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Abstract The objective of this paper is to investigate the approximate boundary controllability of

Sobolev-type stochastic differential systems in Hilbert spaces. The control function for this system is

suitably constructed by using the infinite dimensional controllability operator. Sufficient conditions

for approximate boundary controllability of the proposed problem in Hilbert space is established by

using contraction mapping principle and stochastic analysis techniques. The obtained results are

extended to stochastic differential systems with Poisson jumps. Finally, an example is provided

which illustrates the main results.
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1. Introduction

In many cases, the accurate analysis, design, and assessment of
systems subjected to realistic environments must take into ac-
count the potential of random loads and randomness in the

system properties. Randomness is intrinsic to the mathemati-
cal formulation of many phenomena such as fluctuations in
the stock market, or noise in communication networks. To
build more realistic models in economics, social sciences,
chemistry, finance, physics and other areas, stochastic effects

need to be taken into account. Mathematical modeling of such
systems often leads to differential equations with random
parameters. The use of deterministic equations that ignore

the randomness of the parameter or replace them by their
mean values can result in gross errors. All such problems are
mathematically modeled and described by various stochastic
systems described by stochastic differential equations, stochas-

tic delay equations, and in some cases stochastic integro-differ-
ential equations which are mathematical models for
phenomena with irregular fluctuations. Stochastic differential

equations are important from the viewpoint of applications
since they incorporate (natural) randomness into the mathe-
matical description of phenomena, thereby describing it more

accurately. The theory of stochastic differential systems has be-
come an important area of investigation in the past two dec-
ades because of their applications to various problems
arising in communications, control technology, mechanics,
icense.
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electrical engineering, medicine, biology, aviation, spaceflight,

material, robot, bioengineering, etc. [1,2]. This is due to the
fact that most problems in a real life situation to which math-
ematical models are applicable are basically stochastic rather
than deterministic (see [3]).

Mathematical control theory is one of the important con-
cept in the study of steering the dynamical system from given
initial state to any other final state or to neighborhood of the

final state under some admissible control input. The controlla-
bility problem for an evolution equation is also consist of driv-
ing the solution of the system to a prescribed final target state

(exactly or in some approximate way) in a finite interval of
time (see [4] and references therein). Problems of this type
are common in science and engineering and, in particular, they

arise often in the context of flow control, the control of flexible
structures appearing in flexible robots and large space struc-
tures, quantum chemistry, etc. (see [5]). From the mathemati-
cal point of view, the problems of exact and approximate

controllability are to be distinguished. It is obvious that exact
controllability is an essentially stronger notion than approxi-
mate controllability. Exact controllability always implies

approximate controllability. The converse statement is gener-
ally false. However, it should be addressed that in the case
of finite dimensional systems, the notions of exact and approx-

imate controllability coincide. Controllability results for a class
of fractional-order neutral evolution systems was discussed in
[6]. Sakthivel et al, [7] investigated the problem of approximate
controllability for a class of nonlinear impulsive differential

equations with state-dependent delay by using semigroup the-
ory and fixed point technique. In recent years, controllability
problems for various types of deterministic and stochastic

dynamical system have been studied in different directions
(see [8–13] and references therein). In the literature, there are
different definitions of controllability for SDEs, both for linear

and nonlinear dynamical systems [8,9,14]. In particular, Klam-
ka [15] derived the stochastic controllability of linear systems
with delay in control. Muthukumar et al. [16] proved the

approximate controllability of nonlinear stochastic evolution
systems with time varying delays with preassigned responses.
Sakthivel et al. [17] investigated the approximate controllabil-
ity of second order stochastic differential equations with

impulsive effects by using the Holders inequality, stochastic
analysis, and fixed point strategy. Shen et al. [18] proved
approximate controllability of abstract stochastic impulsive

systems with multiple time-varying delays by using the natural
assumptions that the corresponding linear system is approxi-
mately controllable. Sakthivel et al. [19,20] studied approxi-

mate controllability of fractional stochastic system by using
fixed point theorem with stochastic analysis theory.

Especially in the past two decades, applications resulting

from technological developments gave rise to the study of infi-
nite dimensional linear systems governed by partial differential
equations. In engineering, these systems are referred to as dis-
tributed parameter systems. Systems of this type appear for in-

stance in steel making plants, where the heat distribution on a
metal slab has to be governed, in biology, where the size of a
bacteria population has to be controlled or in electrical engi-

neering, where optimal operation of power plants has to be
calculated (see [2]). These examples fit into a class of systems
where control cannot be exceeded everywhere. It is for instance

only possible to heat the metal slab at the boundary, to control
the population size at a certain age or to generate current in the
power plants of an electrical network. Several abstract settings

have been developed to describe the distributed control sys-
tems on a domain in which the control is acted through the
boundary. But in these approaches one can encounter the dif-
ficulty for the existence of sufficiently regular solution to state

space system, the control must be taken in a space of suffi-
ciently smooth functions.

A semigroup approach to boundary input problems for lin-

ear differential equations was first presented by Fattorini [21].
This approach was extended by Balakrishnan [22] where he
showed that the solution of a parabolic boundary control

equation with L2 controls can be expressed as a mild solution
to an operator equation. Barbu [23] investigated a class of
boundary distributed linear control systems in Banach spaces.

MacCamy et al. [24] obtained the approximate boundary con-
trollability for the heat equations. Han et al. [25] also studied
the boundary controllability of differential equations with
nonlocal condition by using Banach fixed point theorem.

Many authors studied the boundary controllability of differen-
tial equations in deterministic cases (see [26–30] and references
therein). Balachandran et al. [31] established the sufficient con-

ditions for the boundary controllability of various types of
nonlinear Sobolev-type systems including integro differential
systems in Banach spaces. A Sobolev-type equation appears

in a variety of physical problems such as flow of fluids through
fissured rocks, thermodynamics, and propagation of long
waves of small amplitude (see [32,33]). Wang [34] addressed
the approximate boundary controllability results for semilin-

ear delay differential equations by using the corresponding lin-
ear system which is approximately boundary controllable. Li et
al. [35] showed that the boundary controllability of nonlinear

stochastic differential inclusions by using a fixed point theorem
for condensing maps due to Leray-Schauder nonlinear alterna-
tive theorem. If the semigroup is compact, then assumptions

(H2) in [35] is valid if and only if the state space is finite dimen-
sional. As a result, the applications are restricted to stochastic
ordinary differential control systems. Motivated by [31,34,35],

the aim of the proposed work is to obtain the approximate
boundary controllability of the following Sobolev-type sto-
chastic differential systems without using the hypothesis (H2)
in [35]

dðFxðtÞÞ¼ ðqxðtÞþ fðt;xðc1ðtÞÞ;xðc2ðtÞÞ; . . . ;xðcnðtÞÞÞÞdt
þgðt;xðc1ðtÞÞ;xðc2ðtÞÞ; . . . ;xðcnðtÞÞÞdWðtÞ; t2 J¼ ½0;b�;

sxðtÞ¼B1uðtÞ;
xð0Þ¼ x0;

