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0. Introduction

Using the tools of the traditional tensor calculus, in his paper
[1], Akbar-Zadeh proved that if the h-curvature Rr

ijk of the Car-
tan connection CC associated with a Finsler manifold ðM;LÞ,
dimM P 3, satisfies

Rr
ijk ¼ kðgijdr

k � gikd
r
j Þ;

where k is a scalar function on T M, positively homogeneous
of degree zero ((0) p-homogeneous), then

(a) k is constant,
(b) if k–0, then
(1) the v-curvature of CC vanishes: Sr
ijk ¼ 0,
(2) the hv-curvature of CC is symmetric with respect to

the last two indices: P r
ijk ¼ P r

ikj.
In his paper [2], H�oj�o showed, also by local calculations,

that if the h-curvature Rr
ijk of the generalized Cartan connec-

tion CC; dimM P 3, satisfies1

Rr
ijk ¼ kAj;k qgijd

r
k þ ðq� 2Þðgij‘k‘r � dr

j ‘i‘k

n o
;

where k is a (0) p-homogeneous scalar function and 1 – q 2 R,
then

(a) k is constant,
(b) if k–0, then � �
(1) the v-curvature of CC satisfies Sr
ijk ¼

q�2
2ð1�qÞAj;k �hij�h

r
k ,

(2) the hv-curvature of CC is symmetric with respect to
the last two indices.

The aim of the present paper is to provide intrinsic proofs of

Akbar-Zadeh’s and H�oj�o’s theorems. As a by-product, some
consequences concerning S3-like and S4-like spaces are
deduced.
traction:
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Thus the present work is formulated in a coordinate-free
form, without being trapped into the complications of indices.
Naturally, the coordinate expressions of the obtained results

coincide with the starting local formulations.

1. Notation and preliminaries

In this section, we give a brief account of the basic concepts of
the pullback approach to intrinsic Finsler geometry necessary
for this work. For more details, we refer to [3–5]. We shall use

the same notations as in [5].
In what follows, we denote by p : TM!M the subbundle

of nonzero vectors tangent to M and by XðpðMÞÞ the FðTMÞ-
module of differentiable sections of the pullback bundle
p�1ðTMÞ. The elements of XðpðMÞÞ will be called p-vector
fields and will be denoted by barred letters X. The tensor fields

on p�1ðTMÞ will be called p-tensor fields. The fundamental p-
vector field is the p-vector field �g defined by �gðuÞ ¼ ðu; uÞ for all
u 2 TM.

We have the following short exact sequence of vector

bundles

0! p�1ðTMÞ!c TðTMÞ!q p�1ðTMÞ ! 0;

with the well known definitions of the bundle morphisms q and
c. The vector space VuðTMÞ ¼ fX 2 TuðTMÞ : dpðXÞ ¼ 0g is
called the vertical space to M at u.

Let D be a linear connection (or simply a connection) on
the pullback bundle p�1ðTMÞ. We associate with D the map
K : TTM! p�1ðTMÞ : X#DX�g, called the connection map
of D. The vector space HuðTMÞ ¼ fX 2 TuðTMÞ :
KðXÞ ¼ 0g is called the horizontal space to M at u. The con-
nection D is said to be regular if TuðTMÞ ¼ VuðTMÞ�
HuðTMÞ8u 2 TM.

If M is endowed with a regular connection, then the vector
bundle maps c; qjHðTMÞ and KjVðTMÞ are vector bundle
isomorphisms. The map b :¼ ðqjHðTMÞÞ

�1
will be called the

horizontal map of the connection D.
The horizontal ((h)h-) and mixed ((h)hv-) torsion tensors of

D, denoted by Q and T respectively, are defined by

QðX;YÞ¼TðbXbYÞ; TðX;YÞ¼TðcX;bYÞ 8X;Y2XðpðMÞÞ;

where T is the torsion tensor field of D defined by

TðX;YÞ ¼ DXqY�DYqX� q½X;Y� 8X;Y 2 XðTMÞ:

The horizontal (h-), mixed (hv-) and vertical (v-) curvature
tensors ofD, denoted by R;P and S respectively, are defined by

