

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org [www.elsevier.com/locate/joems](http://www.sciencedirect.com/science/journal/1110256X)

ORIGINAL ARTICLE d_L -Filters of principal MS-algebras

Abd El-Mohsen Badawy

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Received 23 April 2014; revised 24 August 2014; accepted 23 December 2014 Available online 2 February 2015

KEYWORDS

MS-algebras; Principal MS-algebras; Filters; d_L -filters; Congruences

Abstract In this paper the notion of d_L -filters is introduced and characterized in principal MSalgebras. Also many properties of principal d_L -filters of a principal MS-algebra are observed and a characterization of the class of all principal d_L -filters is given. Finally, a relationship between d_L -filters and congruences on a principal MS-algebra is investigated.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 06D05; 06D30; 92D25

ª 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

T.S. Blyth and J.C. Varlet [\[1\]](#page-6-0) introduced the class MS of all MS-algebras which is a common abstraction of de Morgan algebras and Stone algebras. T.S. Blyth and J.C. Varlet [\[2\]](#page-6-0) characterized the subvarieties of MS. The class MS contains the well-known classes for examples Boolean algebras, de Morgan algebras, Kleene algebras and Stone algebras. Recently A. Badawy, D. Guffova and M. Haviar [\[3\]](#page-6-0) introduced and characterized the class of principal MS-algebras by means of triples. A. Badawy [\[4\]](#page-6-0) introduced de Morgan filters of decomposable MS-algebras. S. El-Assar and A. Badawy [\[5\]](#page-6-0) introduced Homomorphisms and Subalgebras of MS -algebras. C. Luo and Y. Zeng $[6]$ characterized the MSalgebras on which all congruences are in a one-to-one correspondence with the kernel ideals. In [\[7\]](#page-6-0) M. Sambasiva Rao introduced the concepts of boosters and β -filters of

E-mail address: abdelmohsen.badawy@yahoo.com

Peer review under responsibility of Egyptian Mathematical Society.

MS-algebras. Also M. Sambasiva Rao [\[8\]](#page-6-0) introduced the notion of e-filters of MS-algebras.

In this paper, the concept of d_L -filters is introduced in principal MS -algebras and then many properties of d_L -filters are studied. Various examples of d-filters are introduced. A characterization of d_L -filters of a principal MS-algebra is obtained. Also a principal d_l -filter of the form K_a on a principal MSalgebra L, for every $a \in L$ is introduced. Every principal d_L -filter can be expressed as K_a for some $a \in L$. It is proved that the class $K(L)$ of all principal d_L -filters forms a de Morgan algebra on its own. A one-to one correspondence between the set of all principal d_L -filters of a principal MS-algebra L and the set of all principal filters of L^{∞} is obtained. Finally, a relationship between d_L -filters and congruences on a principal MS-algebra is investigated.

2. Preliminaries

In this section, some certain definitions and results which were introduced in the papers [\[1–3,9,10\]](#page-6-0) are given.

A de Morgan algebra is an algebra $(L; \vee, \wedge, ^-, 0, 1)$ of type $(2, 2, 1, 0, 0)$ where $(L; \vee, \wedge, 0, 1)$ is a bounded distributive lattice and $\overline{}$ the unary operation of involution satisfies:

<http://dx.doi.org/10.1016/j.joems.2014.12.008>

1110-256X ª 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

$$
\overline{\overline{x}} = x, \overline{(x \vee y)} = \overline{x} \wedge \overline{y}, \overline{(x \wedge y)} = \overline{x} \vee \overline{y}.
$$

An MS-algebra is an algebra $(L; \vee, \wedge, ^{\circ}, 0, 1)$ of type $(2, 2, 1,)$ 0, 0) where $(L; \vee, \wedge, 0, 1)$ is a bounded distributive lattice and \circ the unary operation of involution satisfies:

$$
x \leq x^{\circ\circ}, (x \wedge y)^{\circ} = x^{\circ} \vee y^{\circ}, 1^{\circ} = 0.
$$

The class MS of all MS-algebras is equational. A de Morgan algebra is an MS-algebra satisfying the identity, $x = x^{\infty}$. A K_2 -algebra is an MS-algebra satisfying the additional two identities

$$
x \wedge x^{\circ} = x^{\circ} \wedge x^{\circ \circ}, (x \wedge x^{\circ}) \vee (y \vee y^{\circ}) = y \vee y^{\circ}.
$$

The class S of all Stone algebras is a subclass of MS and is characterized by the identity $x \wedge x^{\circ} = 0$. A Boolean algebra is an *MS*-algebra satisfying the identity $x \vee x^{\circ} = 1$.

Some of the basic properties of MS-algebras which were proved in [\[1,10\]](#page-6-0) are given in the following Theorem.

Theorem 2.1. For any two elements a, b of an MS-algebra L, we have

 $(1) 0^{\circ} = 1$, (2) $a \leqslant b \Rightarrow b^{\circ} \leqslant a^{\circ}$, (3) $a^{\circ\circ\circ} = a^{\circ}$, (4) $(a \vee b)^{\circ} = a^{\circ} \wedge b^{\circ}$, (5) $(a \vee b)$ ^{oo} = $a^{\circ\circ} \vee b^{\circ\circ}$, (6) $(a \wedge b)$ ^{oo} = $a^{\circ\circ} \wedge b^{\circ\circ}$.

Theorem 2.2. Let L be an MS-algebra. Then

- (1) $L^{\infty} = \{x \in L : x = x^{\infty}\}\$ is a de Morgan algebra and a subalgebra of L,
- (2) $D(L) = \{x \in L : x^{\circ} = 0\}$ is a filter of dense elements of L,
- (3) $B(L) = \{x \in L^{\infty} : x \vee x^{\circ} = 1\}$ is a Boolean algebra and a subalgebra of L^{∞} .

For any MS-algebra L, let $F(L)$ denote to the set of all filters of L. It is known that $(F(L); \wedge, \vee)$ is a distributive lattice, where $F \wedge G = F \cap G$ and $F \vee G = \{ f \wedge g : f \in F, g \in G \}.$ Also, $[a] = \{x \in L : x \geq a\}$ is a principal filter of L generated by a.

By a congruence on an *MS*-algebra $(L; \vee, \wedge, \circ)$ we shall mean a lattice congruence θ such that

$$
(x, y) \in \theta
$$
 implies $(x^{\circ}, y^{\circ}) \in \theta$

Through what follows, for an MS-algebra L we shall denote by ∇ the universal congruence on L. The Cokernel of the lattice congruence θ on a lattice L is defined as

$$
Coker \theta = \{ x \in L : (x, 1) \in \theta \}.
$$

The following definition of a principal MS-algebra was introduced in [\[3\]](#page-6-0).

