k$ space. \Box

The following example supports that the converse of the above theorem is not true in general.

Example 4.10. Let X, τ_1 , and τ_2 be as in the Example 4.2. Then (X, τ_1, τ_2) is an ij- αT_k space but not an ij- αT_e space since {a, c} $\in ij$ - $\alpha GC(X)$ but {a, c} $\notin ji$ - $\alpha C(X)$.

Theorem 4.11. Every $ij - \alpha T_k$ space is an $ij - \alpha T_l$ space.

Proof. Let (X, τ_1, τ_2) be an ij- αT_k space. Let $A \in ij$ - $\alpha GC(X)$. Since (X, τ_1, τ_2) is an ij- αT_k space, then $A \in ij$ - $\psi^*C(X)$. Hence, by using Theorem 3.2, we have $A \in ij$ - $G\alpha C(X)$. Therefore (X, τ_1, τ_2) is an ij- αT_l space. \Box The following example supports that the converse of the above theorem is not true in general.

Example 4.11. Let X, τ_1 , and τ_2 be as in the Example 4.1. Then (X, τ_1, τ_2) is an ij- αT_l space but not an ij- αT_k space since $\{b\} \in ij$ - $\alpha GC(X)$ but $\{b\} \notin ij$ - $\psi^*C(X)$.

Theorem 4.12. A space (X, τ_1, τ_2) is an $ij - \alpha T_e$ space if and only if it is $ij - \alpha T_k$ and $ij - T_{1/5}^{\psi^*}$ space.

Proof. The necessity follows from the Theorems 4.9 and 4.10. For the sufficiency, suppose that (X, τ_1, τ_2) is both $ij - \alpha T_k$ and $ij - T_{1/5}^{\psi^*}$ space. Let $A \in ij - \alpha GC(X)$. Since (X, τ_1, τ_2) is an $ij - \alpha T_k$ space, then $A \in ij - \psi^* C(X)$. Since (X, τ_1, τ_2) is an $ij - T_{1/5}^{\psi^*}$ space, then $A \in ji - \alpha C(X)$. Thus (X, τ_1, τ_2) is an $ij - \alpha T_e$ space. \Box

Remark 4.2. $ij - \alpha T_k$ ness and $ij - T_{1/5}^{\psi^*}$ ness are independent as it can be seen from the next two examples.

Example 4.12. Let X, τ_1 , and τ_2 be as in the Example 4.2. Then (X, τ_1, τ_2) is an ij- αT_k space but not an $ij - T_{1/5}^{\psi^*}$ space since {a, b} $\in ij$ - $\psi^* C(X)$ but {a, b} $\notin ji$ - $\alpha C(X)$.

Example 4.13. Let X, τ_1 , and τ_2 be as in the Example 4.1. Then (X, τ_1, τ_2) is an $ij - T_{1/5}^{\psi^*}$ space but not an ij- αT_k space since {b, c} $\in ij$ - $\alpha GC(X)$ but {b, c} $\notin ij$ - $\psi^*C(X)$.

Definition 4.10. A subset *A* of a bitopological space (X, τ_1, τ_2) is called an $ij - \psi^*$ -open if its complement is an $ij - \psi^*$ -closed of (X, τ_1, τ_2) .

Theorem 4.13. If (X, τ_1, τ_2) is an $ij \cdot \alpha T_k$ space, then for each $x \in X$, $\{x\}$ is either $ij \cdot \alpha g$ -closed or $ij \cdot \psi^*$ -open.

Proof. Suppose that (X, τ_1, τ_2) is an $ij \sim T_k$ space. Let $x \in X$ and assume that $\{x\} \notin ij \sim \alpha C(X)$. Then $\{x\} \notin ji \sim \alpha C(X)$ since every $ji \sim \alpha$ -closed set is an $ij \sim \alpha$ -closed set. So $X \sim \{x\} \notin ji \sim \alpha O(X)$. Therefore $X \sim \{x\} \in ij \sim \alpha GC(X)$ since X is the only $ji \sim \alpha O(X)$. Therefore $X \sim \{x\} \in ij \sim \alpha GC(X)$ since X is the only $ji \sim \alpha O(X)$. Therefore $X \sim \{x\} \in ij \sim \alpha GC(X)$ since (X, τ_1, τ_2) is an $ij \sim \alpha T_k$ space, then $X \sim \{x\} \in ij \sim \psi^* C(X)$ or equivalently $\{x\} \in ij \sim \psi^* O(X)$. \Box

Theorem 4.14. Every $ij - \alpha T_k$ space is an $ij - \psi^* T_{1/5}$ space.

