

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE d_L -Filters of principal *MS*-algebras

Abd El-Mohsen Badawy

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Received 23 April 2014; revised 24 August 2014; accepted 23 December 2014 Available online 2 February 2015

KEYWORDS

MS-algebras; Principal MS-algebras; Filters; d_L -filters; Congruences **Abstract** In this paper the notion of d_L -filters is introduced and characterized in principal *MS*-algebras. Also many properties of principal d_L -filters of a principal *MS*-algebra are observed and a characterization of the class of all principal d_L -filters is given. Finally, a relationship between d_L -filters and congruences on a principal *MS*-algebra is investigated.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 06D05; 06D30; 92D25

© 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

T.S. Blyth and J.C. Varlet [1] introduced the class **MS** of all *MS*-algebras which is a common abstraction of de Morgan algebras and Stone algebras. T.S. Blyth and J.C. Varlet [2] characterized the subvarieties of **MS**. The class **MS** contains the well-known classes for examples Boolean algebras, de Morgan algebras, Kleene algebras and Stone algebras. Recently A. Badawy, D. Guffova and M. Haviar [3] introduced and characterized the class of principal *MS*-algebras by means of triples. A. Badawy [4] introduced de Morgan filters of decomposable *MS*-algebras. S. El-Assar and A. Badawy [5] introduced Homomorphisms and Subalgebras of *MS*-algebras on which all congruences are in a one-to-one correspondence with the kernel ideals. In [7] M. Sambasiva Rao introduced the concepts of boosters and β -filters of

E-mail address: abdelmohsen.badawy@yahoo.com

Peer review under responsibility of Egyptian Mathematical Society.

MS-algebras. Also M. Sambasiva Rao [8] introduced the notion of *e*-filters of *MS*-algebras.

In this paper, the concept of d_L -filters is introduced in principal *MS*-algebras and then many properties of d_L -filters are studied. Various examples of *d*-filters are introduced. A characterization of d_L -filters of a principal *MS*-algebra is obtained. Also a principal d_L -filter of the form K_a on a principal *MS*algebra *L*, for every $a \in L$ is introduced. Every principal d_L -filter can be expressed as K_a for some $a \in L$. It is proved that the class K(L) of all principal d_L -filters forms a de Morgan algebra on its own. A one-to one correspondence between the set of all principal d_L -filters of a principal *MS*-algebra *L* and the set of all principal filters of L^{∞} is obtained. Finally, a relationship between d_L -filters and congruences on a principal *MS*-algebra is investigated.

2. Preliminaries

In this section, some certain definitions and results which were introduced in the papers [1-3,9,10] are given.

A de Morgan algebra is an algebra $(L; \lor, \land, -, 0, 1)$ of type (2, 2, 1, 0, 0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and - the unary operation of involution satisfies:

http://dx.doi.org/10.1016/j.joems.2014.12.008

1110-256X © 2015 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

$$\overline{\overline{x}} = x, \overline{(x \lor y)} = \overline{x} \land \overline{y}, \overline{(x \land y)} = \overline{x} \lor \overline{y}.$$

An *MS*-algebra is an algebra $(L; \lor, \land, \circ, 0, 1)$ of type (2, 2, 1, 0, 0) where $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and \circ the unary operation of involution satisfies:

$$x \leq x^{\circ\circ}, (x \wedge y)^{\circ} = x^{\circ} \lor y^{\circ}, 1^{\circ} = 0.$$

The class **MS** of all *MS*-algebras is equational. A de Morgan algebra is an *MS*-algebra satisfying the identity, $x = x^{\circ\circ}$. A K_2 -algebra is an *MS*-algebra satisfying the additional two identities

 $x \wedge x^{\circ} = x^{\circ} \wedge x^{\circ\circ}, (x \wedge x^{\circ}) \lor (y \lor y^{\circ}) = y \lor y^{\circ}.$

The class **S** of all Stone algebras is a subclass of **MS** and is characterized by the identity $x \wedge x^\circ = 0$. A Boolean algebra is an *MS*-algebra satisfying the identity $x \vee x^\circ = 1$.