ð1Þ

where the state variable x(Æ) takes values in a Hilbert space H
with an inner product ÆÆ, Ææ and i Æ i and the control function
u(Æ), takes values in Hilbert space U. B1:U fi H is a linear con-

tinuous operator. Let C :¼ CðJ;L2ðX;HÞÞ be the space of all
real valued measurable continuous functions from J into H.
Let q : DðqÞ# C ! RðqÞ#H is a closed, densely defined linear

operator, where D(q) is the domain of q and R(q) is the range
of q and s : DðsÞ# C ! RðsÞ#H is a linear operator with s be
a partial differential operator acting on the boundary ofH. Let

K be a another separable Hilbert space. Suppose {W(t)}tP0 is a
given K- valued Brownian motion or Wiener process with a fi-
nite trace nuclear covariance operator Q P 0. We are also
employing the same notation iÆi for the norm of L(K,H), where

L(K,H) denotes the space of all bounded operators from K
into H, simply L(H) if K= H. Let F : DðFÞ � C !
RðFÞ � H be a linear operator, the nonlinear function f be a
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H-valued map defined on J · Hn and g be a LQ(K,H) valued

map defined on J · Hn. Here, LQ(K,H) denotes the space of
all Q � Hilbert Schmidt operators from K into H. ci(t):
J fi J, i = 1, 2, . . . , n are continuous functions. The initial

data x0 are an F0-adapted H-valued random variable indepen-
dent of Wiener process W. Let y(t) = F x(t) then (1) can be
written as

dðyðtÞÞ¼ ðqF�1yðtÞþ fðt;F�1yðc1ðtÞÞ;F�1yðc2ðtÞÞ; . . . ;F�1yðcnðtÞÞÞÞdt
þgðt;F�1yðc1ðtÞÞ;F�1yðc2ðtÞÞ; . . . ;F�1yðcnðtÞÞÞdWðtÞ; t2 J;

�syðtÞ¼B1uðtÞ;
yð0Þ¼ y0;

ð2Þ

where �s ¼ sF�1. Let A:D(A) � H fi H be a linear operator de-
fined by DðAF�1Þ ¼ fa 2 DðqF�1Þ; �sa ¼ 0g; AF�1a ¼ qF�1a
for a 2 D(A F�1).

The operators A:D(A) � H fi H and
F : DðFÞ � C ! RðFÞ � H satisfy the following hypotheses [12]

(S1) A and F are closed linear operators,

(S2) D(F) � D(A) and F is bijective,
(S3) F�1 fi D(F) is continuous,
(S4) The resolvent R(#,AF�1) is compact for some

# 2 q(AF�1), the resolvent set of AF�1.

The rest of this paper is organized as follows. Section 2 de-

scribes some notations, lemmas and preliminary results of sto-
chastic settings. Sections 3 and 4 are devoted to the study of
existence, approximate boundary controllability of Sobolev-
type stochastic differential systems, and the boundary control-

lability results of the system with Poisson jumps. In Section 5,
an example is provided to illustrate the application of the main
result. Section 6 contains the conclusion.

2. Preliminaries

For more details of this section, the reader may refer
[1,3,9,10,14,16–20] and the references therein.

Let ðX;F;PÞ be a complete probability space furnished

with complete family of right continuous increasing sub r alge-
bras fFt; t 2 Jg satisfying Ft � F. H-valued random variable
is a F measurable function x(t):X fi H, and a collection of ran-

dom variable S= {x(t,x):X fi HŒt2J} is called a stochastic
process. Usually, we suppress the dependence on x 2 Xand
write x(t) instead of x(t,x) and x(t):J fi H in the place of S.
Let bn(t)(n = 1, 2, . . .) be a sequence of real valued one dimen-

sional standard Brownian motion mutually independent over
ðX;F;PÞ. Set WðtÞ ¼

P1
n¼1

ffiffiffiffiffi
kn

p
bnðtÞfn; t P 0 where kn P 0,

n = 1, 2, . . . are nonnegative real numbers and {fn},
n = 1, 2, . . . is complete orthonormal basis in K. Let
Q 2 L(K,K) be an operator defined by Qfn = knfn with finite
TrðQÞ ¼

P1
n¼1kn <1 (Tr denotes the Trace of the operator).

Then, the above K-valued stochastic process W(t) is called a
Q-Wiener process. We assume that Ft ¼ rðWðsÞ : 0 6 s 6 tÞ
is the r- algebra generated by W and Ft ¼ F. Let w 2 L(K,H)

and define

kwk2Q ¼ TrðwQw�Þ ¼
X1
n¼1
k
ffiffiffiffiffi
kn

p
wfnk2:

If iwiQ <1, then w is called a Q-Hilbert Schmidt opera-

tor. Let LQ(K,H) denote the space of all Q-Hilbert Schmidt
operators w:K fi H. The completion LQ(K,H) of L(K,H) with
respect to the topology induced by the norm i Æ iQ where

kwk2Q ¼ hw;wi is a Hilbert space with the above norm topol-
ogy. The collection of all strongly measurable, square integra-
ble H- valued random variables denoted by
L2ðX;F;P;HÞ ¼ L2ðX;HÞ, is a Banach space equipped with

norm kxð�ÞkL2
¼ Ekxð�;wÞk2H
� �1

2

, where the expectation E is
defined by Eð�hÞ ¼

R
X �hðwÞdP. Similarly, L

F

2 ðX;HÞ denotes the
Banach space of all Ft- measurable, square integrable random

variables, such that
R

X kxðt; �Þk
2
L2
dt <1. C(J,L2(X,H)) is the

Banach space of all continuous maps from J into L2(X,H) sat-
isfying the condition supt2JEix(t)i2 <1.