RðX;YÞZ ¼ KðbXbYÞZ; PðX;YÞZ ¼ KðbX; cYÞZ;
SðX;YÞZ ¼ KðcX; cYÞZ;

where K is the (classical) curvature tensor field associated

with D.
The contracted curvature tensors of D, denoted by bR, bP

and bS respectively, known also as the (v)h-, (v)hv- and (v)v-tor-

sion tensors, are defined by

bRðX;YÞ ¼ RðX;YÞ�g; bPðX;YÞ ¼ PðX;YÞ�g;bSðX;YÞ ¼ SðX;YÞ�g:

If M is endowed with a metric g on p�1ðTMÞ, we write
RðX;Y;Z;WÞ :¼ gðRðX;YÞZ;WÞ; . . . ; SðX;Y;Z;WÞ
:¼ gðSðX;YÞZ;WÞ: ð1:1Þ

The following result is of extreme importance.

Theorem 1.1 [6]. Let ðM;LÞ be a Finsler manifold and g the
Finsler metric defined by L. There exists a unique regular
connection $ on p�1ðTMÞ such that

(a) $ is metric : rg ¼ 0,
(b) The (h)h-torsion of $ vanishes: Q ¼ 0,
(c) The (h)hv-torsion T of $ satisfies: gðT ðX ; Y Þ; ZÞ ¼

gðT ðX ; ZÞ; Y Þ.

This connection is called the Cartan connection of the Finsler

manifold ðM;LÞ.

2. First generalization of Akbar-Zadeh theorem

In this section, we investigate an intrinsic generalization of

Akbar-Zadeh theorem. We begin first with the following two
lemmas which will be useful for subsequent use.

Lemma 2.1. Let $ be the Cartan connection of a Finsler manifold
ðM;LÞ. For a p-tensor fieldx of type ð1; 1Þ, we have the following
commutation formulae:

(a) r
2

r
2

x

� �
ðX ;Y ;ZÞ� r

2

r
2

x

� �
ðY ;X ;ZÞ ¼xðSðX ;Y ÞZÞ�

SðX ; Y ÞxðZÞ,

(b) r
2

r
1

x

� �
ðX ;Y ;ZÞ� r

1

r
2

x

� �
ðY ;X ;ZÞ ¼xðP ðX ;Y ÞZÞ�

PðX ;Y ÞxðZÞþ r
2

x

� �
ðbP ðX ;Y Þ;ZÞþ r

1

x

� �
ðT ðY ;X Þ;ZÞ,

(c) r
1

r
1

x

� �
ðX ;Y ;ZÞ� r

1

r
1

x

� �
ðY ;X ;ZÞ ¼xðRðX ;Y ÞZÞ�

RðX ; Y ÞxðZÞ þ r
2

x

� �
ðbRðX ; Y Þ; ZÞ,

where r
1

and r
2

are the h- and v-covariant derivatives associated

with $.

Lemma 2.2. Let ðM;LÞ be a Finsler manifold, g the Finsler met-

ric defined by L; ‘ :¼ L�1i�gg and �h :¼ g� ‘ � ‘ the angular

metric tensor. Then we have:

(a) r
1

L ¼ 0; r
2

L ¼ ‘.
(b) r

1

‘ ¼ 0; r
2

‘ ¼ L�1�h.
(c) i�g‘ ¼ L; i�g�h ¼ 0.
Proof. The assertions follow the facts that rg ¼ 0 and

gð�g; �gÞ ¼ L2. h

Now, we have

Theorem 2.3. Let ðM;LÞ be a Finsler manifold of dimension n
and g the Finsler metric defined by L. If the ðvÞh-torsion tensorbR of the Cartan connection is of the form

bRðX;YÞ ¼ kLð‘ðXÞY� ‘ðYÞXÞ; ð2:1Þ
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where k is a positive homogeneous function of degree 0 on TM,

then:

(a) SX ;Y ;ZRðX ; Y ÞZ ¼ 0. 2

(b) k is constant if dimM P 3.

Proof.