Definition 2.3 (Definition 2.1, 3). An MS-algebra $(L; \vee, \wedge, \cdot)$ \circ , 0, 1) is called a principal MS-algebra if it satisfies the following conditions

- (1) the filter $D(L)$ is principal, i.e., there exists an element $d_L \in L$ such that $D(L) = [d_L);$
- (2) $x = x^{\infty} \wedge (x \vee d_{L})$ for any $x \in L$.

3. Properties of d_L -filters

In this Section, the concept of d_I -filters is introduced in a principal MS-algebra. Many properties and examples of d_L -filters are investigated. Also, a set of equivalent conditions is derived for a filter of a principal MS-algebra to become a d_L -filter.

Definition 3.1. Let L be a principal MS -algebra with the smallest dense element d_L . A filter F of L is called a d_L -filter if $d_L \in F$.

Clearly the filter $\left[d_L\right)$ is a d_L -filter of L. It is observed that $[d_L]$ is the smallest d_L -filter of L and L is the greatest d_L -filter of L.

Example 3.2.

- (1) Every filter of a de Morgan algebra M is a d_l -filter as $d_M = 1$ belongs to any filter.
- (2) Let $L = \{0, x, y, z, 1 : 0 < x < y < z < 1\}$ be a five element chain and $x^{\circ} = x, y^{\circ} = z^{\circ} = 0$. Clearly L is a principal MS-algebra with the smallest dense element y. We observe that the filters $\{y, z, 1\}$, $\{x, y, z, 1\}$ and L are d_L -filters of L but the filters $\{z, 1\}$ and $\{1\}$ are not.

Now, for every filter F of a principal MS -algebra L with the smallest dense element d_L , consider the set $L(F)$ as follows:

 $L(F) = \{x \in L : x^{\circ \circ} \in F\}.$

We first state the following Lemma.

Lemma 3.3. Let F be a filter of a principal MS-algebra L with the smallest dense element d_L . Then $L(F)$ is a d_L -filter of L containing F.

Proof. Firstly we prove that $L(F)$ is a filter of L. Clearly $1 \in L(F)$. Let $x, y \in L(F)$. Then x^{∞} , $y^{\infty} \in F$. It follows that $(x \wedge y)^{\circ \circ} = x^{\circ \circ} \wedge y^{\circ \circ} \in F$. Then $x \wedge y \in L(F)$. Again, let $x \in L(F)$ and $z \in L$ such that $z \ge x$. Hence $z^{\infty} \ge x^{\infty} \in F$. Then $z^{\infty} \in F$ implies $z \in L(F)$. Therefore $L(F)$ is a filter of L. Since $d_L^{\infty} = 1 \in F$, then $d_L \in L(F)$. So $L(F)$ is a d_L -filter of L. Since $x^{\infty} \geq x$ for all $x \in F$, then $x^{\infty} \in F$. Hence $x \in L(F)$. Therefore $F \subseteq L(F)$. \Box

A characterization of d_L -filters of a principal MS-algebra L is given in the following Theorem.

Theorem 3.4. Let F be a filter of a principal MS-algebra L with the smallest dense element d_L . Then F is a d_L -filter if and only if $L(F) = F.$

Proof. Let F be a d_L -filter. Then $d_L \in F$. Since $x \vee d_L \geq d_L$, then $x \vee d_L \in F$. Let $x \in L(F)$. Then $x^{\infty} \in F$. Now by Definition 2.3 (2) we get

$$
x = x^{\circ \circ} \wedge (x \vee d_L) \in F.
$$

Then $L(F) \subseteq F$. By Lemma 3.3, $F \subseteq L(F)$. Therefore $L(F) = F$. Conversely, let $L(F) = F$. By the above Lemma 3.3, F is a d_L filter of $L.$ \Box

Let $F_{d_i}(L)$ be the class of all d_L -filters of a principal MSalgebra L. It is observed that the intersection and the supremum of two d_L -filters of L are again d_L -filters of L. Then we can formulate the following.

Theorem 3.5. For any principal MS-algebra L with the smallest dense element d_L , the class $F_{d_L}(L)$ is a sublattice of $F(L)$ with unit.

Now more examples of d_l -filters of a principal MS-algebra L are given in the following Lemma 3.6.

Lemma 3.6. Let F be a filter of a principal MS-algebra L with the smallest dense element d_L . Then

- (1) every maximal filter L is a d_L -filter,
- (2) for any prime filter P of L the set $\ell(P) = \{x \in L : x^{\circ} \notin P\}$ is a d_L -filter.

Proof.

- (1) Let *M* be a maximal filter of *L*. Suppose $d_L \notin M$. Then $M \vee [d_L] = L$. Hence $a \wedge b = 0$ for some $a \in M, b \in [d_L)$. Then $0 = a \wedge b \geq a \wedge d_L$ implies $a \wedge d_L = 0$. It follows that $a \leq a^{\infty} = a^{\infty} \wedge d_L^{\infty} = 0^{\infty} = 0$, where $d_L^{\infty} = 1$. Then $0 = a \in M$ which is a contradiction. Hence $d_L \in M$. Therefore, M is a d_L -filter of L .
- (2) Since $0 = 1^{\circ} \notin P$, then $1 \in \ell(P)$. Let $x, y \in \ell(P)$. Then $x^{\circ} \notin P$ and $y^{\circ} \notin P$. Since P is prime, then we get $(x \wedge y)^{\circ} = x^{\circ} \vee y^{\circ} \notin P$. Hence $x \wedge y \in \ell(P)$. Let $x \in \ell(P)$ and $z \in L$ such that $z \ge x$. Thus $y^{\circ} \le x^{\circ}$. Then $x^{\circ} \notin P$ implies $y^{\circ} \notin P$. Hence $y \in P$. Then $\ell(P)$ is a filter of L. Since $d_{L}^{\circ} = 0 \notin P$ then $d_{L} \in \ell(P)$. So, $\ell(P)$ is a d_{L} -filter of $L.$ \square

It is not true that every d_l -filter is a maximal filter. For, in [Example 3.2](#page-1-0) (2), the filter $\{y, z, 1\}$ is a d_L -filter but not a maximal filter.

Lemma 3.7. Let L be a principal K_2 -algebra with the smallest dense element d_L . Then

(1) The filter $L^{\vee} = \{x \vee x^{\circ} : x \in L\}$ is a d_L-filter.

(2) Any proper filter of L which contains either x or x° for all $x \in L$ is a d_L-filter.

Proof.

- (1) Since $d_L = d_L \vee d_L^{\circ}$, then $d_L \in L^{\vee}$ and L^{\vee} is a d_L -filter of L.
- (2) Let F be a proper filter contains either x or x° for all $x \in L$. Let $y \in L^{\vee}$. Then $y = x \vee x^{\circ}$ for some $x \in L$. By the hypotheses we get $y = x \lor x^{\circ} \in F$. Then $L^{\vee} \subseteq F$. From (1), $d_L \in L^{\vee}$. It follows that $d_L \in F$. Therefore F is a d_L -filter of $L. \Box$

A characterization of d_L -filters of a principal MS-algebra L is studied in the following Theorem.