Proof. Let (X, τ_1, τ_2) be an ij- αT_k space. Let $A \in ij$ - $G\alpha C(X)$, then $A \in ij$ - $\alpha GC(X)$. Since (X, τ_1, τ_2) is an ij- αT_k space, then $A \in ij$ - $\psi^* C(X)$. Therefore (X, τ_1, τ_2) is an $ij - \psi^* T_{1/5}$ space. \Box

The following example supports that the converse of the above theorem is not true in general.

Example 4.14. Let X, τ_1 , and τ_2 be as in the Example 4.8. Then (X, τ_1, τ_2) is an $ij - \psi^* T_{1/5}$ space but not an $ij - \alpha T_k$ space since $\{c\} \in ij - \alpha GC(X)$ but $\{c\} \notin ij - \psi^*C(X)$.

We show that the class of ij- T_k spaces properly contains the class of ij- T_e spaces, and is properly contained in the class of ij- αT_k spaces, the class of ij- πT_l spaces, and the class of ij- αT_l spaces.

Theorem 4.15. Every ij- T_e space is an ij- T_k space.

The following example supports that the converse of the above theorem is not true in general.

Example 4.15. Let X, τ_1 , and τ_2 be as in the Example 4.2. Then (X, τ_1, τ_2) is an *ij*- T_k space but not an *ij*- T_e space since {a, c} $\in ij$ -GSC(X) but {a, c} $\notin ji$ - $\alpha C(X)$.

Theorem 4.16. Every ij- T_k space is an ij- αT_k space.

Proof. Let (X, τ_1, τ_2) be an ij- T_k space. Let $A \in ij$ - $\alpha GC(X)$, then $A \in ij$ - $\alpha GSC(X)$. Since (X, τ_1, τ_2) is an ij- T_k space, then $A \in ij$ - $\psi^*C(X)$. Therefore (X, τ_1, τ_2) is an ij- αT_k space. \Box

The converse of the above theorem is not true as it can be seen from the following example.

Example 4.16. Let X, τ_1 , and τ_2 be as in the Example 4.5. Then (X, τ_1, τ_2) is an $ij \cdot \alpha T_k$ space but not an $ij \cdot T_k$ space since $\{b\} \in ij \cdot GSC(X)$ but $\{b\} \notin ij \cdot \psi^*C(X)$.

Theorem 4.17. Every ij- T_k space is an ij- T_l space.

Proof. Let (X, τ_1, τ_2) be an ij- T_k space. Let $A \in ij$ -GSC(X). Since (X, τ_1, τ_2) is an ij- T_k space, then $A \in ij$ - $\psi^*C(X)$. Hence, by using Theorem 3.2, we have $A \in ij$ - $G\alpha C(X)$. Therefore (X, τ_1, τ_2) is an ij- T_l space. \Box

The converse of the above theorem is not true as it can be seen from the following example.

Example 4.17. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a, c\}\}$. Then (X, τ_1, τ_2) is an *ij*- T_I space but not an *ij*- T_k space since $\{c\} \in ij$ -GSC(X) but $\{c\} \notin ij$ - $\psi^*C(X)$.

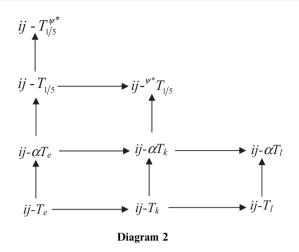
Next we prove that the dual of the class of ij- T_l spaces to the class of ij- T_k spaces is the class of ij- αT_k spaces.