Let y(t) be the solution of (2). Then defined the function
z(t) = y(t) � Bu(t). From the assumptions, it follows that
z(t) 2 D(AF�1). Hence, (2) can be written as

dðzðtÞÞ¼ ðAF�1zðtÞþqF�1BuðtÞ�Bu0 ðtÞÞdtþ fðt;F�1yðc1ðtÞÞ;F�1yðc2ðtÞÞ; . . . ;F�1yðcnðtÞÞÞdt
þgðt;F�1yðc1ðtÞÞ;F�1yðc2ðtÞÞ; . . . ;F�1yðcnðtÞÞÞdWðtÞ;

zð0Þ¼ yð0Þ�Buð0Þ;

and the mild solution of (2) is given by [31,35]

yðtÞ¼TðtÞyð0Þþ
Z t

0

½Tðt� sÞqF�1�AF�1Tðt� sÞ�BuðsÞds

þ
Z t

0

Tðt� sÞfðs;F�1yðc1ðsÞÞ;F�1yðc2ðsÞÞ; . . . ;F�1yðcnðsÞÞÞds

þ
Z t

0

Tðt� sÞgðs;F�1yðc1ðsÞÞ;F�1yðc2ðsÞÞ; . . . ;F�1yðcnðsÞÞÞdWðsÞ;

which is well defined. Hence, the mild solution of the system
(1) is given by

xðtÞ¼F�1TðtÞFxð0Þþ
Z t

0

F�1½Tðt� sÞqF�1�AF�1Tðt� sÞ�BuðsÞds

þ
Z t

0

F�1Tðt� sÞfðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds

þ
Z t

0

F�1Tðt� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞdWðsÞ; ð3Þ

To prove the main results, we assume the following hypotheses
[31,36].

(H1) D(q) � D(s) and the restriction of s to D(q) is continu-
ous relative to graph norm of D(q).

(H2) The operator AF�1 is the infinitesimal generator of a
compact semigroup of bounded linear operators T(t)

such that iT(t)i2 6M for some M P 1 .
(H3) There exists a linear continuous operator B: U fi Z such

that qF�1B 2 L(U,Z), �sðBuÞ ¼ B1u for all u 2 U. Also,

iBui 6 c0iB1ui for all u 2 U, where c0 is a constant.
(H4) For all t 2 (0,b] and u 2 U, T(t)Bu 2 D(AF�1) and

AF�1T(t)B is a linear operator. Moreover, there exists
a positive function j 2 L1(0,b) such that iAF�1T(t)-
Bi2 6 j(t) a.e t 2 (0,b).

(H5) There exist constants N1,N2 > 0 such thatR b
0

jðtÞdt 6 N 1 and ŒF�1Œ2 6 N2.

(H6) The functions f:J · Hn fi H and g:J · Hn fi LQ(K,H)
are continuous and there exists constants C1, C2, for
t 2 J and x1(ci(s)), x2(ci(s)) 2 H, i= 1, 2, . . . , n such that

kfðt;x1ðc1ðsÞÞ;x1ðc2ðsÞÞ; . . . ;x1ðcnðsÞÞÞ� fðt;x2ðc1ðsÞÞ;x2ðc2ðsÞÞ; . . . ;x2ðcnðsÞÞÞk
2

þkgðt;x1ðc1ðsÞÞ;x1ðc2ðsÞÞ; . . . ;x1ðcnðsÞÞÞ�gðt;x2ðc1ðsÞÞ;x2ðc2ðsÞÞ; . . . ;x2ðcnðsÞÞÞk
2
Q

6C1

Xn
i¼1
kx1ðciðsÞÞ�x2ðciðsÞÞk

2
;

C2 ¼max
t2J
ðkfðt;0; . . . ;0Þk2þkgðt;0; . . . ;0Þk2Þ

(H7) There exists a constant C3 such that for every x1, x2 2 H
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kx1ðciðtÞÞ � x2ðciðtÞÞk
2
6 C3kx1ðtÞ � x2ðtÞk2; for i

¼ 1; 2; . . . ; n

(H8) For each 0 6 t < b, the operator kR k;Cb
t

� �
¼

kðkI þ Cb
t Þ
�1

converges to zero in the strong operator
topology as k fi 0+, where the controllability Gramian
Cb

t , associated with (1), is defined as [8,9,18–20]

Cb
t ¼

Z b

t

F�1½Tðb� sÞqF�1 � AF�1Tðb

� sÞ�BBIF�1½Tðb� sÞqF�1 � AF�1Tðb� sÞ�Ids:
Definition 2.1. The system (1) is said to be approximately

boundary controllable on [0,b] if Rðb; x0; uÞ ¼ L2ðX;Fb;HÞ,
where the reachable set Rðb; x0; uÞ is defined as Rðb; x0; uÞ ¼
fxðb; x0; uÞ; uð�Þ 2 L

F
2 ðJ;UÞg. Here x(b;x0,u) is called the

system state at time t= b corresponding to the initial

condition x0 and the control input u.

Lemma 2.1 [9]. For any xb 2 L2ðX;Fb;HÞ, there exists
u 2 L

F

2 ðX;L2ð0; b;LQðK;HÞÞÞ such that xb ¼ ExbþR b

0
uðsÞdWðsÞ.

To obtain the approximate controllability result, for any

xb 2 L2ðX;Fb;HÞ, by selecting proper control uk(for any given
k 2 (0,1]), there exists a mild solution xkð�; x0; u

kÞ 2 C for sys-
tem (1), and then we prove that xk fi xb inH as k fi 0+, which

reaches the result. For all k > 0, define the control for the sys-
tem (1) as

ukðt;xÞ¼BIF�1½Tðb� tÞqF�1�AF�1Tðb� tÞ�I kIþCb
0

� ��1ðExb�F�1TðbÞFxð0ÞÞ

�BIF�1½Tðb� tÞqF�1�AF�1Tðb� tÞ�I
Z t

0

kIþCb
s

� ��1
F�1Tðb� sÞ

� fðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds

�BIF�1½Tðb� tÞqF�1�AF�1Tðb� tÞ�I

�
Z t

0

kIþCb
s

� ��1
F�1Tðb� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞdWðsÞ

þBIF�1½Tðb� tÞqF�1�AF�1Tðb� tÞ�I
Z t

0

ðkIþCb
s Þ
�1

uðsÞdWðsÞ: ð4Þ

Using this control function, we define the operator Uk on C as
follows

ðUkxÞðtÞ¼F�1TðtÞFxð0Þþ
Z t

0

F�1½Tðt� sÞqF�1�AF�1Tðt� sÞ�Bukðs;xÞds

þ
Z t

0

F�1Tðt� sÞfðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds

þ
Z t

0

F�1Tðt� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞdWðsÞ; t2 J: ð5Þ
3. Main results

3.1. Existence of solutions

Taking into account the above notations, definitions and lem-
mas, we shall derive the existence of solution for the nonlinear

stochastic system (1) by using the contraction mapping princi-
ple. The existence of solutions to system (1) is a natural pre-
mise to carry out the study of boundary controllability.

Theorem 3.1. Suppose the hypotheses (H1)–(H7) hold. If
3
N
k2

N2ðbMkqF�1k2kBk2 þN1Þ þN2Mðbþ TrðQÞÞC1nC3

� �
b < 1; ð6Þ

then the operator Uk has a fixed point in C.