(a) We have [7]:

SX;Y;ZRðX;YÞZ ¼ SX;Y;ZTð bRðX;YÞ;ZÞ: ð2:2Þ

From (2.1), noting that the ðhÞhv-torsion T is symmetric, we

obtain

SX;Y;ZTð bRðX;YÞ;ZÞ¼kLTð‘ðXÞY�‘ðYÞX;ZÞþkLTð‘ðYÞZ
�‘ðZÞY;XÞþkLTð‘ðZÞX�‘ðXÞZ;YÞ
¼kL ‘ðXÞTðY;ZÞ�‘ðYÞTðX;ZÞ

� �
þkL ‘ðYÞTðZ;XÞ�‘ðZÞTðY;XÞ

� �
þkL ‘ðZÞTðX;YÞ�‘ðXÞTðZ;YÞ

� �
¼0: ð2:3Þ

Hence, the result follows from (2.2) and (2.3).

(b) We have [7]:

SX;Y;Z fðrbXRÞðY;Z;WÞ þ Pð bRðX;YÞ;ZÞWg ¼ 0: ð2:4Þ

From (2.1), noting that the ðvÞhv-torsion bP is symmetric [7], we
get

SX;Y;Z
bPð bRðX;YÞ;ZÞ¼ kL ‘ðXÞ bPðY;ZÞ� ‘ðYÞ bPðX;ZÞn o

þkL ‘ðYÞ bPðZ;XÞ� ‘ðZÞ bPðY;XÞn o
þkL ‘ðZÞ bPðX;YÞ� ‘ðXÞ bPðZ;YÞn o

¼ 0:

From this and (2.4) it follows that
SX;Y;Z ðrbX
bRÞðY;ZÞ ¼ 0: ð2:5Þ

Again from (2.1), noting that rbX‘ ¼ 0 (Lemma 2.2(b)), (2.5)

reads

LðrbXkÞ ‘ðYÞZ� ‘ðZÞY
� �

þ LðrbYkÞ ‘ðZÞX� ‘ðXÞZ
� �

þ LðrbZkÞ ‘ðXÞY� ‘ðYÞX
� �

¼ 0:

Setting Z ¼ �g into the above equation, noting that ‘ð�gÞ ¼ L
(Lemma 2.2(c)), we obtain

LðrbXkÞ ‘ðYÞ�g� LY
� �

þ LðrbYkÞ LX� ‘ðXÞ�g
� �

þ Lðrb�gkÞ ‘ðXÞY� ‘ðYÞX
� �

¼ 0:

Taking the trace of both sides with respect to Y, it follows that

rbXk ¼ L�1ðrb�gkÞ‘ðXÞ: ð2:6Þ

On the other hand, we have [7]

ðrcXRÞðY;Z;WÞ þ ðrbYPÞðZ;X;WÞ � ðrbZPÞðY;X;WÞ
� PðZ; bPðY;XÞÞWþ RðTðX;YÞ;ZÞW� Sð bRðY;ZÞ;XÞW
þ PðY; bPðZ;XÞÞW� RðTðX;ZÞ;YÞW ¼ 0: ð2:7Þ
2 SX ;Y ;Z denotes the cyclic sum over X ; Y and Z.
Setting W ¼ �g into the above relation, noting that

K � c ¼ idXðpðMÞÞ;K � b ¼ 0 and bS ¼ 0, it follows that

ðrcX
bRÞðY;ZÞ � RðY;ZÞXþ ðrbY

bPÞðZ;XÞ � ðrbZ
bPÞðY;XÞ

� bPðZ; bPðY;XÞÞ þ bRðTðX;YÞ;ZÞ þ bPðY; bPðZ;XÞÞ
� bRðTðX;ZÞ;YÞ ¼ 0:

Applying the cyclic sum SX;Y;Z on the above equation, taking

(a) into account, we get

SX;Y;ZðrcX
bRÞðY;ZÞ ¼ 0: ð2:8Þ

Substituting (2.1) into (2.8), using ðrcX‘ÞðYÞ ¼ L�1�hðX;YÞ
(Lemma 2.2(b)), we have