Theorem 4.18. A space (X, τ_1, τ_2) is an *ij*- T_k space if and only if *it is ij*- αT_k and *ij*- T_1 space.

Proof. The necessity follows from the Theorems 4.16 and 4.17. For the sufficiency, suppose that (X, τ_1, τ_2) is both $ij \cdot \alpha T_k$ and $ij \cdot T_l$ space. Let $A \in ij \cdot GSC(X)$. Since (X, τ_1, τ_2) is an $ij \cdot T_l$ space, then $A \in ij \cdot G\alpha C(X)$. Then $A \in ij \cdot \alpha GC(X)$. Since (X, τ_1, τ_2) is an $ij \cdot \alpha T_k$ space, then $A \in ij \cdot \psi^* C(X)$. Therefore (X, τ_1, τ_2) is an $ij \cdot T_k$ space. \Box

Theorem 4.19. A space (X, τ_1, τ_2) is an ij- T_e space if and only if it is ij- T_k and ij $-T_{1/5}^{\psi^*}$ space.

Proof. The necessity follows from the Theorems 4.8 and 4.15. For the sufficiency, suppose that (X, τ_1, τ_2) is both ij- T_k and $ij - T_{1/5}^{\psi^*}$ space. Let $A \in ij$ -GSC(X). Since (X, τ_1, τ_2) is an ij- T_k space, then $A \in ij$ - $\psi^*C(X)$. Since (X, τ_1, τ_2) is an ij- $T_{1/5}^{\psi^*}$ space, then $A \in ji$ - $\alpha C(X)$. Therefore (X, τ_1, τ_2) is an ij- T_e space. \Box



The following diagram shows the relationships between the separation axioms discussed in this section (see Diagram 2).

5. $ij-\psi^*$ -continuous and $ij-\psi^*$ -irresolute functions

We introduce the following definition.

Definition 5.1. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called *ij*- ψ^* -continuous if $\forall V \in j$ - $C(Y), f^{-1}(V) \in ij$ - $\psi^*C(X)$.

The following diagram shows the relationships of $ij-\psi^*$ -continuous functions with some other functions discussed in this section (see Diagram 3).

Theorem 5.1. Every $ji - \alpha$ -continuous function is $ij - \psi^*$ -continuous.

The following example supports that the converse of the above theorem is not true in general.

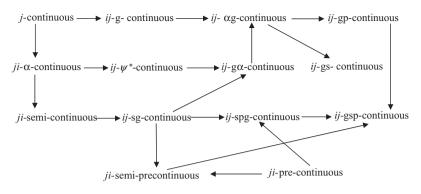
Example 5.1. Let $X = \{a, b, c, d\}$, $Y = \{u, v, w\}$, $\tau_1 = \{X, \phi, \{a\}, \{a, d\}\}$, $\tau_2 = \{X, \phi, \{a, b\}, \{c, d\}\}$, $\sigma_1 = \{Y, \phi, \{u\}, \{v\}, \{u, v\}\}$ and $\sigma_2 = \{Y, \phi, \{u\}, \{u, v\}\}$. Define $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = u, f(b) = v and f(c) = f(d) = w.f is not *ji*- α -continuous function since $\{v, w\} \in j$ -C(Y) but $f^{-1}(\{v, w\}) = \{b, c, d\} \notin ji$ - $\alpha C(X)$. However f is ij- ψ *-continuous function.

Theorem 5.2. Every $ij \cdot \psi^*$ -continuous function is $ij \cdot g\alpha$ -continuous.

The following example supports that the converse of the above theorem is not true in general.

Example 5.2. Let X, Y, τ_1 , τ_2 , σ_1 and σ_2 be as in the example 5.1. Define f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = u, f(b) = w and f(c) = f(d) = v. f is not $ij - \psi^*$ -continuous function since $\{w\} \in j$ -C(Y) but $f^{-1}(\{w\}) = \{b\} \notin ij - \psi^*C(X)$. However f is ij-g α -continuous function.