Some of the basic properties of MS-algebras which were proved in [1,10] are given in the following Theorem.

Theorem 2.1. For any two elements a, b of an MS-algebra L, we have

(1) $0^{\circ} = 1$, (2) $a \leq b \Rightarrow b^{\circ} \leq a^{\circ}$, (3) $a^{\circ\circ\circ} = a^{\circ}$, (4) $(a \lor b)^{\circ} = a^{\circ} \land b^{\circ}$, (5) $(a \lor b)^{\circ\circ} = a^{\circ\circ} \lor b^{\circ\circ}$, (6) $(a \land b)^{\circ\circ} = a^{\circ\circ} \land b^{\circ\circ}$.

Theorem 2.2. Let L be an MS-algebra. Then

- L[∞] = {x ∈ L : x = x[∞]} is a de Morgan algebra and a subalgebra of L,
- (2) $D(L) = \{x \in L : x^{\circ} = 0\}$ is a filter of dense elements of L,
- (3) B(L) = {x ∈ L[∞] : x ∨ x[∞] = 1} is a Boolean algebra and a subalgebra of L[∞].

For any *MS*-algebra *L*, let F(L) denote to the set of all filters of *L*. It is known that $(F(L); \land, \lor)$ is a distributive lattice, where $F \land G = F \cap G$ and $F \lor G = \{f \land g : f \in F, g \in G\}$. Also, $[a] = \{x \in L : x \ge a\}$ is a principal filter of *L* generated by *a*.

By a congruence on an *MS*-algebra $(L; \lor, \land, \circ)$ we shall mean a lattice congruence θ such that

$$(x, y) \in \theta$$
 implies $(x^{\circ}, y^{\circ}) \in \theta$

Through what follows, for an *MS*-algebra *L* we shall denote by ∇ the universal congruence on *L*. The Cokernel of the lattice congruence θ on a lattice *L* is defined as

$$Coker\theta = \{x \in L : (x, 1) \in \theta\}.$$

The following definition of a principal *MS*-algebra was introduced in [3].

Definition 2.3 (*Definition 2.1, 3*). An *MS*-algebra $(L; \lor, \land, \circ, 0, 1)$ is called a principal *MS*-algebra if it satisfies the following conditions

- (1) the filter D(L) is principal, i.e., there exists an element $d_L \in L$ such that $D(L) = [d_L)$;
- (2) $x = x^{\circ\circ} \land (x \lor d_L)$ for any $x \in L$.

3. Properties of d_L -filters

In this Section, the concept of d_L -filters is introduced in a principal *MS*-algebra. Many properties and examples of d_L -filters are investigated. Also, a set of equivalent conditions is derived for a filter of a principal *MS*-algebra to become a d_L -filter.

Definition 3.1. Let *L* be a principal *MS*-algebra with the smallest dense element d_L . A filter *F* of *L* is called a d_L -filter if $d_L \in F$.

Clearly the filter $[d_L)$ is a d_L -filter of L. It is observed that $[d_L)$ is the smallest d_L -filter of L and L is the greatest d_L -filter of L.

Example 3.2.

- (1) Every filter of a de Morgan algebra M is a d_L -filter as $d_M = 1$ belongs to any filter.
- (2) Let L = {0,x,y,z,1:0 < x < y < z < 1} be a five element chain and x° = x, y° = z° = 0. Clearly L is a principal MS-algebra with the smallest dense element y. We observe that the filters {y, z, 1}, {x, y, z, 1} and L are d_L-filters of L but the filters {z, 1} and {1} are not.

Now, for every filter F of a principal MS-algebra L with the smallest dense element d_L , consider the set L(F) as follows:

 $L(F) = \{ x \in L : x^{\circ \circ} \in F \}.$

We first state the following Lemma.

Lemma 3.3. Let F be a filter of a principal MS-algebra L with the smallest dense element d_L . Then L(F) is a d_L -filter of L containing F.