LðrcZkÞ ð‘ðXÞY�‘ðYÞXÞ
� �

þLðrcYkÞ ð‘ðZÞX�‘ðXÞZÞ
� �

þLðrcXkÞ ð‘ðYÞZ�‘ðZÞYÞ
� �

þk‘ðZÞ ð‘ðXÞY�‘ðYÞXÞ
� �

þk‘ðYÞ ð‘ðZÞX�‘ðXÞZÞ
� �

þk‘ðXÞ ð‘ðYÞZ�‘ðZÞYÞ
� �

þkL ð�hðX;ZÞY��hðY;ZÞXÞ
� �

þkL ð�hðZ;YÞX��hðX;YÞZÞ
� �

þkL ð�hðY;XÞZ��hðZ;XÞYÞ
� �

¼0:

Setting Z ¼ �g into the above relation, noting that ‘ð�gÞ ¼ L
,�hð�g; :Þ ¼ 0 (Lemma 2.2(c)) and rc�gk ¼ 0, we conclude that

L2 rcXk/ðYÞ � rcYk/ðXÞ
n o

¼ 0; ð2:9Þ

where / is a vector p-form defined by

gð/ðXÞ;YÞ :¼ �hðX;YÞ: ð2:10Þ

Taking the trace of both sides of (2.9) with respect to Y,
noting that Trð/Þ ¼ n� 1 [8], it follows that

ðn� 2ÞrcXk ¼ 0:

Consequently,

rcXk ¼ 0 for all X 2 XðpðMÞÞ; if n P 3: ð2:11Þ

Now, applying the v-covariant derivative with respect to Y
on both sides of (2.6), yields

‘ðYÞrbXkþ L r
2

r
1

k

� �
ðX;YÞ ¼ L�1�hðX;YÞðrb�gkÞ

þ ‘ðXÞðr
2

r
1

kÞð�g;YÞ:

Since, r
2

r
1

k ¼ r
1

r
2

k ¼ 0 (Lemma 2.1 and (2.11)), the above
relation reduces to

‘ðYÞrbXk ¼ L�1�hðX;YÞðrb�gkÞ;

whenever n P 3. Setting Y ¼ �g into the above equation, noting
that ‘ð�gÞ ¼ L and �hð:; �gÞ ¼ 0, it follows that rb�gk ¼ 0. Conse-

quently, again by (2.6),

rbXk ¼ 0 for all X 2 XðpðMÞÞ; if n P 3: ð2:12Þ

Now, Eqs. (2.11) and (2.12) imply that k is a constant if
n P 3.

This completes the proof. h

Theorem 2.4. Let ðM;LÞ be a Finsler manifold with dimension
n P 3 and let q–1 be an arbitrary real number. If the h-

curvature tensor R satisfies
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RðX;YÞZ ¼ kAX;Y qgðX;ZÞYþ ðq� 2Þ L�1gðX;ZÞ‘ðYÞ�g
��

�‘ðYÞ‘ðZÞX
��
; ð2:13Þ

where k is an hð0Þ- homogeneous function, then

(a) k is a constant.
(b) If k–0, we have:
(1) PðX ; Y ÞZ ¼ PðY ;X ÞZ (i.e., ðM ; LÞ is symmetric),

(2) SðX ; Y ÞZ ¼ 2�q
2ðq�1ÞL2 �hðX ; ZÞ/ðY Þ � �hðY ; ZÞ/ðX Þ

� �
.

Proof.

(a) Setting Z ¼ �g into (2.13), we get

bRðX;YÞ ¼ 2ðq� 1ÞkL ‘ðXÞY� ‘ðYÞX
� �

: ð2:14Þ

From this and Theorem 2.3, the result follows.
(b) (1) Applying the v-covariant derivative with respect to

W on both sides of (2.13), we get

ðrbWRÞðX;Y;ZÞ ¼ 0:

From this and (2.4) it follows that

SX;Y;Z Pð bRðX;YÞ;ZÞW ¼ 0: ð2:15Þ

In view of (2.14), noting that k–0, (2.15) implies that

2ðq� 1ÞL Pð‘ðXÞY� ‘ðYÞX;ZÞW
� �

þ 2ðq� 1Þ
L Pð‘ðYÞZ� ‘ðZÞY;XÞW
� �

þ 2ðq� 1Þ
L Pð‘ðZÞX� ‘ðXÞZ;YÞW
� �

¼ 0:

Setting Z ¼ �g into the above equation, taking into account the
fact that ‘ð�gÞ ¼ L and Pð:; �gÞ: ¼ Pð�g; :Þ: ¼ 0 [7], we get

2ðq� 1ÞL PðX;YÞW� PðY;XÞW
� �

¼ 0:

Hence, the result follows.

(b) (2) Taking the cyclic sum SX ;Y ;Z of (2.7) and using (b)
(1), we obtain

SX;Y;Z ðrcXRÞðY;Z;WÞ � Sð bRðY;ZÞ;XÞWn o
¼ 0: ð2:16Þ

On the other hand, by taking the v-covariant derivative of both

sides of (2.13), using ðrcXLÞ ¼ ‘ðXÞ, ðrcX‘ÞðYÞ ¼ L�1�hðX;YÞ
and rcXg ¼ 0, we get

ðrcXRÞðY;Z;WÞ ¼ kðq� 2ÞAX;YfgðX;WÞ�hðZ;YÞ
�g

L2

þ gðX;WÞ‘ðYÞ/ðZÞ
L
� �hðZ;YÞ‘ðWÞX

L

� �hðZ;WÞ‘ðYÞX
L
g:

Taking the cyclic sum SX;Y;Z of both sides of the above equa-

tion and then setting Z ¼ �g, it follows that

SX;Y; �gðrcXRÞðY; �g;WÞ ¼ 2kðq� 2Þ �hðY;WÞ/ðXÞ
�

��hðX;WÞ/ðYÞ
�
: ð2:17Þ

In view of (2.14), noting that Sð:; �gÞ: ¼ 0 and S is antisymmet-
ric [7], we obtain

SX;Y; �gSð bRðY; �gÞ;XÞW ¼ 4kL2ðq� 1ÞSðX;YÞW: ð2:18Þ

Therefore, by setting Z ¼ �g into (2.16), taking (2.17) and (2.18)
into account, the result follows. h
Corollary 2.5. Akbar-Zadeh’s theorem [1] is a special case of

Theorem 2.4, for which q ¼ 2.

Corollary 2.6. If the h-curvature tensor R of ðM;LÞ, where
dimM P 3, satisfies

RðX;YÞZ ¼ kAX;Y fgðX;ZÞ
�g
L
� ‘ðZÞXg‘ðYÞ

� �
;

then k is a constant and, moreover, if k–0, we have:

(a) ðM ; LÞ is symmetric.
(b) SðX ; Y ÞZ ¼ �1

L2 �hðX ; ZÞ/ðY Þ � �hðY ; ZÞ/ðX Þ
� �

.

3. Second generalization of Akbar-Zadeh’s theorem

In this section, we give a second, intrinsically formulated gen-
eralization of Akbar-Zadeh’s theorem.

Theorem 3.1. If the h-curvature tensor R of ðM;LÞ; dimM P 3,
satisfies

RðX;YÞZ ¼ k gðX;ZÞY� gðY;ZÞXþ xðX;YÞZ
� �

; ð3:1Þ

where x is an indicatory antisymmetric h(0) p-tensor field of
type ð1; 3Þ and k is an h(0)-function on TM, then

(a) k is a constant.
(b) If k–0, we have:

ð1ÞPðX;YÞZ� PðX;YÞZ ¼ L�2ðrb�gxÞðX;Y;ZÞ:

ð2ÞSðX;YÞZ ¼ 1

L2

1

2kL2
ðr
1

r
1

xÞð�g; �g;X;Y;ZÞ þ xðX;YÞZ
� �

:

Proof.