Theorem 3.8. Let F be a proper filter of a principal MS-algebra L with the smallest dense element d_L . Then the following conditions are equivalent.

- (1) F is a d_L -filter,
- (2) $x \vee d_L \in F$ for each $x \in L$,
- (3) $x^{\infty} \in F$ implies $x \in F$,
- (4) For $x, y \in L$, $x^{\circ} = y^{\circ}$ and $x \in F$ imply $y \in F$.

Proof.

- $(1) \Rightarrow (2)$ Let F be a d_L-filter of L. Then $d_L \in F$. Since $x \vee d_L \geq d_L \in F$ for all $x \in L$, then $x \vee d_L \in F$ and the condition (2) holds.
- $(2) \Rightarrow (3)$ Let $x \lor d_L \in F$ for all $x \in L$. Suppose $x^{\circ\circ} \in F$. Since L is principal, then $x = x^{\infty} \wedge (x \vee d_{L}) \in F$ and the condition (3) holds.
- $(3) \Rightarrow (4)$ Let $x, y \in L$ and $x^{\circ} = y^{\circ}$. Suppose $x \in F$. Then $y^{\circ\circ} = x^{\circ\circ} \in F$. So by the condition (3), we get $y \in F$.
- (4) \Rightarrow (1) Since $d_L^{\circ} = 0 = 1^{\circ}$ and $1 \in F$, by condition (4), we have $d_L \in F$. Therefore F is a d_L -filter of L. \Box

4. Principal d_l -filters

In this section, the concept of principal d_L -filters in the class of all principal MS-algebras is studied and characterized. Also a representation of any d_L -filter of a principal MS-algebra as a union of certain principal d_L -filters is given.

For any element a of a principal MS-algebra L with the smallest dense element d_L , consider the set K_a as follows:

$$
K_a = \{x \in L : x^\circ \leq a^\circ\}
$$

In the following Theorem 4.1, some of the basic properties of the set K_a are observed.

Theorem 4.1. Let L be a principal MS-algebra with the smallest dense element d_L . Then for any two elements a, b of L we have

(1) K_a is a d_L-filter of L containing a, (2) $K_a = [a^{\infty} \wedge d_L),$ (3) $K_a = K_{a^{00}}$, (4) $K_a = K_b$ if and only if $a^\circ = b^\circ$.

- (1) Clearly $1 \in K_a$. Let $x, y \in K_a$. Then $x^\circ \leq a^\circ$ and $y^\circ \leq a^\circ$. Hence $(x \wedge y)^{\circ} = x^{\circ} \vee y^{\circ} \leq a^{\circ}$. It follows that $x \wedge y \in K_a$. Now, let $x \in L$ and $z \geq x$ for some $z \in L$. Then $z^{\circ} \leq x^{\circ} \leq a^{\circ}$. Thus $z^{\circ} \in K_a$. Therefore K_a is a d_L -filter of L. Since $d_L^{\circ} = 0 \le a^{\circ}$, then K_a is a d_L -filter of L.
- (2) Let $x \in K_a$. Then $x^\circ \leq a^\circ$ implies $x^{\circ\circ} \geq a^{\circ\circ}$. Hence $x = x^{\circ\circ} \wedge (x \vee d_L) \geq a^{\circ\circ} \wedge (x \vee d_L) \geq a^{\circ\circ} \wedge d_L$. Then $x \in [a^{\infty} \wedge d_L)$. Then $K_a \subseteq [a^{\infty} \wedge d_L)$ Conversely, let $x \in [a^{\infty} \wedge d_L)$. Then $x \ge a^{\infty} \wedge d_L$. It follows that $x^{\circ} \leq a^{\circ \circ \circ} \lor d_L^{\circ} = a^{\circ}$ as $a^{\circ} = a^{\circ \circ \circ}$ and $d_L^{\circ} = 0$. Hence $a \in K_a$ and $[a^{\infty} \wedge d_L) \subseteq K_a$. Therefore $K_a = [a^{\infty} \wedge d_L)$.

(3) From the fact that $x^{\circ} = x^{\circ \circ \circ}$ for all $x \in L$, we get

 $K_a = \{x \in L : x^\circ \leqslant a^\circ = a^{\circ \circ \circ}\} = K_{a^{\circ \circ}}.$

Proof.

(4) Let $K_a = K_b$. Since $a, b \in K_a = K_b$, then $a^{\circ} \leq b^{\circ}$ and $b^{\circ} \leq a^{\circ}$. It follows that $a^{\circ} = b^{\circ}$. Conversely, let $a^{\circ} = b^{\circ}$. Then $K_a = \{x \in L : x^{\circ} \leq a^{\circ}\} = \{x \in L : x^{\circ} \leq b^{\circ}\} = K_b$.

For the principal MS-algebra, we have the following crucial lemma.

Theorem 4.2. Let L be a principal MS-algebra with the smallest dense element d_L . Then every principal d_L -filter can be expressed as K_a for some $a \in L$.

Proof. Let $F = [a]$ be a d_L -filter of L. We claim that $F = K_a$. Let $x \in F$. Then $x \ge a$. Then $x^{\circ\circ} \ge a^{\circ\circ} \ge a^{\circ\circ} \wedge d_L$ implies $x^{\infty} \in [a^{\infty} \wedge d_L) = K_d$. Since K_a is a d_L -filter and $x^{\infty} \in K_a$, then by [Theorem 3.8](#page-2-0)(3), $x \in K_a$, it follows that $F \subseteq K_a$. Conversely, since $a \leq d_L$ and $a \leq d^{\circ}$, then $a \leq a^{\circ} \wedge d_L$. Hence $K_a = [a^{\circ\circ} \wedge d_L) \subseteq [a] = F$. Therefore $F = K_a$. \square

Consider $K(L) = \{K_a : a \in L\}$ the class of all principal d_l -filters of a principal MS-algebra L. More properties of principal d_L -filters are studied in Theorem 4.3.

Theorem 4.3. Let L be a principal MS-algebra with the smallest dense element d_L . Then for any two elements a, b of L, the following statements are hold.

(1) $a \leq b$ in L implies $K_b \subseteq K_a$ in $K(L)$, (2) $K_{a \wedge b} = K_a \vee K_b$, (3) $K_{a\vee b} = K_a \cap K_b$, (4) $K(L)$ is a bounded distributive lattice, (5) $a \to K_{a^{\circ}}$ is an epimorphism of L into $K(L)$.

Proof.

(1) Let $a \le b$ in L. Assume $x \in K_b$, then $x^{\circ} \le b^{\circ} \le a^{\circ}$. Hence $x \in K_a$ and $F_b \subset K_a$.