Proof. Firstly we prove that L(F) is a filter of L. Clearly $1 \in L(F)$. Let $x, y \in L(F)$. Then $x^{\circ\circ}$, $y^{\circ\circ} \in F$. It follows that $(x \wedge y)^{\circ\circ} = x^{\circ\circ} \wedge y^{\circ\circ} \in F$. Then $x \wedge y \in L(F)$. Again, let $x \in L(F)$ and $z \in L$ such that $z \ge x$. Hence $z^{\circ\circ} \ge x^{\circ\circ} \in F$. Then $z^{\circ\circ} \in F$ implies $z \in L(F)$. Therefore L(F) is a filter of L. Since $d_L^{\circ\circ} = 1 \in F$, then $d_L \in L(F)$. So L(F) is a d_L -filter of L. Since $x^{\circ\circ} \ge x$ for all $x \in F$, then $x^{\circ\circ} \in F$. Hence $x \in L(F)$. Therefore $F \subseteq L(F)$. \Box

A characterization of d_L -filters of a principal *MS*-algebra *L* is given in the following Theorem.

Theorem 3.4. Let F be a filter of a principal MS-algebra L with the smallest dense element d_L . Then F is a d_L -filter if and only if L(F) = F.

Proof. Let *F* be a d_L -filter. Then $d_L \in F$. Since $x \vee d_L \ge d_L$, then $x \vee d_L \in F$. Let $x \in L(F)$. Then $x^{\circ\circ} \in F$. Now by Definition 2.3 (2) we get

$$x = x^{\circ \circ} \land (x \lor d_L) \in F.$$

Then $L(F) \subseteq F$. By Lemma 3.3, $F \subseteq L(F)$. Therefore L(F) = F. Conversely, let L(F) = F. By the above Lemma 3.3, F is a d_L -filter of L. \Box Let $F_{d_L}(L)$ be the class of all d_L -filters of a principal *MS*algebra *L*. It is observed that the intersection and the supremum of two d_L -filters of *L* are again d_L -filters of *L*. Then we can formulate the following.

Theorem 3.5. For any principal MS-algebra L with the smallest dense element d_L , the class $F_{d_L}(L)$ is a sublattice of F(L) with unit.

Now more examples of d_L -filters of a principal *MS*-algebra *L* are given in the following Lemma 3.6.

Lemma 3.6. Let F be a filter of a principal MS-algebra L with the smallest dense element d_L . Then

- (1) every maximal filter L is a d_L -filter,
- (2) for any prime filter P of L the set $\ell(P) = \{x \in L : x^\circ \notin P\}$ is a d_L -filter.

Proof.

- (1) Let *M* be a maximal filter of *L*. Suppose $d_L \notin M$. Then $M \lor [d_L) = L$. Hence $a \land b = 0$ for some $a \in M, b \in [d_L)$. Then $0 = a \land b \ge a \land d_L$ implies $a \land d_L = 0$. It follows that $a \le a^{\circ\circ} = a^{\circ\circ} \land d_L^{\circ\circ} = 0^{\circ\circ} = 0$, where $d_L^{\circ\circ} = 1$. Then $0 = a \in M$ which is a contradiction. Hence $d_L \in M$. Therefore, *M* is a d_L -filter of *L*.
- (2) Since $0 = 1^{\circ} \notin P$, then $1 \in \ell(P)$. Let $x, y \in \ell(P)$. Then $x^{\circ} \notin P$ and $y^{\circ} \notin P$. Since *P* is prime, then we get $(x \land y)^{\circ} = x^{\circ} \lor y^{\circ} \notin P$. Hence $x \land y \in \ell(P)$. Let $x \in \ell(P)$ and $z \in L$ such that $z \ge x$. Thus $y^{\circ} \le x^{\circ}$. Then $x^{\circ} \notin P$ implies $y^{\circ} \notin P$. Hence $y \in P$. Then $\ell(P)$ is a filter of *L*. Since $d_{L}^{\circ} = 0 \notin P$ then $d_{L} \in \ell(P)$. So, $\ell(P)$ is a d_{L} -filter of *L*. \Box

It is not true that every d_L -filter is a maximal filter. For, in Example 3.2 (2), the filter $\{y, z, 1\}$ is a d_L -filter but not a maximal filter.