Proof. We prove the existence of a fixed point of the operator
Uk by using the contraction mapping theorem. Initially, we

show that Uk : C ! C. We shall first study the control function
uk(t,x). Let x1; x2 2 C. From the Holder’s inequality and the
assumption on the data, we obtain

Ekukðt;x1Þ�ukðt;x2Þk2

¼EkBIF�1 ½Tðb� tÞqF�1�AF�1Tðb� tÞ�I
Z t

0

kIþCb
s

� ��1
F�1Tðb� sÞ

� fðs;x1ðc1ðsÞÞ;x1ðc2ðsÞÞ; . . . ;x1ðcnðsÞÞÞ� fðs;x2ðc1ðsÞÞ;x2ðc2ðsÞÞ; . . . ;x2ðcnðsÞÞÞð Þds

þBIF�1 ½Tðb� tÞqF�1�AF�1Tðb� tÞ�I
Z t

0

kIþCb
s

� ��1
F�1Tðb� sÞ

� gðs;x1ðc1ðsÞÞ;x1ðc2ðsÞÞ; . . . ;x1ðcnðsÞÞÞ�gðs;x2ðc1ðsÞÞ;x2ðc2ðsÞÞ; . . . ;x2ðcnðsÞÞÞð ÞdWðsÞk2 ;

6 2
N2

2

k2
ðMkqF�1k2kBIk2þjðtÞÞMðbþTrðQÞÞC1

Z t

0

Ekx1ðc1ðsÞÞ�x2ðc1ðsÞÞk
2

�
þEkx1ðc2ðsÞÞ�x2ðc2ðsÞÞk

2þ . . .þEkx1ðcnðsÞÞ�x2ðcnðsÞÞk
2
�
ds;

6 2
N2

2

k2
ðMkqF�1k2kBIk2þjðtÞÞMðbþTrðQÞÞC1nC3

Z t

0

Ekx1ðsÞ�x2ðsÞk2ds;

6
N
k2

Z t

0

Ekx1ðsÞ�x2ðsÞk2ds;

Similarly

Ekukðt;xÞk2 6 4
N2

k2
ðMkqF�1k2kBIk2þjðtÞÞ kxbk2þN2MjFxð0Þj2þN2MðbþTrðQÞÞ

�
� C2bþC1nC3

Z t

0

EkxðsÞk2ds
� ��

;

6

cN
k2

C2bþC1nC3

Z t

0

EkxðsÞk2ds
� �

;

where N ¼ 2N2
2ðMkqF�1k

2kBIk2 þjðtÞÞMðbþ TrðQÞÞC1nC3

and cN ¼ 4N2ðMkqF�1k2kBIk2 þjðtÞÞðkxbk2 þN2MjFxð0Þj2
þN2Mðbþ TrðQÞÞ. Now consider

EkðUkxÞðtÞk2

¼EkF�1TðtÞFxð0Þþ
Z t

0

F�1 ½Tðt� sÞqF�1�AF�1Tðt� sÞ�Bukðs;xÞds

þ
Z t

0

F�1Tðt� sÞfðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds

þ
Z t

0

F�1Tðt� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞdWðsÞk
2 ;

6 4N2MjFxð0Þj2þ8N2

cN
k2

Z t

0

ðMkqF�1k2kBk2þjðsÞÞðC2bþC1nC3

Z t

0

EkxðsÞk2dsÞds

þ4N2MðbþTrðQÞÞðC2bþC1nC3

Z t

0

EkxðsÞk2dsÞ;

6 4N2MjFxð0Þj2þ8N2

cN
k2
ðbMkqF�1k2kBk2þN1ÞðC2bþC1nC3bkxk2Þ

þ4N2MðbþTrðQÞÞðC2bþC1nC3bkxk2Þ<1:

Therefore, we obtain that Ei(Ukx)(t)i2 <1, that is,
UkxðtÞ 2 C, for every xðtÞ 2 C. Therefore, Uk is self map. To
apply the contraction mapping principle, now we prove under

some condition, Uk is a contraction on C. To show this, let
x1; x2 2 C then for t 2 [0,b], we have

EkðUkx1ÞðtÞ�ðUkx2ÞðtÞk2

¼Ek
Z t

0

F�1 ½Tðt� sÞqF�1�AF�1Tðt� sÞ�Bðukðs;x1Þ�ukðs;x2ÞÞdsþ
Z t

0

F�1Tðt� sÞ

�ðfðs;x1ðc1ðsÞÞ;x1ðc2ðsÞÞ; . . . ;x1ðcnðsÞÞÞ� fðs;x2ðc1ðsÞÞ;x2ðc2ðsÞÞ; . . . ;x2ðcnðsÞÞÞÞds

þ
Z t

0

F�1Tðt� sÞðgðs;x1ðc1ðsÞÞ;x1ðc2ðsÞÞ; . . . ;x1ðcnðsÞÞÞ

�gðs;x2ðc1ðsÞÞ;x2ðc2ðsÞÞ; . . . ;x2ðcnðsÞÞÞÞdWðsÞk
2 ;

6 3
N
k2

N2

Z t

0

ðMkqF�1k2kBk2þjðsÞÞ
Z t

0

Ekx1ðsÞ�x2ðsÞk2ds
� �

dsþ3N2MðbþTrðQÞÞC1nC3

�
Z t

0

Ekx1ðsÞ�x2ðsÞk2ds;

6 3
N
k2

N2ðbMkqF�1k2kBk2þN1ÞþN2MðbþTrðQÞÞC1nC3

� �
b sup
06t6b

Ekx1ðtÞ�x2ðtÞk2 ;



Approximate boundary controllability of Sobolev-type stochastic differential systems 205
then it can be easily concluded that if (6) is satisfied, Uk is a

contraction map on a complete normed linear space C, and
thus by the contraction mapping theorem, has a unique fixed
point in C. h
3.2. Approximate boundary controllability

The following lemma gives a formula for a control steering the
state x0 to a neighborhood of xb 2 L2ðX;Fb;HÞ.