(2) By [Theorem 4.1](#page-2-0) (2), we get

$$
K_{a \wedge b} = [(a \wedge b)^{\circ \circ} \wedge d_L) = [a^{\circ \circ} \wedge b^{\circ \circ} \wedge d_L)
$$

=
$$
[(a^{\circ \circ} \wedge d_L) \wedge (b^{\circ \circ} \wedge d_L)) = [a^{\circ \circ} \wedge d_L) \vee [b^{\circ \circ} \wedge d_L)
$$

= $K_a \vee K_b$.

(3) Using Lemma (2) and by distributivity of L we get

$$
K_{a\vee b} = [(a \vee b)^{\circ\circ} \wedge d_L] = [(a^{\circ\circ} \vee b^{\circ\circ}) \wedge d_L)
$$

= [(a^{\circ\circ} \wedge d_L) \vee (b^{\circ\circ} \wedge d_L)) = [a^{\circ\circ} \wedge d_L) \cap [b^{\circ\circ} \wedge d_L)
= K_a \cap K_b.

- (4) Clearly $K_1 = [d_L]$ and $K_0 = L$ are the smallest and the greatest elements of $K(L)$ respectively. Then by (2) and (3) we observe that $(K(L), \vee, \cap, [d_L), L)$ is a bounded lattice. Using the distributivity of L, we can get $K_a \vee (K_b \cap K_c) = (K_a \vee K_b) \cap (K_a \vee K_c).$ Therefore $K(L)$ is a bounded distributive.
- (5) Define the mapping $f: L \to K(L)$ by $f(a) = K_{a^{\circ}}$. Let $a, b \in L$. Then by (2) and (3) above and [Theorem 4.1](#page-2-0)(3) we get the following equalities.

$$
f(a \wedge b) = K_{(a \wedge b)^{\circ}} = K_{a^{\circ} \vee b^{\circ}} = K_{a^{\circ}} \cap K_{b^{\circ}} = f(a) \cap f(b),
$$

\n
$$
f(a \vee b) = K_{(a \vee b)^{\circ}} = K_{a^{\circ} \wedge b^{\circ}} = K_{a^{\circ}} \vee K_{b^{\circ}} = f(a) \vee f(b),
$$

\n
$$
f(a^{\circ}) = K_{a^{\circ \circ}} = K_a
$$

\n
$$
f(0) = [d_L) \text{ and } f(1) = L.
$$

Then f is a $(0, 1)$ -lattice homomorphism. Now, for every $K_a \in K(L)$, by [Theorem 4.1](#page-2-0)(3) we get $f(a^{\circ}) = K_{a^{\circ}} = K_a$. Therefore f is an epimorphism. \Box

Consider the subset $I = \{a^{\infty} \wedge d_L : a \in L\}$ of a principal MS-algebra L with the smallest dense element d_L . Now some properties of I are given in the following.

Theorem 4.4. Let L be a principal MS-algebra with the smallest dense element d_L . Then the following statements hold

(1) I is an ideal of L , (2) I is a de Morgan algebra on its own, (3) $I \cong L^{\infty}$, (4) $K(L) \cong I$.

Proof.

- (1) Clearly $0 \in I$. Let $x, y \in I$. Then $x = a^{\infty} \wedge d_{L}$ and $y = b^{\infty} \wedge d_L$ for some $a, b \in L$. Hence $x \vee y =$ $(a^{\infty} \wedge d_L) \vee (b^{\infty} \wedge d_L) = (a \vee b)^{\infty} \wedge d_L$. It follows that $x \vee y \in I$. Again, let $x \in I$ and $z \le x, z \in L$. Then $x = a^{\infty} \wedge d_L$ for some $a \in L$. Since $z = z^{\infty} \wedge (z \vee d_L)$, then $z = z \wedge x = z^{\infty} \wedge (z \vee d_{L}) \wedge a^{\infty} \wedge d_{L} = (z \wedge a)^{\infty} \wedge d_{L}.$ Therefore $z \in I$ and I is an ideal of L.
- (2) We observe that 0 and d_L are the smallest and the greatest elements of I respectively. From (1) , I is a bounded distributive lattice. Define the operation $\overline{}$ on I by $\bar{x} = x^{\circ} \wedge d_{L}$. Then for any $x, y \in M$ we get

$$
\overline{x \wedge y} = (x \wedge y)^{\circ} \wedge d_L = (x^{\circ} \vee y^{\circ}) \wedge d_L = (x^{\circ} \wedge d_L) \vee (y^{\circ} \wedge d_L)
$$

\n
$$
= \overline{x} \vee \overline{y},
$$

\n
$$
\overline{x \vee y} = (x \vee y)^{\circ} \wedge d_L = x^{\circ} \wedge y^{\circ} \wedge d_L = (x^{\circ} \wedge d_L) \wedge (y^{\circ} \wedge d_L)
$$

\n
$$
= \overline{x} \wedge \overline{y},
$$

\n
$$
\overline{x} = \overline{x^{\circ} \wedge d_L} = (x^{\circ} \wedge d_L)^{\circ} \wedge d_L = x^{\circ \circ} \wedge d_L \text{ as } d_L^{\circ} = x^{\circ \circ} \wedge (x \vee d_L)
$$

\nas $x \leq d_L = x$.

Therefore I is a de Morgan algebra.

(3) Define a mapping $f: L^{\infty} \to I$ by $f(a) = a \wedge d_L$. Clearly $f(0) = 0$ and $f(1) = d_L$. For all $a, b \in L^{\infty}$ we have $a = a^{\infty}$ and $b = b^{\infty}$. Now

 $f(a \vee b) = (a \vee b) \wedge d_L = (a \wedge d_L) \vee (b \wedge d_L) = f(a) \vee f(b),$ $f(a \wedge b) = (a \wedge b) \wedge d_L = (a \wedge d_L) \wedge (b \wedge d_L) = f(a) \wedge f(b),$ $f(a^{\circ}) = a^{\circ} \wedge d_L = a^{\circ \circ \circ} \wedge d_L = \overline{a^{\circ \circ} \wedge d_L} = \overline{a \wedge d_L} = \overline{f(a)}$

Then f is a homomorphism. Let $f(a) = f(b)$. Then $a \wedge d_L = b \wedge d_L$ implies $a = a^{\circ\circ} \wedge d_L^{\circ\circ} = b^{\circ\circ} \wedge d_L^{\circ\circ} = b$ as $a = a^{\infty}$ and $d_L^{\infty} = 1$. Hence f is an injective map. Now we prove that f is a surjective map. Let $x \in M$. Then $x = a^{\circ\circ} \wedge d_L$ for some $a \in L$. Thus $f(a^{\infty}) = a^{\infty} \wedge d_{L} = x$. Therefore f is an isomorphism between two de Morgan algebras L^{∞} and I.