Lemma 3.7. Let L be a principal K_2 -algebra with the smallest dense element d_L . Then

(1) The filter $L^{\vee} = \{x \lor x^{\circ} : x \in L\}$ is a d_L -filter.

(2) Any proper filter of L which contains either x or x° for all $x \in L$ is a d_L -filter.

Proof.

- (1) Since $d_L = d_L \vee d_L^\circ$, then $d_L \in L^\vee$ and L^\vee is a d_L -filter of L.
- (2) Let F be a proper filter contains either x or x° for all x ∈ L. Let y ∈ L[∨]. Then y = x ∨ x° for some x ∈ L. By the hypotheses we get y = x ∨ x° ∈ F. Then L[∨] ⊆ F. From (1), d_L ∈ L[∨]. It follows that d_L ∈ F. Therefore F is a d_L-filter of L. □

A characterization of d_L -filters of a principal *MS*-algebra *L* is studied in the following Theorem.

Theorem 3.8. Let F be a proper filter of a principal MS-algebra L with the smallest dense element d_L . Then the following conditions are equivalent.

- (1) F is a d_L -filter,
- (2) $x \lor d_L \in F$ for each $x \in L$,
- (3) $x^{\circ\circ} \in F$ implies $x \in F$,
- (4) For $x, y \in L, x^{\circ} = y^{\circ}$ and $x \in F$ imply $y \in F$.

Proof.

- (1) \Rightarrow (2) Let *F* be a d_L -filter of *L*. Then $d_L \in F$. Since $x \lor d_L \ge d_L \in F$ for all $x \in L$, then $x \lor d_L \in F$ and the condition (2) holds.
- (2) ⇒ (3) Let x ∨ d_L ∈ F for all x ∈ L. Suppose x[∞] ∈ F. Since L is principal, then x = x[∞] ∧ (x ∨ d_L) ∈ F and the condition (3) holds.
- (3) \Rightarrow (4) Let $x, y \in L$ and $x^{\circ} = y^{\circ}$. Suppose $x \in F$. Then $y^{\circ\circ} = x^{\circ\circ} \in F$. So by the condition (3), we get $y \in F$.
- (4) \Rightarrow (1) Since $d_L^\circ = 0 = 1^\circ$ and $1 \in F$, by condition (4), we have $d_L \in F$. Therefore *F* is a d_L -filter of *L*. \Box

4. Principal d_L-filters

In this section, the concept of principal d_L -filters in the class of all principal *MS*-algebras is studied and characterized. Also a representation of any d_L -filter of a principal *MS*-algebra as a union of certain principal d_L -filters is given.

For any element *a* of a principal *MS*-algebra *L* with the smallest dense element d_L , consider the set K_a as follows:

$$K_a = \{x \in L : x^\circ \leq a^\circ\}$$

In the following Theorem 4.1, some of the basic properties of the set K_a are observed.

Theorem 4.1. Let L be a principal MS-algebra with the smallest dense element d_L . Then for any two elements a, b of L we have

K_a is a d_L-filter of L containing a,
 K_a = [a^{oo} ∧ d_L),
 K_a = K_{a^{oo}},
 K_a = K_b if and only if a^o = b^o.

Proof.