Lemma 3.2. For arbitrary xb 2 L2ðX;Fb;HÞ, the control

uk(t,x) in (4) transfers the system (5) from x0 to some
neighborhood of xb at time b and

xkðbÞ¼ xb�kðkIþCb
0Þ
�1ðExb�F�1TðbÞFxð0ÞÞþ

Z b

0

kðkIþCb
s Þ
�1
F�1Tðb� sÞ

� fðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞdsþ
Z b

0

k kIþCb
s

� ��1
�ðF�1Tðb� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞ�uðsÞÞdWðsÞ

Proof. By substituting (4) in (5), one can easily obtain that

xkðtÞ¼F�1TðtÞFxð0Þþ
Z t

0

F�1 ½Tðt� sÞqF�1�AF�1Tðt� sÞ�B

� BIF�1½Tðb� sÞqF�1�AF�1Tðb� sÞ�I kIþCb
0

� ��1ðExb�F�1TðbÞFxð0ÞÞ
n
�BIF�1 ½Tðb� sÞqF�1�AF�1Tðb� sÞ�I

Z t

0

kIþCb
s

� ��1
F�1Tðb� sÞ

� fðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds�BIF�1 ½Tðb� sÞqF�1�AF�1Tðb� sÞ�I

�
Z t

0

kIþCb
s

� ��1
F�1Tðb� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞ�uðsÞ
� �

dWðsÞ
	
ds

þ
Z t

0

F�1Tðt� sÞfðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds

þ
Z t

0

F�1Tðt� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞdWðsÞ;

¼F�1TðtÞFxð0Þþ
Z t

0

F�1Tðt� sÞfðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds

þ
Z t

0

F�1Tðt� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞdWðsÞþCt
0T

Iðb� tÞðkIþCb
0Þ
�1

�ðExb�F�1TðbÞFxð0ÞÞ�
Z t

0

Ct
sT

Iðb� tÞ kIþCb
s

� ��1
F�1Tðb� sÞ

� fðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds�
Z t

0

Ct
sT

Iðb� tÞ kIþCb
s

� ��1ðF�1Tðb� sÞ

�gðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞ�uðsÞÞdWðsÞ

The above equation can be rewritten at t= b, hence

xkðbÞ�xb ¼F�1TðbÞFxð0Þþ
Z b

0

F�1Tðb� sÞfðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds

þ
Z b

0

F�1Tðb� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞdWðsÞþð�kIþkIþCb
0Þ

� kIþCb
0

� ��1ðExb�F�1TðbÞFxð0ÞÞ�
Z b

0

�kIþkIþCb
s

� �
kIþCb

s

� ��1
F�1Tðb� sÞ

� fðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞds�
Z b

0

�kIþkIþCb
s

� �
kIþCb

s

� ��1ðF�1Tðb� sÞ

�gðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞ�uðsÞÞdWðsÞ�xb ;

xkðbÞ¼ xb�k kIþCb
0

� ��1ðExb�F�1TðbÞFxð0ÞÞþ
Z b

0

k kIþCb
s

� ��1
F�1Tðb� sÞ

� fðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞdsþ
Z b

0

k kIþCb
s

� ��1
�ðF�1Tðb� sÞgðs;xðc1ðsÞÞ;xðc2ðsÞÞ; . . . ;xðcnðsÞÞÞ�uðsÞÞdWðsÞ: �

Theorem 3.3. Assume the hypotheses (H1)–(H8) and Theorem
3.1 are satisfied. If f and g are uniformly bounded, then system
(1) is approximately boundary controllable on J.

Proof. By Theorem 3.1, Uk has a unique fixed point xk in C. By
the stochastic Fubuni theorem and Lemma 3.2, it can be easily
seen that
xkðbÞ¼ xb�k kIþCb
0

� ��1ðExb�F�1TðbÞFxð0ÞÞþ
Z b

0

k kIþCb
s

� ��1
F�1Tðb� sÞ

� fðs;xkðc1ðsÞÞ;xkðc2ðsÞÞ; . . . ;xkðcnðsÞÞÞdsþ
Z b

0

k kIþCb
s

� ��1
�ðF�1Tðb� sÞgðs;xkðc1ðsÞÞ;xkðc2ðsÞÞ; . . . ;xkðcnðsÞÞÞ�uðsÞÞdWðsÞ

It follows from the properties of f and g such that

kfðs; xkðc1ðsÞÞ; xkðc2ðsÞÞ; . . . ; xkðcnðsÞÞÞk
2

þ kgðs; xkðc1ðsÞÞ; xkðc2ðsÞÞ; . . . ; xkðcnðsÞÞÞk
2
Q

6 L1:

Then, there is a subsequence, still denoted by

{f(s, xk(c1(s)), x
k(c2(s)), . . . , xk(cn(s))),

g(s,xk(c1(s)), x
k(c2(s)), . . . , xk(cn(s)))} which converges weakly

to, say, {f(s,t),g(s,t)} in H · L(K,H). On the other hand, by

hypothesis (H8), the operator k kIþ Cb
s

� ��1 ! 0 strongly as
k fi 0+ and kkðkIþ Cb

s Þ
�1k 6 1 together with the Lebesgue

dominated convergence theorem, we obtain

EkxkðbÞ�xbk2

6 6Ekk kIþCb
0

� ��1ðExb�F�1TðbÞFxð0ÞÞk2þ6

Z b

0

kk kIþCb
s

� ��1k2kF�1Tðb� sÞk2

�kfðs;xkðc1ðsÞÞ;xkðc2ðsÞÞ; . . . ;xkðcnðsÞÞÞ� fðs;tÞk2dsþ6

Z b

0

kk kIþCb
s

� ��1k2kF�1Tðb� sÞk2

�kfðs;tÞk2dsþ6TrðQÞ
Z b

0

kk kIþCb
s

� ��1k2kF�1Tðb� sÞk2

�kgðs;xkðc1ðsÞÞ;xkðc2ðsÞÞ; . . . ;xkðcnðsÞÞÞ�gðs;tÞk2Qdsþ6TrðQÞ
Z b

0

kk kIþCb
s

� ��1k2
�kF�1Tðb� sÞk2kgðs;tÞk2Qdsþ6TrðQÞ

Z b

0

kk kIþCb
s

� ��1k2kuðsÞk2Qds! 0 as k! 0þ :

This gives the approximate boundary controllability of
(1). h

Remark 3.4. Since many evolution processes, optimal control

models in economics, stimulated neural networks, frequency
modulated systems and some motions of missiles or aircrafts,
automatic control systems, artificial intelligence, and robotics

[37,38] are characterized by the dynamical systems with impul-
sive effects. However, in addition to impulsive effects, stochas-
tic nature likewise exists in real systems. It is well known that a

lot of dynamic systems have variable structures subject to sto-
chastic perturbation, which may result from abrupt phenom-
ena such as stochastic failures and repairs of the
components, changes in the interconnections of subsystems,

sudden environment changes, etc. Therefore, the study of sto-
chastic dynamical systems with impulsive effects is of great
importance. Recently, the controllability problems for impul-

sive dynamical systems have been discussed in [7,17,18]. Thus,
the obtained results in Theorem 3.3 can be extended to study
the approximate boundary controllability of Sobolev-type sto-

chastic differential systems with impulsive effects by employing
the same idea and technique as discussed in Theorem 3.3.
4. Stochastic systems with poisson jumps