Theorem 5.3. If $f_1: (X_1, \tau_1, \tau_2) \to (Y_1, \sigma_1, \sigma_2)$ and $f_2: (X_2, \tau_1^*, \tau_2^*) \to (Y_2, \sigma_1^*, \sigma_2^*)$ be two $ij - \psi^*$ -continuous functions. Then the function $f: (X_1 \times X_2, \tau_1 \times \tau_1^*, \tau_2 \times \tau_2^*) \to (Y_1 \times Y_2, \sigma_1 \times \sigma_1^*, \sigma_2 \times \sigma_2^*)$ defined by $f(x_1, x_2) = (f(x_1), f(x_2))$ is $ij - \psi^*$ -continuous.



Proof. Let $V_1 \in j$ - $O(Y_1)$ and $V_2 \in j$ - $O(Y_2)$. Since f_1 and f_2 are two ij- ψ^* -continuous, then $f^{-1}(V_1) \in ij - \psi^*O(X_1)$ and $f^{-1}(V_2) \in ij - \psi^*O(X_2)$. Hence, by using Theorem 3.5, we have $f^{-1}(V_1) \times f^{-1}(V_2) \in ij - \psi^*O(X_1 \times X_2)$. \Box

We introduce the following definition.

Definition 5.2. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called *ij*- ψ^* -irresolute if $\forall V \in ij$ - $\psi^* C(Y), f^{-1}(V) \in ij$ - $\psi^* C(X)$.

Theorem 5.4. Every $ij - \psi^*$ -irresolute function is $ij - \psi^*$ -continuous.

The following example supports that the converse of the above theorem is not true in general.

Example 5.3. Let $X = \{a, b, c, d\}$, $Y = \{u, v, w\}$, $\tau_1 = \{X, \phi, \{a\}, \{a, d\}\}$, $\tau_2 = \{X, \phi, \{a, b\}, \{c, d\}\}$, $\sigma_1 = \{Y, \phi, \{u\}\}$ and $\sigma_2 = \{Y, \phi, \{u\}, \{v, w\}\}$. Define $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = v, f(b) = w and f(c) = f(d) = u. f is not $ij - \psi^*$ -irresolute function since $\{u, v\} \in ij - \psi^* C(Y)$ but $f^{-1}(\{u, v\}) = \{a, c, d\} \notin ij - \psi^* C(X)$. However f is $ij - \psi^*$ -continuous function.

Theorem 5.5. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be any two functions. Then

- (1) g of f is $ij-\psi^*$ -continuous if g is j-continuous and f is $ij-\psi^*$ -continuous.
- (2) g o f is $ij-\psi^*$ -irresolute if both f and g are $ij-\psi^*$ -irresolute.
- (3) g o f is $ij-\psi^*$ -continuous if g is $ij-\psi^*$ -continuous and f is $ij-\psi^*$ -irresolute.

Proof. Let $V \in j$ -C(Z), since g is j-continuous, then $g^{-1}(V) \in j$ -C(Y). Since f is ij- ψ^* -continuous, then we have $f^{-1}(g^{-1}(V)) \in ij$ - $\psi^*C(X)$. Consequently, $g \circ f$ is ij- ψ^* -continuous.

(2)–(3) Similarly. \Box

Theorem 5.6. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an $ij \cdot \psi^*$ continuous function. If (X, τ_1, τ_2) is $ij - T_{1/5}^{\psi^*}$ space, then f is $ji \cdot \alpha$ -continuous function.

Proof. Let $V \in j$ -C(Y). Since f is $ij \cdot \psi^*$ -continuous, then $f^{-1}(V) \in ij \cdot \psi^* C(X)$. Since (X, τ_1, τ_2) is an $ij - T^{\psi^*}_{1/5}$ space, then $f^{-1}(V) \in ji \cdot \alpha C(X)$. Consequently, f is $ji \cdot \alpha$ -continuous. \Box

Theorem 5.7. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be an ij- α gcontinuous function. If (X, τ_1, τ_2) is an ij- αT_k space, then f is $ij-\psi^*$ -continuous. **Proof.** Let $V \in j$ -C(Y). Since f is an ij- α g-continuous function, thus $f^{-1}(V) \in ij$ - α GC(X). Since (X, τ_1, τ_2) is an ij- α T_k space, then $f^{-1}(V) \in ij$ - $\psi^*C(X)$. Consequently, f is ij- ψ^* -continuous.