- (1) Clearly $1 \in K_a$. Let $x, y \in K_a$. Then $x^\circ \leq a^\circ$ and $y^\circ \leq a^\circ$. Hence $(x \wedge y)^\circ = x^\circ \lor y^\circ \leq a^\circ$. It follows that $x \wedge y \in K_a$. Now, let $x \in L$ and $z \geq x$ for some $z \in L$. Then $z^\circ \leq x^\circ \leq a^\circ$. Thus $z^\circ \in K_a$. Therefore K_a is a d_L -filter of L. Since $d_x^\circ = 0 \leq a^\circ$, then K_a is a d_T -filter of L_a .
- of L. Since $d_L^\circ = 0 \le a^\circ$, then K_a is a d_L -filter of L. (2) Let $x \in K_a$. Then $x^\circ \le a^\circ$ implies $x^{\circ\circ} \ge a^{\circ\circ}$. Hence $x = x^{\circ\circ} \land (x \lor d_L) \ge a^{\circ\circ} \land (x \lor d_L) \ge a^{\circ\circ} \land d_L$. Then $x \in [a^{\circ\circ} \land d_L)$. Then $K_a \subseteq [a^{\circ\circ} \land d_L)$ Conversely, let $x \in [a^{\circ\circ} \land d_L)$. Then $x \ge a^{\circ\circ} \land d_L$. It follows that $x^\circ \le a^{\circ\circ\circ} \lor d_L^\circ = a^\circ$ as $a^\circ = a^{\circ\circ\circ}$ and $d_L^\circ = 0$. Hence $a \in K_a$ and $[a^{\circ\circ} \land d_L) \subseteq K_a$. Therefore $K_a = [a^{\circ\circ} \land d_L)$.

(3) From the fact that $x^{\circ} = x^{\circ \circ \circ}$ for all $x \in L$, we get

 $K_a = \{ x \in L : x^{\circ} \leqslant a^{\circ} = a^{\circ \circ \circ} \} = K_{a^{\circ \circ}}.$

(4) Let $K_a = K_b$. Since $a, b \in K_a = K_b$, then $a^{\circ} \leq b^{\circ}$ and $b^{\circ} \leq a^{\circ}$. It follows that $a^{\circ} = b^{\circ}$. Conversely, let $a^{\circ} = b^{\circ}$. Then $K_a = \{x \in L : x^{\circ} \leq a^{\circ}\} = \{x \in L : x^{\circ} \leq b^{\circ}\} = K_b$. \Box

For the principal *MS*-algebra, we have the following crucial lemma.

Theorem 4.2. Let L be a principal MS-algebra with the smallest dense element d_L . Then every principal d_L -filter can be expressed as K_a for some $a \in L$.

Proof. Let F = [a] be a d_L -filter of L. We claim that $F = K_a$. Let $x \in F$. Then $x \ge a$. Then $x^{\circ\circ} \ge a^{\circ\circ} \land d_L$ implies $x^{\circ\circ} \in [a^{\circ\circ} \land d_L) = K_d$. Since K_a is a d_L -filter and $x^{\circ\circ} \in K_a$, then by Theorem 3.8(3), $x \in K_a$, it follows that $F \subseteq K_a$. Conversely, since $a \le d_L$ and $a \le d^{\circ\circ}$, then $a \le a^{\circ\circ} \land d_L$. Hence $K_a = [a^{\circ\circ} \land d_L) \subseteq [a] = F$. Therefore $F = K_a$. \Box

Consider $K(L) = \{K_a : a \in L\}$ the class of all principal d_L -filters of a principal *MS*-algebra *L*. More properties of principal d_L -filters are studied in Theorem 4.3.

Theorem 4.3. Let L be a principal MS-algebra with the smallest dense element d_L . Then for any two elements a, b of L, the following statements are hold.

a ≤ b in L implies K_b ⊆ K_a in K(L),
 K_{a∧b} = K_a ∨ K_b,
 K_{a∨b} = K_a ∩ K_b,
 K(L) is a bounded distributive lattice,
 a → K_{a°} is an epimorphism of L into K(L).

Proof.

(1) Let $a \leq b$ in *L*. Assume $x \in K_b$, then $x^{\circ} \leq b^{\circ} \leq a^{\circ}$. Hence $x \in K_a$ and $F_b \subseteq K_a$.