The stochastic model has come to play an important role in
many branches of science and engineering. Such models have
been used with great success in a variety of applications areas,

including epidemiology, mechanics, economics, and finance.
The modeling of risky asset by stochastic processes with con-
tinuous paths, based on Brownian motions, suffers from sev-
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eral defects. First, the path continuity assumption does not

seem reasonable in view of the possibility of sudden price vari-
ations (jumps) resulting of market crashes. A solution is to use
stochastic processes with jumps that will account for sudden
variations of the asset prices. On the other hand, such jump

models are generally based on the Poisson random measure.
Many popular economic and financial models described by
stochastic differential equations with Poisson jumps (see

[39]). Ren et al. [40] discussed the existence, uniqueness, and
stability of mild solutions for time-dependent stochastic evolu-
tion equations with Poisson jumps and infinite delay under

non-Lipschitz condition with Lipschitz condition being consid-
ered as a special case. Recently, Sakthivel et al. [10] studied the
complete controllability of stochastic evolution equations with

jumps without assuming the compactness of the semigroup
property. In this section, we discuss boundary controllability
for the stochastic differential systems with Poisson jumps in
Hilbert spaces described in the form

dðFxðtÞÞ ¼ ðqxðtÞ þ fðt; xðtÞÞÞdtþ gðt; xðtÞÞdWðtÞ

þ
Z
Z
hðt; xðtÞ; gÞ bNðdt; dgÞ; t 2 J ¼ ½0; b�;

sxðtÞ ¼ B1uðtÞ;
xð0Þ ¼ x0; ð7Þ

where the functions f:J · H fi H and g:J · H fi LQ(K,H).bNðds; dgÞ is a compensated Poisson random measure induced
by Poisson point process k(Æ), which is independent on the Wie-
ner process W and takes values in a measurable space

ðZ;BðZÞÞ defined on a complete probability space ðX;F;PÞ.
h : J�H� ðZ � f0gÞ ! H be appropriate mappings. Further,
let {k(t); t 2 J} be a Poisson point process which is independent

of the Wiener process W, taking its values in a measurable
space ðZ;BðZÞÞ with a r-finite intensity measure k0(dg). We
denote by N(ds,dg) the Poisson counting measure, which is in-

duced by k(Æ), and the compensating martingale measure by

bNðds; dgÞ ¼ Nðds; dgÞ � k0ðdgÞds:

It is to be assumed that the filtration generated by the Q-Wie-
ner process W(Æ), the Poisson point process k(Æ) are augmented

by,

Ft ¼ rfWðsÞ; s 6 tgVrfNðð0; sÞ;AÞ; s 6 t;A 2 BðZÞgVN0; t 2 J;

where N0 is the class of P-null sets.
Similar to Eq. (3) in Section 2, the mild solution of the sys-

tem (7) is given by

xðtÞ¼F�1TðtÞFxð0Þþ
Z t

0

F�1½Tðt� sÞqF�1�AF�1Tðt� sÞ�BuðsÞds

þ
Z t

0

F�1Tðt� sÞfðs;xðsÞÞdsþ
Z t

0

F�1Tðt� sÞgðs;xðsÞÞdWðsÞ

þ
Z t

0

Z
Z
F�1Tðt� sÞhðs;xðsÞ;gÞ bNðds;dgÞ: ð8Þ

(H9) The functions f and g are continuous and there exist
constants C4, C5, for t 2 J and x1, x2 2 H, such that

kfðt; x1Þ � fðt; x2Þk2 þ kgðt; x1Þ � gðt; x2Þk2Q 6 C4kx1 � x2k2;
C5 ¼ max

t2J
ðkfðt; 0Þk2 þ kgðt; 0Þk2Þ

(H10) The nonlinear function h is continuous and there exist

constants C6, C7, C8, C9, for t 2 J and x1, x2 2 H, such that
Z
Z
khðt; x1; gÞ � hðt; x2; gÞk2kðdgÞ 6 C6kx1 � x2k2;Z

Z
khðt; x1; gÞ � hðt; x2; gÞk4kðdgÞ 6 C7kx1 � x2k4;Z

Z
khðt; x; gÞk2kðdgÞ 6 C8ð1þ kxk2Þ;Z

Z
khðt; x; gÞk4kðdgÞ 6 C9ð1þ kxk4Þ:

Clearly, under the hypotheses (H9)–(H10), for every
uð�Þ 2 LF

2 ðJ ;UÞ, the integral Eq. (8) has a unique solution in
C. To apply the contraction mapping principle, we define the

nonlinear operator Uk
1 from C into itself as follows

Uk
1x

� �
ðtÞ¼F�1TðtÞFxð0Þþ

Z t

0

F�1½Tðt� sÞqF�1�AF�1Tðt� sÞ�Bukðs;xÞds

þ
Z t

0

F�1Tðt� sÞfðs;xðsÞÞdsþ
Z t

0

F�1Tðt� sÞgðs;xðsÞÞdWðsÞ

þ
Z t

0

Z
Z
F�1Tðt� sÞhðs;xðsÞ;gÞ bNðds;dgÞ; ð9Þ

where

ukðt;xÞ¼BHF�1½Tðb� tÞqF�1�AF�1Tðb� tÞ�H kIþCb
0

� ��1ðExb�F�1TðbÞFxð0ÞÞ

�BHF�1½Tðb� tÞqF�1�AF�1Tðb� tÞ�H
Z t

0

kIþCb
s

� ��1
F�1Tðb� sÞfðs;xðsÞÞds

�BHF�1½Tðb� tÞqF�1�AF�1Tðb� tÞ�H
Z t

0

kIþCb
s

� ��1
F�1Tðb� sÞgðs;xðsÞÞdWðsÞ

�BHF�1½Tðb� tÞqF�1�AF�1Tðb� tÞ�H
Z t

0

Z
Z
ðkIþCb

s Þ
�1
F�1Tðb� sÞhðs;xðsÞ;gÞ

� bNðds;dgÞþBHF�1½Tðb� tÞqF�1�AF�1Tðb� tÞ�H
Z t

0

kIþCb
s

� ��1
uðsÞdWðsÞ:

Theorem 4.1. Assume that the hypotheses (H1)–(H5) and
(H8)–(H10) hold. Then, the system (7) is approximately
boundary controllable on [0,b] provided

4 N 1

N2

k2
ðbMkqF�1k2kBk2þN1ÞþN2MC4ðbþTrðQÞÞþN2Mb C6þ

ffiffiffiffiffiffi
C7

p� �� �
b

< 1:

Proof. The proof of this theorem is similar to that of Theo-
rems 3.1 and 3.3 and one can easily prove that if for all

k > 0, the operator Uk
1 has a fixed point by employing the con-

traction mapping principle used in the Theorem 3.1, then we
can show that the system (7) is approximately boundary con-

trollable (similar Theorem 3.3) and hence it is omitted. h
5. Example

Consider the following system of nonlinear stochastic partial

differential equation of the form

@

@t
ðzðt;yÞ�Dzðt;yÞÞ¼Dzðt;yÞþ fðt;zða1ðtÞ;yÞ;zða2ðtÞ;yÞ; . . . ;zðanðtÞ;yÞÞ

þgðt;zða1ðtÞ;yÞ;zða2ðtÞ;yÞ; . . . ;zðanðtÞ;yÞÞ@bðtÞ; t2 J¼ ½0;b�; y2K;

zðt;yÞ¼ uðtÞ; t2 J; y2 n; ð10Þ
zð0;yÞ¼ z0ðyÞ; y2K;

where K is a bounded and open subset of Rn with a sufficiently

smooth boundary n. Let H= L2(K), b(t) denotes a one dimen-
sional standard Brownian motion in H defined on a stochastic
space ðX;F;PÞ. The above problem can be formulated ab-

stractly into the boundary control system (1) by suitably
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choosing U= L2(n), Y= Z= L2(K), B1 = I, the operator

F:D(F) � Y fi Z defined by Fw = w � Dw with
D(F) = H2(K) and D(q) = {z 2 L2(K); Dz 2 L2(K)}, qz= D
z. The operator s is the trace operator sz= zŒn is well defined

and belongs to H�
1
2ðnÞ for each z 2 D(q) (see [28]). Take

ai(t) = kit, t 2 J, ki 2 (0,1] for i= 1, 2, . . . , n. Observe that
ai:J fi J is a bounded continuous function. Define the operator
A:D(A) � Y fi Z by AF�1w = DF�1w with DðAF�1Þ ¼
H1

0ðKÞ [H2ðKÞ. Then, A and F can be written respectively as

Aw ¼
X1
n¼1

n2ðw;wnÞwn; w 2 DðAÞ;

Fw ¼
X1
n¼1
ð1þ n2Þðw;wnÞwn; w 2 DðFÞ;

where wnðyÞ ¼
ffiffiffi
2
p

sin ny; n ¼ 1; 2; 3; . . . is the orthogonal set

of eigenvectors of A. Furthermore, for w 2 Y

F�1w ¼
X1
n¼1

1

1þ n2
ðw;wnÞwn;

AF�1w ¼
X1
n¼1

n2

1þ n2
ðw;wnÞwn;

TðtÞw ¼
X1
n¼1

e
n2 t

1þn2ðw;wnÞwn:

It is easy to see that AF�1 generates a strongly continuous
semigroup T(t) on Z. Hence, the hypotheses (H1), (H2) are sat-

isfied. Define the linear operator B:L2(n) fi L2(K) by Bu= vu,
where vu 2 L2(K) is the unique solution to the Dirichlet bound-
ary value problem

Dvu ¼ 0 in K; ð11Þ
vu ¼ u in n:

It is proved in [23] that for every u 2 H�
1
2ðnÞ, the Eq. (11) has a

unique solution vu 2 L2(K) satisfying
kBukL2ðKÞ ¼ kvukL2ðKÞ ¼ c1kuk

H
�1
2ðnÞ

. This shows that (H3) is sat-
isfied. From the above estimates, it follows by an interpolation

argument [30] that kAF�1TðtÞBkLðL2ðnÞ;L2ðnÞÞ 6 c2t
�3
4, for all

t> 0 with vðtÞ ¼ c2t
�3

4, where c1,c2 are positive constants inde-
pendent of u. Therefore, the hypotheses (H4), (H5) are satisfied.

The approximate boundary controllability of the correspond-
ing linear system of (10) is discussed in great detailed in
[24,41]. Clearly, the nonlinear functions f and g satisfies the

hypotheses (H6), (H7). All conditions stated in the Theorem
3.3 are satisfied; therefore, the system (10) is approximately
boundary controllable on J.

6. Conclusion

In this paper, the boundary controllability results for Sobolev-

type stochastic differential system is discussed. The existence
and uniqueness results of the mild solution of Sobolev-type
stochastic differential system are obtained by using the Banach

fixed point theorem. The sufficient conditions for approximate
controllability of this system is proved under natural assump-
tion that the corresponding linear system is approximately

controllable. The derived result shows that how the Banach
fixed point theorem can effectively be used in control prob-
lems. In addition, the boundary controllability results of sto-

chastic differential systems with Poisson jumps is proved.
The effectiveness of the theoretical results is finally verified

with suitable stochastic partial differential equations. In fu-
ture, the authors interested to study the boundary controllabil-
ity of fractional order Sobolev-type stochastic integro
differential systems by using Poisson random measures and

multiplicative Levy noises.
Acknowledgements

The authors would like to express their sincere thanks to the

editor and anonymous reviewers for helpful comments and
suggestions to improve the quality of this manuscript. The cor-
responding author P. Muthukumar thanks to the Indo-US Sci-
ence and Technology Forum, New Delhi, INDIA for his

IUSSTF Research Fellow award 2012. The second author is
thankful to UGC, New Delhi for providing BSR fellowship
during 2013.

References

[1] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite

Dimensions, Cambridge University press, Cambridge, 1992.

[2] T. Virvalo, P. Puusaari, The distributed control systems – a

world of new possibilities, Mechatronics 1 (1991) 535–545.

[3] B. Oksendal, Stochastic Differential Equations: An Introduction

with Applications, Springer-Verlag, 1995.

[4] J. Zabczyk, Mathematical Control Theory, Birkhauser, Basel,

1992.

[5] V. Kolmanovskii, A. Myshkis, Applied Theory of Functional

Differential Equations, Mathematics and its Applications,

Kluwer Academics Publishers, Dordrecht, 1992.

[6] R. Sakthivel, N.I. Mahmudov, J.J. Nieto, Controllability for a

class of fractional-order neutral evolution control systems, Appl.

Math. Comput. 218 (2012) 10334–10340.

[7] R. Sakthivel, E.R. Anandhi, Approximate controllability of

impulsive differential equations with state-dependent delay, Int.

J. Control 83 (2010) 387–393.

[8] N.I. Mahmudov, A. Denker, On controllability of linear

stochastic systems, Int. J. Control 73 (2000) 144–151.

[9] N.I. Mahmudov, Approximate controllability of semilinear

deterministic and stochastic evolution equations in abstract

Spaces, SIAM J. Control Optim. 42 (2003) 1604–1622.

[10] R. Sakthivel, Y. Ren, Complete controllability of stochastic

evolution equations with jumps, Rep. Math. Phys. 68 (2011)

163–174.

[11] R. Sakthivel, Y. Ren, N.I. Mahmudov, On the approximate

controllability of semilinear fractional differential systems,

Comput. Math. Appl. 62 (2011) 1451–1459.

[12] N.I. Mahmudov, Approximate controllability of fractional

Sobolev-type evolution equations in Banach spaces, Abs.