(a) Follows from Theorem 2.3 by setting Z ¼ �g into (3.1).
(b) (1) By (3.1), we have

bRðX;YÞ ¼ kL ‘ðXÞY� ‘ðYÞX
� �

; ð3:2Þ

and by (2.4), we have

SX;Y;�g fðrbXRÞðY; �g;WÞ þ Pð bRðX;YÞ; �gÞWg ¼ 0: ð3:3Þ

Now, substituting (3.1) and (3.2) into (3.3), we obtain

k ðrb�gxÞðX;Y;WÞ � L2 PðX;YÞZ� PðY;XÞZ
� �� �

¼ 0

from this, since k–0, the result follows.
(b) (2) Taking the cyclic sum SX ;Y ;Z of (2.7), we obtain

SX;Y;Z ðrcXRÞðY;Z;WÞ þ ðrbYPÞðZ;X;WÞ
n

�ðrbZPÞðY;X;WÞ � Sð bRðY;ZÞ;XÞWo ¼ 0: ð3:4Þ

In view of (1) above, it follows that

ðrbWPÞðX;Y;ZÞ � ðrbWPÞðY;X;ZÞ

¼ L�2 r
1

r
1

x

� �
ðW; �g;X;Y;ZÞ:
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From this we get

SX;Y;�g ðrb�gPÞðX;Y;ZÞ � ðrb�gPÞðY;X;ZÞ
� �

¼ L�2ðr
1

r
1

xÞð�g; �g;X;Y;ZÞ: ð3:5Þ

On the other hand, noting that x is homogeneous of degree
zero, we obtain

SX;Y;�gðrcXRÞðY; �g;WÞ ¼ ðrcXRÞðY; �g;WÞ þ ðrcYRÞ
� ð�g;X;WÞ þ ðrc�gRÞ
� ðX;Y;WÞ

¼ 2kxðX;YÞW: ð3:6Þ

SX;Y;�gSð bRðX;YÞ; �gÞW ¼ 2kL2SðX;YÞW: ð3:7Þ

Setting Z ¼ �g into (3.4), taking into account (3.5)–(3.7), the
result follows. h

Corollary 3.2. Akbar-Zadeh’s theorem [1] is obtained from the
above Theorem by letting x ¼ 0.

Corollary 3.3. A Finsler manifold ðM;LÞ is S3-like if x in

Theorem 3.1 is given by

xðX;YÞZ ¼ s �hðX;ZÞ/ðYÞ � �hðY;ZÞ/ðXÞ
� �

; ð3:8Þ

where / is given by (2.10) and s is a scalar function depending

only on the position.

Proof. From Theorem 3.1(b) and (3.8), the v-curvature tensor
S takes the form:

SðX;YÞZ¼ 1

L2
sþðr

1

r
1

sÞð�g;�gÞ
2kL2

8<
:

9=
; �hðX;ZÞ/ðYÞ��hðY;ZÞ/ðXÞ
� �

:

As the v-curvature tensor S is written in the above form, then
the term

sþ ðr
1

r
1

sÞð�g; �gÞ
2kL2

8<
:

9=
;

depends on the position only [9], and so ðM;LÞ is S3-like. h

Corollary 3.4. If the scalar function s in (3.8) is constant, we

have:
(a) P ðX ; Y ÞZ ¼ P ðY ;X ÞZ.
(b) SðX ; Y ÞZ ¼ s

L2 �hðX ; ZÞ/ðY Þ � �hðY ; ZÞ/ðX Þ
� �

.

Corollary 3.5. If the tensor field x in Theorem 3.1 is given by

xðX;YÞZ ¼ AX;Y HðX;ZÞ/ðYÞ þ �hðX;ZÞHoðYÞ
� �

;

where H is a symmetric indicatory h(0) 2-scalar p-form and

HðX;YÞ ¼: gðHoðXÞ;YÞ, then ðM;LÞ is S4-like, that is,

SðX;YÞZ ¼ 1

L2
AX;Y lðX;ZÞ/ðYÞ þ �hðX;ZÞloðYÞ

� �
;

where lðX;YÞ ¼ HðX;YÞ þ
r
1
r
1
H

� 	
ð�g;�g;X;YÞ

2kL2

8<
:

9=
;.

Proof. The proof is clear and we omit it. h
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