Theorem 5.8. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be an ij-g α -continuous function. If (X, τ_1, τ_2) is ij $-\psi^* T_{1/5}$ space, then f is ij- ψ^* continuous.

Proof. Let $V \in j$ -C(Y). Since f is an ij-g α -continuous function, thus $f^{-1}(V) \in ij$ - $G\alpha C(X)$. Since (X, τ_1, τ_2) is an $ij - \psi^* T_{1/5}$ space, then $f^{-1}(V) \in ij$ - $\psi^* C(X)$. Consequently, f is ij- ψ^* -continuous. \Box

Theorem 5.9. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be an ij-gs-continuous function. If (X, τ_1, τ_2) is ij- T_k space, then f is ij- ψ^* continuous.

Proof. Let $V \in j$ -C(Y). Since f is an ij-gs-continuous function, thus $f^{-1}(V) \in ij$ -GSC(X). Since (X, τ_1, τ_2) is an ij- T_k space, then $f^{-1}(V) \in ij$ - $\psi^*C(X)$. Consequently, f is ij- ψ^* -continuous. \Box

Theorem 5.10. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be onto, $ij - \psi^*$ irresolute and $ji - \alpha$ -closed. If (X, τ_1, τ_2) is $ij - T_{1/5}^{\psi^*}$ space, then (Y, σ_1, σ_2) is also an $ij - T_{1/5}^{\psi^*}$ space.

Proof. Let $V \in ij$ - $\psi^* C(Y)$. Since f is ij- ψ^* -irresolute, then $f^{-1}(V) \in ij$ - $\psi^* C(X)$. Since (X, τ_1, τ_2) is $ij - T_{1/5}^{\psi^*}$ space, then $f^{-1}(V) \in ji$ - $\alpha C(X)$. Since f is ji- α -closed and onto. Then we have $V \in ji$ - $\alpha C(Y)$. Therefore (Y, σ_1, σ_2) is also an $ij - T_{1/5}^{\psi^*}$ space. \Box

We introduce the following definition.

Definition 5.3. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called an *ij-pre-* ψ^* -closed if $A \in ij$ - $\psi^*C(X)$, $f(A) \in ij$ - $\psi^*C(Y)$.

Theorem 5.11. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be onto, ij-gairresolute and ij-pre- ψ^* -closed. If (X, τ_1, τ_2) is $ij - \psi^* T_{1/5}$ space, then (Y, σ_1, σ_2) is also an $ij - \psi^* T_{1/5}$ space.

Proof. Let $V \in ij$ - $G\alpha C(Y)$. Since f is ij- $g\alpha$ -irresolute, then $f^{-1}(V) \in ij$ - $G\alpha C(Y)$. Since (X, τ_1, τ_2) is an $ij - \psi^* T_{1/5}$ space. Since f is ij-pre- ψ^* -closed and onto. Then we have $f(f^{-1}(V)) = V \in ij$ - $\psi^* C(Y)$. Therefore (Y, σ_1, σ_2) is also an $ij - \psi^* T_{1/5}$ space. \Box

Theorem 5.12. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be onto, ij- αg irresolute and ij-pre- ψ^* -closed. If (X, τ_1, τ_2) is an ij- αT_k space, then (Y, σ_1, σ_2) is also an ij- αT_k space. **Proof.** Let $V \in ij \cdot \alpha GC(Y)$. Since f is $ij \cdot \alpha g$ -irresolute, then $f^{-1}(V) \in ij \cdot \alpha GC(X)$. Since (X, τ_1, τ_2) is an $ij \cdot \alpha T_k$ space, then $f^{-1}(V) \in ij \cdot \psi^* C(X)$. Since f is ij-pre- ψ^* -closed and onto. Then we have $f(f^{-1}(V)) = V \in ij \cdot \psi^* C(Y)$. Therefore (Y, σ_1, σ_2) is also an $ij - \alpha T_k$ space. \Box

