Let G be a (p, q)-graph. Let f be an injective mapping from V(G) to {1, 2, …, p}. For each edge xy, assign the label ð x y Þ or ð y x Þ according as x > y or y > x. Call f a parity combination cordial labeling if |ef(0) − ef(1)| ≤ 1, where ef(0) and ef(1) denote the number of edges labeled with an even number and an odd number, respectively. In this paper we make a survey on all graphs of order at most six and find out whether they satisfy a parity combination cordial labeling or not and get an upper bound for the number of edges q of any graph to satisfy this condition and describe the parity combination cordial labeling for two families of graphs.
Seoud, M., & Aboshady, M. (2020). Further results on Parity Combination Cordial Labeling. Journal of the Egyptian Mathematical Society, 28(1), 1-10. doi: 10.1186/s42787-020-00082-8
MLA
Mohamed Seoud; Mohamed Aboshady. "Further results on Parity Combination Cordial Labeling", Journal of the Egyptian Mathematical Society, 28, 1, 2020, 1-10. doi: 10.1186/s42787-020-00082-8
HARVARD
Seoud, M., Aboshady, M. (2020). 'Further results on Parity Combination Cordial Labeling', Journal of the Egyptian Mathematical Society, 28(1), pp. 1-10. doi: 10.1186/s42787-020-00082-8
VANCOUVER
Seoud, M., Aboshady, M. Further results on Parity Combination Cordial Labeling. Journal of the Egyptian Mathematical Society, 2020; 28(1): 1-10. doi: 10.1186/s42787-020-00082-8