(4) Define $g: I \to K(L)$ by $g(a^{\infty} \wedge d_L) = K_{a^{\circ}}$. Let $x, y \in M$. Then $x = a^{\infty} \wedge d_L$ for some $a \in L$ and $y = b^{\infty} \wedge d_L$ for some $b \in L$. Now

$$
g(x \vee y) = g((a \vee b)^{\circ \circ} \wedge d_L) = K_{(a \vee b)^{\circ}} = K_{a^{\circ} \wedge b^{\circ}} = K_{a^{\circ}} \vee K_{b^{\circ}}
$$

= $g(x) \vee g(y)$,

$$
g(x \wedge y) = g((a \wedge b)^{\circ \circ} \wedge d_L) = K_{(a \wedge b)^{\circ}} = K_{a^{\circ} \vee b^{\circ}} = K_{a^{\circ}} \cap K_{b^{\circ}}
$$

= $g(x) \cap g(y)$,

$$
g(\overline{x}) = g(a^{\circ} \wedge d_L) = K_{a^{\circ \circ}} = \overline{K_{a^{\circ}}} = \overline{g(x)}
$$

Then g is a homomorphism. For any $K_a \in K(L)$, there exists $x = a^{\circ} \wedge d_{L} \in I$ such that $g(a^{\circ} \wedge d_{L}) = K_{a^{\circ}} = K_{a}$. Hence g is a surjective. Suppose that $g(a^{\circ} \wedge d_L) = g(a^{\circ} \wedge d_L)$. Then $K_{a^{\circ}} = K_{b^{\circ}}$. By [Theorem 4.1](#page-2-0) (2), $[a^{\circ} \wedge d_L) = [b^{\circ} \wedge d_L)$. It follows that $a^{\circ} \wedge d_{L} = b^{\circ} \wedge d_{L}$. Then g is an injective mapping. Therefore g is an isomorphism. \Box

A one-to-one correspondence between the class of all principal d_L -filters of L and the class of all principal filters of L^{∞} is obtained in the following Theorem 4.5.

Theorem 4.5. Let L be a principal MS-algebra with the smallest dense element d_L . Then there exists a one-to-one correspondence between the class of all principal d_L -filters of L and the class of all principal filters of L^{∞} .

Proof. Let F be a principal d_L -filter generated by the element a. One can easily prove that $[a] \cap L^{\infty}$ is a filter of L^{∞} . Now let $x \in [a] \cap L^{\infty}$. Then $x \ge a$ and $x \in L^{\infty}$. Hence $x = x^{\infty} \geq a^{\infty}$. Therefore a^{∞} is the smallest element of $[a] \cap L^{\infty}$. Then $[a] \cap L^{\infty}$ is a principal filter of L^{∞} generated by $a^{\circ\circ}$. Conversely, let $A = [a]$ be a principal filter of $L^{\circ\circ}$. Then by [Theorem 4.1](#page-2-0)(1) and (2), K_a is a principal d_L -filter of $L \square$

It is known that any filter of a finite MS-algebra is a principal filter. From the above Theorem, the following corollary is an immediate consequence.

Corollary 4.6. Let L be a finite principal MS-algebra. Then we have

(1) Every d_L -filter can be expressed as K_a for some $a \in L$, (2) $F_{d_i}(L) = K(L)$.

Now, we can represent any d_L -filter of a principal MS-algebra L as a union of certain principal d_L -filters.

Theorem 4.7. Let F be a d_L -filter of a principal MS-algebra L with the smallest dense d_L . Then $F = \bigcup_{x \in F} K_x$.

Proof. Let $y \in F$. Since L is principal MS-algebra, then $y = y^{\infty} \wedge (y \vee d_L) \geq y^{\infty} \wedge d_L$. Thus $y \in [y^{\infty} \wedge d_L) =$ $K_y \subseteq \bigcup_{x \in F} K_x$. Then $F \subseteq \bigcup_{x \in F} K_x$. Conversely, let $y \in \bigcup_{x \in F} K_x$. Then $y \in K_z$ for some $z \in F$. Then $y^\circ \leq z^\circ$ implies $y^{\circ\circ} \geq z^{\circ\circ} \in F$. Then $y^{\circ\circ} \in F$ implies $y \in F$ as F is a d_L -filter. Thus $\bigcup_{x \in F} K_x \subseteq F$. Therefore $F = \bigcup_{x \in F} K_x$.

5. Congruences via d_L -filters

In this section, the relationship between d_I -filters and congruences of a principal MS-algebra L is investigated.

Let L be a principal MS -algebra with the smallest dense element d_L . Define a binary relation θ_{d_L} on L as follows:

 $(x, y) \in \theta_{d_i}$ if and only if $x \wedge d_L = y \wedge d_L$.

Some properties of θ_{d} are studied in the following Theorem 5.1.

Theorem 5.1. Let L be a principal MS-algebra with the smallest dense element d_L . Then the following statements hold

- (1) θ_{d_L} is a congruence on L with Coker $\theta_{d_L} = [d_L)$,
- (2) $[x]\theta_{d_L} = [x^{\infty}]\theta_{d_L}$ for all $x \in L$,
- (3) L/θ_{d_i} is a de Morgan algebra on its own.

Proof.

(1) It is clear that θ_{d_i} is a lattice congruence on L. Let $(x, y) \in \theta_{d_L}$. Then $x \wedge d_L = y \wedge d_L$. Hence $x^{\circ} = x^{\circ} \vee d_L^{\circ} =$ $(x \wedge d_L)^{\circ} = (y \wedge d_L)^{\circ} = y^{\circ} \vee d_L^{\circ} = y^{\circ}$ as $d_{d_L}^{\circ} = 0$. Hence $x^{\circ} \wedge d_{L} = y^{\circ} \wedge d_{L}$ and $(x^{\circ}, y^{\circ}) \in \theta_{d_{L}}$. Therefore $\theta_{d_{L}}$ is a congruence on L. Now we have

$$
Coker \theta_{d_L} = \{x \in L : (x, 1) \in \theta_{d_L}\} = \{x \in L : x \wedge d_L = d_L\}
$$

$$
= \{x \in L : x \geq d_L\} = [d_L).
$$

(2) Since $x = x^{\infty} \wedge (x \vee d_{L})$ for all $x \in L$, then we get

$$
x \wedge d_L = x^{\infty} \wedge (x \vee d_L) \wedge d_L = x^{\infty} \wedge d_L
$$

Then $(x, x^{\infty}) \in \theta_{d_L}$ implies $[x]\theta_{d_L} = [x^{\infty}]\theta_{d_L}$.