(2) By Theorem 4.1 (2), we get

$$\begin{split} K_{a\wedge b} &= \left[\left(a \wedge b \right)^{\circ\circ} \wedge d_L \right) = \left[a^{\circ\circ} \wedge b^{\circ\circ} \wedge d_L \right) \\ &= \left[\left(a^{\circ\circ} \wedge d_L \right) \wedge \left(b^{\circ\circ} \wedge d_L \right) \right) = \left[a^{\circ\circ} \wedge d_L \right) \vee \left[b^{\circ\circ} \wedge d_L \right) \\ &= K_a \vee K_b. \end{split}$$

(3) Using Lemma (2) and by distributivity of L we get

$$K_{a \lor b} = [(a \lor b)^{\circ \circ} \land d_L) = [(a^{\circ \circ} \lor b^{\circ \circ}) \land d_L)$$

= $[(a^{\circ \circ} \land d_L) \lor (b^{\circ \circ} \land d_L)) = [a^{\circ \circ} \land d_L) \cap [b^{\circ \circ} \land d_L)$
= $K_a \cap K_b$.

- (4) Clearly K₁ = [d_L) and K₀ = L are the smallest and the greatest elements of K(L) respectively. Then by (2) and (3) we observe that (K(L), ∨, ∩, [d_L), L) is a bounded lattice. Using the distributivity of L, we can get K_a ∨ (K_b ∩ K_c) = (K_a ∨ K_b) ∩ (K_a ∨ K_c). Therefore K(L) is a bounded distributive.
- (5) Define the mapping $f: L \to K(L)$ by $f(a) = K_{a^{\circ}}$. Let $a, b \in L$. Then by (2) and (3) above and Theorem 4.1(3) we get the following equalities.

$$\begin{split} f(a \wedge b) &= K_{(a \wedge b)^{\circ}} = K_{a^{\circ} \vee b^{\circ}} = K_{a^{\circ}} \cap K_{b^{\circ}} = f(a) \cap f(b), \\ f(a \vee b) &= K_{(a \vee b)^{\circ}} = K_{a^{\circ} \wedge b^{\circ}} = K_{a^{\circ}} \vee K_{b^{\circ}} = f(a) \vee f(b), \\ f(a^{\circ}) &= K_{a^{\circ \circ}} = K_{a} \\ f(0) &= [d_{L}) \quad \text{and} \quad f(1) = L. \end{split}$$

Then *f* is a (0,1)-lattice homomorphism. Now, for every $K_a \in K(L)$, by Theorem 4.1(3) we get $f(a^\circ) = K_{a^{\circ\circ}} = K_a$. Therefore *f* is an epimorphism. \Box

Consider the subset $I = \{a^{\circ\circ} \land d_L : a \in L\}$ of a principal *MS*-algebra *L* with the smallest dense element d_L . Now some properties of *I* are given in the following.

Theorem 4.4. Let L be a principal MS-algebra with the smallest dense element d_L . Then the following statements hold

(1) *I* is an ideal of *L*,
 (2) *I* is a de Morgan algebra on its own,
 (3) *I* ≅ *L*[∞],
 (4) *K*(*L*) ≅ *I*.

Proof.

- (1) Clearly $0 \in I$. Let $x, y \in I$. Then $x = a^{\circ\circ} \wedge d_L$ and $y = b^{\circ\circ} \wedge d_L$ for some $a, b \in L$. Hence $x \lor y = (a^{\circ\circ} \wedge d_L) \lor (b^{\circ\circ} \wedge d_L) = (a \lor b)^{\circ\circ} \wedge d_L$. It follows that $x \lor y \in I$. Again, let $x \in I$ and $z \leq x, z \in L$. Then $x = a^{\circ\circ} \wedge d_L$ for some $a \in L$. Since $z = z^{\circ\circ} \wedge (z \lor d_L)$, then $z = z \land x = z^{\circ\circ} \wedge (z \lor d_L) \wedge a^{\circ\circ} \wedge d_L = (z \land a)^{\circ\circ} \wedge d_L$. Therefore $z \in I$ and I is an ideal of L.
- (2) We observe that 0 and d_L are the smallest and the greatest elements of *I* respectively. From (1), *I* is a bounded distributive lattice. Define the operation ⁻ on *I* by x̄ = x° ∧ d_L. Then for any x, y ∈ M we get

$$\overline{x \wedge y} = (x \wedge y)^{\circ} \wedge d_{L} = (x^{\circ} \vee y^{\circ}) \wedge d_{L} = (x^{\circ} \wedge d_{L}) \vee (y^{\circ} \wedge d_{L})$$