Theorem 5.13. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be onto, *ij-gs-irresolute and ij-pre-* ψ^* *-closed. If* (X, τ_1, τ_2) *is an ij-T_k space, then* (Y, σ_1, σ_2) *is also an ij-T_k space.*

Proof. Let $V \in ij$ -*GSC*(*Y*). Since *f* is *ij*-gs-irresolute, then $f^{-1}(V) \in ij$ -*GSC*(*X*). Since (X, τ_1, τ_2) is an ij- T_k space, then $f^{-1}(V) \in ij$ - $\psi^*C(X)$. Since *f* is *ij*-pre- ψ^* -closed and onto. Then we have $f(f^{-1}(V)) = V \in ij$ - $\psi^*C(Y)$. Therefore (Y, σ_1, σ_2) is also an ij- T_k space. \Box

Acknowledgments

The authors are greatly indebted to an anonymous referee for a very careful reading and pointing out necessary corrections.

References

- [1] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11 (5) (1982) 341–356.
- [2] T.Y. Kong, R. Kopperman, P.R. Meyer, A topological approach to digital topology, Am. Math. Monthly 98 (1991) 901–917.
- [3] B.M.R. Stadler, P.F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry, J. Chen. Inf. Comput. Sci. 42 (2002) 577–585.
- [4] N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Math. Palermo 19 (2) (1970) 89–96.
- [5] S.P. Arya, T.M. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math. 21 (8) (1990) 717–719.
- [6] P. Bhattacharya, B.K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (1987) 375–382.
- [7] H. Maki, R. Devi, K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III (42) (1993) 13–21.
- [8] H. Maki, R. Devi, K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 15 (1994) 51–63.

- H.M. Abu Donia et al.
- [9] H. Maki, J. Umehara, T. Noiri, Every topological space is pre-T1/2, Mem. Fac. Sci. Koch Univ. Ser. A. Math. 17 (1996) 33–42.
- [10] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 16 (1995) 35–48.
- [11] O.A. El-Tantawi, H.M. Abu-Donia, Generalized separation axioms in bitopological spaces, Arab. J. Sci. Eng. 1 (2005) 117– 129.
- [12] M.A. Abd Allah, A.S. Nawar, ψ^* -closed sets in topological spaces, 'Wulfenia' J. 21 (9) (2014) 391–401.
- [13] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak pre-continuous mapings, Proc. Math. and Phys. Soc. Egypt 53 (1982) 47–53.
- [14] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36–41.
- [15] A.S. Mashhour, I.A. Hasanein, S.N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hung. 41 (1983) 213–218.
- [16] K. Balachandran, P. Sundaram, H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser. A. Math. 12 (1991) 5–13.
- [17] Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math. 28 (3) (1997) 351–360.
- [18] R. Devi, H. Maki, K. Balachandran, Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces, Indian J. Pure. Appl. Math. 26 (3) (1995) 271–284.
- [19] P. Sundaram, H. Maki, K. Balachandran, Semi-generalized continuous maps and semi-T_{1/2} spaces, Bull. Fukuoka Univ. Ed. Part III (40) (1991) 33–40.
- [20] I. Arokiarani, K. Balachandran, J. Dontchev, Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 20 (1999) 93–104.
- [21] R. Devi, K. Balachandran, H. Maki, Generalized α-closed maps and α-generalized closed maps, Indian J. Pure. Appl. Math. 29 (1) (1998) 37–49.
- [22] R. Devi, K. Balachandran, H. Maki, On generalized αcontinuous maps and α-generalized continuous maps, Far East J. Math. Sci. (1997) 1–15 (Special volume)
- [23] S. Sampath Kumar, On a decomposition of pairwise continuity, Bull. Cal. Math. Soc. 89 (1997) 441–446.
- [24] T. Noiri, The further unified theory for modifications of g-closed sets, Rend. Circ. Math. Palermo 57 (2008) 411–422.