(3) It is known that the quotient set L/θ_{d_L} is $\{|x|\theta_{d_L} : x \in L\}$. Clearly $(L/\theta_{d_t}, \vee, \wedge)$ is a bounded distributive lattice with bounds $[0]\theta_{d_L}$ and $[1]\theta_{d_L} = [d_L]$, where $[x]\theta_{d_L} \wedge [y]\theta_{d_L} = [x \wedge y]\theta_{d_L}$ and $[x]\theta_{d_L} \vee [y]\theta_{d_L} = [x \vee y]\theta_{d_L}$. We can define a unary operation $\overline{}$ on L/θ_{d_L} by $[x]\theta_{d_L} = [x^\circ]\theta_{d_L}$. We observe $[0]\theta_{d_L} = [1]\theta_{d_L}$ and $\overline{11} \theta_{d_i} = 0 \theta_{d_i}$. We have the following equalities

$$
\overline{\overline{[x]}} \theta_{d_L} = [x^{\circ\circ}] \theta_{d_L} = [x] \theta_{d_L},
$$

\n
$$
\overline{[x]}\theta_{d_L} \wedge [y] \theta_{d_L} = \overline{[x \wedge y]}\theta_{d_L} = [(x \wedge y)^{\circ}] \theta_{d_L} = [x^{\circ} \vee y^{\circ}] \theta_{d_L}
$$

\n
$$
= [x^{\circ}] \theta_{d_L} \vee [y^{\circ}] \theta_{d_L} = \overline{[x]}\theta_{d_L} \vee \overline{[y]}\theta_{d_L}.
$$

Similarly we can prove that $[x]\theta_{d_L} \vee [x]\theta_{d_L} =$ $\overline{x}|\theta_{d_t} \wedge \overline{y}|\theta_{d_t}$. Then L/θ_{d_t} is a de Morgan algebra. \Box

The following Lemma characterizes the Cokernel d_L -filters.

Lemma 5.2. Let θ be a congruence relation on a principal MSalgebra L with the smallest dense element d_L such that $\theta \ge \theta_{d_L}$. Then Coker θ is a d_L-filter of L.

Proof. It is known that $Coker\theta$ is a filter of L. Since $d_L \wedge d_L = d_L = 1 \wedge d_L$, then $(d_L, 1) \in \theta_d$, $\subseteq \theta$. Hence $(d_L, 1) \in \theta$ and $d_L \in Coker\theta$. Therefore Coker θ is a d_L -filter of $L.$ \Box

For every element a of a principal MS-algebra L, define the relation θ_{K_a} on L as follows

 $(x, y) \in \theta_{K_a}$ if and only if $x^{\infty} \wedge a = y^{\infty} \wedge a$

The following Theorem reveals many basic properties of θ_{K_a} .

Theorem 5.3. Let L be a principal MS-algebra with the smallest dense element d_L . Then for any $a \in L$ we have the following

- (1) θ_{K_a} is a lattice congruence on L with Coker $\theta_{K_a} = K_a$,
- (2) $(x, x^{\infty}) \in \theta_{K_a}$ for all $x \in L$,
- (3) $\theta_{K_1} = \theta_{d_L}$ and $\theta_{K_0} = \nabla$,
- (4) $\theta_{K_a} = \theta_{K_{a^{\circ \circ}}}$,
- (5) L/θ_{K_a} is a de Morgan algebra on its own.

Proof.

(1) Obviously θ_{K_a} is an equivalent relation on L. Let $(x, y), (c, d) \in \theta_{K_a}$. Then \circ \wedge $a = y$ ^{oo} ^ a and $c^{\infty} \wedge a = d^{\infty} \wedge a$. Then we have the following equalities

$$
(x \lor c)^\infty \land a = (x^\infty \lor c^\infty) \land a = (x^\infty \land a) \lor (c^\infty \land a)
$$

$$
= (y^\infty \land a) \lor (d^\infty \land a) = (y^\infty \lor d^\infty) \land a
$$

$$
= (y \lor d)^\infty \land a
$$

and

$$
(x \wedge c)^\infty \wedge a = (x^\infty \wedge c^\infty) \wedge a = (x^\infty \wedge a) \wedge (c^\infty \wedge a)
$$

$$
= (y^\infty \wedge a) \wedge (d^\infty \wedge a) = (y^\infty \wedge d^\infty) \wedge a
$$

$$
= (y \wedge d)^\infty \wedge a
$$

Consequently $(x \vee c, y \vee d), (x \wedge c, y \wedge d) \in \theta_{K_a}$. Therefore θ_{K_a} is a lattice congruence relation on L. Now we show that $Coker \theta_{K_a} = K_a$.

$$
Coker \theta_{K_a} = \{x \in L : (x, 1) \in \theta_{K_a}\} = \{x \in L : x^{\infty} \wedge a
$$

$$
= 1^{\infty} \wedge a\} = \{x \in L : x^{\infty} \wedge a = a\} = \{x \in L : x^{\infty}
$$

$$
\geq a\} = \{x \in L : x^{\infty} \leq a^{\infty}\} = K_a
$$

- (2) Since $x^{\circ\circ} = x^{\circ\circ\circ\circ}$ for all $x \in L$, then $x^{\circ\circ} \wedge a = x^{\circ\circ\circ\circ} \wedge a$. It follows that $(x, x^{\infty}) \in \theta_{K_a}$.
- (3) Let $(x, y) \in \theta_{d_L}$. Thus $x \wedge d_L = y \wedge d_L$. Then $x^{\infty} \wedge d_L^{\infty} = y^{\infty} \wedge d_L^{\infty}$ implies $x^{\infty} \wedge 1 = y^{\infty} \wedge 1$. Hence $(x, y) \in K_1$ and $\theta_{d_L} \subseteq \theta_{K_1}$. Conversely, let $(x, y) \in K_1$. Then $x^{\infty} \wedge 1 = y^{\infty} \wedge 1$ implies $x^{\infty} \wedge d_{d_L} = y^{\infty} \wedge d_L$. Then $(x^{\circ\circ}, y^{\circ\circ}) \in \theta_{d_L}$. By [Theorem 5.1](#page-4-0)(2), $(x, x^{\circ\circ}), (y^{\circ\circ}, y) \in$ θ_{d_i} . Then by transitivity of θ_{d_i} we get $(x, y) \in \theta_{d_i}$. Then $\theta_{K_1} \subseteq \theta_{d_L}$ and $\theta_{K_1} = \theta_{d_L}$. Now we observe that
- $\theta_{K_0} = \{(x, y) \in L \times L : x^{\circ \circ} \wedge 0 = 0 = y^{\circ \circ} \wedge 0\} = L \times L = \nabla.$

(4) Now we proceed to show that $\theta_{K_a} = \theta_{K_{a} \circ \phi}$

$$
(x, y) \in \theta_{K_a} \iff x^{\infty} \land a = y^{\infty} \land a \iff (x^{\infty} \land a)^{\infty}
$$

$$
= (y^{\infty} \land a)^{\infty} \iff x^{\infty} \land a^{\infty} = y^{\infty} \land a^{\infty} \text{ as } a^{\infty}
$$

$$
= a^{\infty} \iff (x, y) \in K_{a^{\infty}}.
$$

(5) Since L is a bounded distributive lattice, then $(L/\theta_{K_a}, \vee, \wedge, [0]\theta_{K_a}, K_a)$ is a bounded distributive lattice. Define the unary operation $\overline{}$ on L/θ_{K_a} by \overline{x} , $\theta_{K_a} = [x^{\circ}] \theta_{K_a}$. Then we observe that

$$
\overline{[x]}\theta_{K_a} = [x^{\circ\circ}]\theta_{K_a} = [x]\theta_{K_a},
$$

\n
$$
\overline{[x]}\theta_{K_a} \wedge [y]\theta_{K_a} = \overline{[x]}\theta_{K_a} \vee \overline{[y]}\theta_{K_a},
$$

\n
$$
\overline{[x]}\theta_{K_a} \vee [y]\theta_{K_a} = \overline{[x]}\theta_{K_a} \wedge \overline{[y]}\theta_{K_a}.
$$

\nTherefore $(L/\theta_{K_a}, \vee, \wedge, -, [0]\theta_{K_a},)$

 K_a) is a de Morgan algebra. \Box

Let $Con_M(L) = \{\theta_{K_a} : a \in L^{\infty}\}\$. Now we prove the following.