$$= \overline{x} \vee \overline{y},$$

$$\overline{x \vee y} = (x \vee y)^{\circ} \wedge d_{L} = x^{\circ} \wedge y^{\circ} \wedge d_{L} = (x^{\circ} \wedge d_{L}) \wedge (y^{\circ} \wedge d_{L})$$

$$= \overline{x} \wedge \overline{y},$$

$$\overline{\overline{x}} = \overline{x^{\circ} \wedge d_{L}} = (x^{\circ} \wedge d_{L})^{\circ} \wedge d_{L} = x^{\circ \circ} \wedge d_{L} \text{ as } d_{L}^{\circ} = x^{\circ \circ} \wedge (x \vee d_{L})$$

$$\text{ as } x \leqslant d_{L} = x.$$

Therefore *I* is a de Morgan algebra.

(3) Define a mapping f: L[∞] → I by f(a) = a ∧ d_L. Clearly f(0) = 0 and f(1) = d_L. For all a, b ∈ L[∞] we have a = a[∞] and b = b[∞]. Now

 $\begin{aligned} f(a \lor b) &= (a \lor b) \land d_L = (a \land d_L) \lor (b \land d_L) = f(a) \lor f(b), \\ f(a \land b) &= (a \land b) \land d_L = (a \land d_L) \land (b \land d_L) = f(a) \land f(b), \\ f(a^\circ) &= a^\circ \land d_L = a^{\circ \circ \circ} \land d_L = \overline{a^{\circ \circ} \land d_L} = \overline{a \land d_L} = \overline{f(a)} \end{aligned}$

Then f is a homomorphism. Let f(a) = f(b). Then $a \wedge d_L = b \wedge d_L$ implies $a = a^{\circ\circ} \wedge d_L^{\circ\circ} = b^{\circ\circ} \wedge d_L^{\circ\circ} = b$ as $a = a^{\circ\circ}$ and $d_L^{\circ\circ} = 1$. Hence f is an injective map. Now we prove that f is a surjective map. Let $x \in M$. Then $x = a^{\circ\circ} \wedge d_L$ for some $a \in L$. Thus $f(a^{\circ\circ}) = a^{\circ\circ} \wedge d_L = x$. Therefore f is an isomorphism between two de Morgan algebras $L^{\circ\circ}$ and I.

 (4) Define g: I → K(L) by g(a^{oo} ∧ d_L) = K_{a^o}. Let x, y ∈ M. Then x = a^{oo} ∧ d_L for some a ∈ L and y = b^{oo} ∧ d_L for some b ∈ L. Now

$$g(x \lor y) = g((a \lor b)^{\circ\circ} \land d_L) = K_{(a \lor b)^{\circ}} = K_{a^{\circ} \land b^{\circ}} = K_{a^{\circ}} \lor K_{b^{\circ}}$$
$$= g(x) \lor g(y),$$
$$g(x \land y) = g((a \land b)^{\circ\circ} \land d_L) = K_{(a \land b)^{\circ}} = K_{a^{\circ} \lor b^{\circ}} = K_{a^{\circ}} \cap K_{b^{\circ}}$$
$$= g(x) \cap g(y),$$
$$g(\overline{x}) = g(a^{\circ} \land d_L) = K_{a^{\circ\circ}} = \overline{K_{a^{\circ}}} = \overline{g(x)}$$

Then g is a homomorphism. For any $K_a \in K(L)$, there exists $x = a^\circ \wedge d_L \in I$ such that $g(a^\circ \wedge d_L) = K_{a^{\circ\circ}} = K_a$. Hence g is a surjective. Suppose that $g(a^\circ \wedge d_L) = g(a^\circ \wedge d_L)$. Then $K_{a^\circ} = K_{b^\circ}$. By Theorem 4.1 (2), $[a^\circ \wedge d_L) = [b^\circ \wedge d_L)$. It follows that $a^\circ \wedge d_L = b^\circ \wedge d_L$. Then g is an injective mapping. Therefore g is an isomorphism. \Box

A one-to-one correspondence between the class of all principal d_L -filters of L and the class of all principal filters of L^{∞} is obtained in the following Theorem 4.5.