Appl. Anal. (2013), http://dx.doi.org/10.1155/2013/502839.

[13] R. Sakthivel, Y. Ren, Approximate controllability of fractional

differential equations with state-dependent delay, Results Math.

63 (2013) 949–963.

[14] K.J. Astrom, Introduction to Stochastic Control Theory,

AcademicPress, NewYork, 1970.

[15] J. Klamka, Stochastic controllability of linear systems with

delay in control, Bull. Poli. Aca. Sci. 55 (2007) 23–29.

[16] P. Muthukumar, P. Balasubramaniam, Approximate

controllability of nonlinear stochastic evolution systems with

time-varying delays, J. Franklin Inst. 346 (2009) 65–80.

[17] R. Sakthivel, Y. Ren, N.I. Mahmudov, Approximate

controllability of second order stochastic differential equations

with impulsive effects, Mod. Phys. Lett. B 24 (2010) 1559–1572.

http://refhub.elsevier.com/S1110-256X(13)00095-3/h0005
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0005
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0005
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0030
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0030
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0030
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0035
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0035
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0035
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0040
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0040
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0050
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0050
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0050
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0055
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0055
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0055
http://dx.doi.org/10.1155/2013/502839
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0070
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0070
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0070
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0075
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0075
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0085
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0085
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0085


208 M. Palanisamy, R. Chinnathambi
[18] L. Shen, J. sun, Approximate controllability of abstract

stochastic impulsive systems with multiple time-varying delays,

Int. J. Robust. Nonlin. Control 23 (2013) 827–838.

[19] R. Sakthivel, S. Suganya, S.M. Anthoni, Approximate

controllability of fractional stochastic evolution equations,

Comput. Math. Appl. 63 (2012) 660–668.

[20] R. Sakthivel, R. Ganesh, S. suganya, Approximate

controllability of fractional neutral stochastic system with

infinite delay, Rep. Math. Phys. 70 (2012) 291–311.

[21] H.O. Fattorini, Boundary control systems, SIAM J. Control

Optim. 6 (1968) 349–384.

[22] A.V. Balakrishnan, Applied Functional Analysis, Springer,

NewYork, 1976.

[23] V. Barbu, Boundary control problems with convex cost

criterion, SIAM J. Control Optim. 18 (1980) 227–243.

[24] R.C. MacCamy, V.J. Mizel, T.I. Seidman, Approximate

boundary controllability for the heat equations, J. Math. Anal.

Appl. 23 (1968) 699–703.

[25] H.K. Han, J.Y. Park, Boundary controllability of differential

equations with nonlocal condition, J. Math. Anal. Appl. 230

(1999) 242–250.

[26] K. Balachandran, E.R. Anandhi, Boundary controllability of

delay integrodifferential systems in Banach spaces, J. Korean

Soc. Industr. Appl. Math. 4 (2000) 67–75.

[27] C. Carthel, R. Glowinski, J.L. Lions, On exact and approximate

boundary controllabilities for the heat Equation: A numerical

approach, J. Optim. Theory Appl. 82 (1994) 429–484.

[28] J.L. Lions, Magenes, Non-Homogeneous Boundary Value

Problems and Applications, vol. 1, Springer, Berlin, 1972.

[29] J.Y. Park, J.U. Jeong, Boundary controllability of semilinear

neutral evolution systems, Bull. Korean Math. Soc. 48 (2011)

705–712.

[30] D. Washburn, A bound on the boundary input map for

parabolic equations with application to time optimal control,

SIAM J. Control Optim. 17 (1979) 652–671.
[31] K. Balachandran, E.R. Anandhi, J.P. Dauer, Boundary

controllability of Sobolev-type abstract nonlinear

integrodifferential systems, J. Math. Anal. Appl. 277 (2003)

446–464.

[32] G. Barenblatt, I. Zheltov, I. Kochina, Basic concepts in the

theory of seepage of homogeneous liquids in fissured rocks, J.

Appl. Math. Mech. 24 (1960) 1286–1303.

[33] P.J. Chen, M.E. Curtin, On a theory of heat conduction

involving two temperatures, Z. Angew. Math. Phys. 19 (1968)

614–627.

[34] L. Wang, Approximate boundary controllability for semilinear

delay differential equations, J. Appl. Math. (2011), http://

dx.doi.org/10.1155/2011/587890.

[35] Y. Li, B. Liu, Boundary controllability of nonlinear stochastic

differential inclusions, Appli. Anal. 87 (2008) 709–722.

[36] A. Pazy, Semigroups of Linear Operators and Applications to

Partial Differential Equations, Springer -Verlag, New York,

1983.

[37] A.K. Gelig, A.N. Churilov, Stability and Oscillations of

Nonlinear Pulse-Modulated Systems, Birkhauser, Boston, 1998.

[38] V. Lakshmikantham, D. Bainiv, P. Simeonov, Theory of

Impulsive Differential Equations, World Scientific, Singapore,

1989.

[39] R. Cont, P. Tankov, Financial Modelling with Jump Processes,

Financial Mathematics Series, Chapman and Hall/CRC, Boca

Raton, 2004.

[40] Y. Ren, Q. Zhou, L. Chen, Existence, uniqueness and stability of

mild solutions for time-dependent stochastic evolution

equations with Poisson jumps and infinite delay, J. Optim.

Theory Appl. 149 (2011) 315–331.

[41] Bernd Kloss, On Abstract Boundary Control Problems and

Their Applications, Diplomarbeit Eberhard Karls University of

Tbingen, Germany, 2007.

http://refhub.elsevier.com/S1110-256X(13)00095-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0095
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0095
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0095
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0100
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0100
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0100
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0105
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0105
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0110
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0110
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0110
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0115
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0115
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0120
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0120
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0120
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0125
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0125
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0125
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0130
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0130
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0130
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0135
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0135
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0135
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0140
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0140
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0140
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0145
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0145
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0145
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0150
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0150
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0150
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0155
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0155
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0155
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0155
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0160
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0160
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0160
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0165
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0165
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0165
http://dx.doi.org/10.1155/2011/587890
http://dx.doi.org/10.1155/2011/587890
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0175
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0175
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0180
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0180
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0180
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0180
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0185
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0185
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0185
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0190
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0190
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0190
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0190
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0195
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0195
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0195
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0195
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0200
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0200
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0200
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0200
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0205
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0205
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0205
http://refhub.elsevier.com/S1110-256X(13)00095-3/h0205

	Approximate boundary controllability of Sobolev-type stochastic differential systems ? 
	1 Introduction
	2 Preliminaries
	3 Main results
	3.1 Existence of solutions
	3.2 Approximate boundary controllability

	4 Stochastic systems with poisson jumps
	5 Example
	6 Conclusion
	Acknowledgements
	References