Theorem 5.4. Let L be a principal MS-algebra with the smallest dense element d_L . Then for any $a, b \in L^{\infty}$ we have the following

(1) $a \leq b$ in L^{∞} if and only if $\theta_{K_b} \leq \theta_{K_a}$ in $Con_M(L)$, (2) $\theta_{K_a} \cap \theta_{K_b} = \theta_{K_{a\vee b}}$, (3) $\theta_{K_a} \vee \theta_{K_b} = \theta_{K_{a\wedge b}}$.

Proof.

- (1) Let $a \leq b$ and $(x, y) \in \theta_{K_b}$. Then $x^{\infty} \wedge b = y^{\infty} \wedge b$. Hence $x^{\circ\circ} \wedge b \wedge a = y^{\circ\circ} \wedge b \wedge a$. This leads to $x^{\circ\circ} \wedge a = y^{\circ\circ} \wedge a$. Then $(x, y) \in \theta_{K_a}$ and $\theta_{K_b} \subseteq \theta_{K_a}$. Conversely, let $\theta_{K_b} \subseteq \theta_{K_a}$. Then we have $(b, 1) \in \theta_{K_b} \subseteq \theta_{K_a}$. This implies that $b^{\infty} \wedge a = 1^{\infty} \wedge a = a$. Thus $b = b^{\infty} \ge a$.
- (2) Since $a, b \le a \vee b$, then by (1), $\theta_{K_{a\vee b}} \subseteq \theta_{K_a}$, θ_{K_b} . Hence $\theta_{K_{a\vee b}} \subseteq \theta_{K_a} \cap \theta_{K_b}$. Conversely, let $(x, y) \in \theta_{K_a} \cap \theta_{K_b}$. Then $(x, y) \in \theta_{K_a}, \theta_{K_b}$. Then we have $x^{\infty} \wedge a = y^{\infty} \wedge a$ and $x^{\circ\circ} \wedge b = y^{\circ\circ} \wedge b$. Now

$$
x^{\circ\circ} \wedge (a \vee b) = (x^{\circ\circ} \wedge a) \vee (x^{\circ\circ} \wedge b) = (y^{\circ\circ} \wedge a) \vee (y^{\circ\circ} \wedge b)
$$

=
$$
y^{\circ\circ} \wedge (a \vee b).
$$

Consequently $(x, y) \in \theta_{K_{a\vee b}}$. Then $\theta_{K_a} \cap \theta_{K_b} \subseteq \theta_{K_{a\vee b}}$.

(3) It is clear that $\theta_{K_{a\wedge b}}$ is an upper bound of both θ_{K_a} and θ_{K_b} on $Con_M(L)$. Let θ_{K_z} be an upper bound of both θ_{K_a} and θ_{K_b} on $Con_M(L)$, for some $z \in L^{\infty}$. Then, we obtain $\theta_{K_a} \subseteq \theta_{K_z}$ and $\theta_{K_b} \subseteq \theta_{K_z}$. This result leads to $a \geq z$ and $b \geq z$, which implies $a \wedge b \geq z$. Hence by (1), we have $\theta_{K_{a\wedge b}} \subseteq \theta_{K_z}$. Thus, $\theta_{K_{a\wedge b}}$ is the supremum of both θ_{K_a} and θ_{K_b} on $Con_M(L)$. \Box

From above [Theorem 4.2](#page-3-0), the following Theorem is an immediate consequence.

Theorem 5.5. $Con_M(L)$ forms a de Morgan algebra on its own.

Proof. From the above [Theorem 4.2\(](#page-3-0)2) and (3) we proved that the infimum and the supremum of any two elements of $Con_M(L)$ are elements of $Con_M(L)$. Then $(Con_M(L), \cap, \vee)$ is a lattice. For every $\theta_{K_a}, \theta_{K_b}, \theta_{K_c} \in Con_M(L)$, We get the following equalities.

$$
\theta_{K_a} \cap (\theta_{K_b} \vee \theta_{K_c}) = \theta_{K_a} \cap \theta_{K_{b \wedge c}} = \theta_{K_{a \vee (b \wedge c)}} = \theta_{K_{(a \vee b) \wedge (a \vee c)}}
$$

$$
= \theta_{K_{a \vee b}} \vee \theta_{K_{a \vee c}} = (\theta_{K_a} \cap \theta_{K_b}) \vee (\theta_{K_a} \cap \theta_{K_c})
$$

This shows that $Con_M(L)$ is a distributive lattice. Since $\theta_{K_1} = \theta_{d_1}$ and $\theta_{K_0} = \nabla$ are the least and the greatest elements of $Con_M(L)$ respectively, then $Con_M(L)$ is bounded. Now, we

define a unary operation $^{-}$ on $Con_M(L)$ by $\overline{\theta}_{K_a} = \theta_{K_{a}S}$. Then we get the following equalities.

$$
\overline{\overline{\theta}}_{K_a} = \theta_{K_a},
$$
\n
$$
\overline{\theta}_{K_a} \cap \theta_{K_b} = \overline{\theta}_{K_{a\vee b}} = \theta_{K_{(a\vee b)^{\circ}}} = \theta_{k_{a^{\circ} \wedge b^{\circ}}} = \theta_{K_{a^{\circ}}} \vee \theta_{K_{b^{\circ}}} = \overline{\theta}_{K_a} \vee \overline{\theta}_{K_b},
$$
\n
$$
\overline{\theta}_{K_a} \vee \theta_{K_b} = \overline{\theta}_{K_{a\wedge b}} = \theta_{K_{(a\wedge b)^{\circ}}} = \theta_{K_{a^{\circ} \vee b^{\circ}}} = \theta_{K_{a^{\circ}}} \cap \theta_{K_{b^{\circ}}} = \overline{\theta}_{K_a} \cap \overline{\theta}_{K_b}.
$$

Therefore $(Con_M(L), \vee, \cap, -, \theta_{d_t}, \nabla)$ forms a de Morgan algebra on its own. \square

Finally, we conclude this paper with the following.

Theorem 5.6. Let L be a principal MS-algebra with the smallest dense element d_L . Then for any $a \in B(L)$ we have the following

(1) θ_{K_a} is a congruence on L,

(2) $\theta_{K_a} \cap \theta_{K_{a^{\circ}}} = \theta_{d_L}$,

- (3) $\theta_{K_a} \vee \theta_{K_{a^{\circ}}} = \nabla$,
- (4) L/θ_{K_a} is a Boolean algebra, whenever $L \in S$,
- (5) $Con_B(L) = \{ \theta_{K_a} : a \in B(L) \}$ is a Boolean subalgebra of $Con_M(L)$.

Proof.

(1) We proved in [Theorem 5.3\(](#page-5-0)1) that θ_{K_a} is a lattice congruence on L. Now for every element a of a Boolean subalgebra $B(L)$ of L, we prove that θ_{K_a} preserves the operation \circ . Since $B(L)$ is a Boolean algebra, then $a \vee a^{\circ} = 1$ and $a \wedge a^{\circ} = 0$ for all $a \in B(L)$. Now we get the following equalities

$$
(x, y) \in \theta_{K_a} \Rightarrow x^{\infty} \wedge a = y^{\infty} \wedge a \Rightarrow (x^{\infty} \wedge a) \vee a^{\circ}
$$

\n
$$
= (y^{\infty} \wedge a) \vee a^{\circ} \Rightarrow (x^{\infty} \vee a^{\circ}) \wedge (a \vee a^{\circ})
$$

\n
$$
= (y^{\infty} \vee a^{\circ}) \wedge (a \vee a^{\circ}) \Rightarrow x^{\infty} \vee a^{\circ} = y^{\infty} \vee a^{\circ} \text{ as } a \vee a^{\circ}
$$

\n
$$
= 1 \Rightarrow (x^{\infty} \vee a^{\circ})^{\circ} = (y^{\infty} \vee a^{\circ})^{\circ} \Rightarrow x^{\infty} \wedge a^{\infty} = y^{\infty} \wedge a^{\infty}
$$

\n
$$
\Rightarrow x^{\infty} \wedge a = y^{\infty} \wedge a \text{ as } a^{\infty} = a \Rightarrow (x^{\circ}, y^{\circ}) \in \theta_{K_a}
$$

Therefore θ_{K_a} is a congruence on L.

(2) Using [Theorem 5.4](#page-5-0) (2) and $a \vee a^{\circ} = 1$, we get.

 $\theta_{K_a} \cap \theta_{K_{a^{\lozenge}}} = \theta_{K_{a \vee a^{\lozenge}}} = \theta_{K_1} = \theta_{d_L}$

- (3) By [Theorem 5.4](#page-5-0) (3) and $a \wedge a^{\circ} = 0$, we obtain the following.
- $\theta_{K_a}\vee\theta_{K_{a^{\diamond}}}=\theta_{K_{a\wedge a^{\diamond}}}=\theta_{K_0}=\nabla$
	- (4) By [Theorem 5.3](#page-5-0)(5), for every $a \in L$, we proved that L/θ_{K_a} is a de Morgan algebra. Let $L \in S$ and $a \in B(L)$.

$$
[x]\theta_{K_a} \vee [x^\circ]\theta_{K_a} = [x \vee x^\circ]\theta_{K_a} = K_a = [1]\theta_{K_a}
$$

and

$$
[x]\theta_{K_a} \wedge [x^\circ]\theta_{K_a} = [x \wedge x^\circ]\theta_{K_a} = [0]\theta_{K_a}
$$

Then every element of L/θ_{K_a} has a complement. Then L/θ_{K_a} is a Boolean algebra.

(5) For every $a, b \in B(L)$ we have $\theta_{K_a} \vee \theta_{K_b} =$ $\theta_{K_{a\wedge b}} \in Con_B(L)$ and $\theta_{K_a} \wedge \theta_{K_b} = \theta_{K_{a\vee b}} \in Con_B(L)$ as $a \vee b, a \wedge b \in B(L)$. Then $(Con(L), \vee, \wedge)$ is a sublattice of $Con_M(L)$. Since $0, 1 \in B(L)$, then $\theta_{K_0}, \theta_{K_1} \in Con_B(L)$. Hence $Con_{B}(L)$ is a bounded distributive lattice. Now we can define the unary operation $\overline{}$ on $Con_{B}(L)$ by $\theta_{K_a} = \theta_{K_{a^\circ}}$. Then we get $\theta_{K_a} \cap \theta_{K_a} = \theta_{K_{a^\circ}} \cap \theta_{K_a} =$ $\theta_{K_1} = \theta_{d_L}$ and $\theta_{K_a} \vee \theta_{K_a} = \theta_{K_{a} \circ} \vee \theta_{K_a} = \theta_{K_0} = \nabla$. Then every element of $Con_B(L)$ has a complement. Therefore $Con_B(L)$ is a Boolean subalgebra of $Con_M(L)$. \square

Acknowledgments

The author would like to thank the referees for their useful comments and valuable suggestions given to this paper.

References

- [1] [T.S. Blyth, J.C. Varlet, On a common abstraction of de Morgan](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0005) [algebras and Stone algebras, Proc. Roy. Soc. Edinburgh 94A](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0005) [\(1983\) 301–308](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0005).
- [2] [T.S. Blyth, J.C. Varlet, Subvarieties of the class of MS-algebras,](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0010) [Proc. Roy. Soc. Edinburgh 94a \(1983\) 301–308](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0010).
- [3] [A. Badawy, D. Guffova, M. Haviar, Triple construction of](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0015) [decomposable MS-algebras, Acta Univ. Palacki. Olomuc., Fac.](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0015) [Rer. Nat., Math. 51 \(2\) \(2012\) 53–65.](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0015)
- [4] A. Badawy, De Morgan filters of decomposable MS-algebras, Southeast Asian Bull. Math. (2015) (in press).
- [5] [S. El-Assar, A. Badawy, Homomorphisms and Subalgebras of](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0025) [MS-algebras, Qatar Univ. Sci. J. 15 \(2\) \(1995\) 279–289](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0025).
- [6] [C. Luo, Y. Zeng, Kernel ideals and congruences on MS](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0030)[algebras, Acta Math. Sci. B 26 \(2\) \(2006\) 344–348.](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0030)
- [7] [M. Sambasiva Rao,](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0035) β [-filters of MS-algebras, Asian–Euro. J.](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0035) [Math. 5 \(2\) \(2012\) 1250023 \(8 pages\).](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0035)
- [8] [M. Sambasiva Rao, e-filters of MS-algebras, Acta Math. Sci. 33](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0040) [\(B3\) \(2013\) 738–746.](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0040)
- [9] [T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0045)[Verlag, London Limited, 2005](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0045).
- [10] [T.S. Blyth, J.C. Varlet, Ockham Algebras, Oxford University](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0050) [Press, London, 1994](http://refhub.elsevier.com/S1110-256X(15)00003-6/h0050).