Theorem 4.5. Let L be a principal MS-algebra with the smallest dense element d_L . Then there exists a one-to-one correspondence between the class of all principal d_L -filters of L and the class of all principal filters of $L^{\circ\circ}$.

Proof. Let *F* be a principal d_L -filter generated by the element *a*. One can easily prove that $[a) \cap L^{\circ\circ}$ is a filter of $L^{\circ\circ}$. Now let $x \in [a) \cap L^{\circ\circ}$. Then $x \ge a$ and $x \in L^{\circ\circ}$. Hence $x = x^{\circ\circ} \ge a^{\circ\circ}$. Therefore $a^{\circ\circ}$ is the smallest element of $[a) \cap L^{\circ\circ}$. Then $[a) \cap L^{\circ\circ}$ is a principal filter of $L^{\circ\circ}$ generated by $a^{\circ\circ}$. Conversely, let A = [a) be a principal filter of $L^{\circ\circ}$. Then by Theorem 4.1(1) and (2), K_a is a principal d_L -filter of L. \Box

It is known that any filter of a finite *MS*-algebra is a principal filter. From the above Theorem, the following corollary is an immediate consequence.

Corollary 4.6. Let L be a finite principal MS-algebra. Then we have

(1) Every d_L -filter can be expressed as K_a for some $a \in L$, (2) $F_{d_L}(L) = K(L)$.

Now, we can represent any d_L -filter of a principal *MS*-algebra *L* as a union of certain principal d_L -filters.

Theorem 4.7. Let *F* be a d_L -filter of a principal MS-algebra *L* with the smallest dense d_L . Then $F = \bigcup_{x \in F} K_x$.

Proof. Let $y \in F$. Since *L* is principal *MS*-algebra, then $y = y^{\circ\circ} \land (y \lor d_L) \ge y^{\circ\circ} \land d_L$. Thus $y \in [y^{\circ\circ} \land d_L) = K_y \subseteq \bigcup_{x \in F} K_x$. Then $F \subseteq \bigcup_{x \in F} K_x$. Conversely, let $y \in \bigcup_{x \in F} K_x$. Then $y \in K_z$ for some $z \in F$. Then $y^{\circ} \leqslant z^{\circ}$ implies $y^{\circ\circ} \ge z^{\circ\circ} \in F$. Then $y^{\circ\circ} \in F$ implies $y \in F$ as *F* is a d_L -filter. Thus $\bigcup_{x \in F} K_x \subseteq F$. Therefore $F = \bigcup_{x \in F} K_x$. \Box

5. Congruences via d_L -filters

In this section, the relationship between d_L -filters and congruences of a principal *MS*-algebra *L* is investigated.

Let *L* be a principal *MS*-algebra with the smallest dense element d_L . Define a binary relation θ_{d_L} on *L* as follows:

 $(x, y) \in \theta_{d_L}$ if and only if $x \wedge d_L = y \wedge d_L$.

Some properties of θ_{d_L} are studied in the following Theorem 5.1.

Theorem 5.1. Let L be a principal MS-algebra with the smallest dense element d_L . Then the following statements hold

- (1) θ_{d_L} is a congruence on L with $Coker\theta_{d_L} = [d_L)$,
- (2) $[x]\theta_{d_L} = [x^{\circ\circ}]\theta_{d_L}$ for all $x \in L$,
- (3) L/θ_{d_1} is a de Morgan algebra on its own.

Proof.

(1) It is clear that θ_{d_L} is a lattice congruence on *L*. Let $(x,y) \in \theta_{d_L}$. Then $x \wedge d_L = y \wedge d_L$. Hence $x^\circ = x^\circ \vee d_L^\circ = (x \wedge d_L)^\circ = (y \wedge d_L)^\circ = y^\circ \vee d_L^\circ = y^\circ$ as $d_{d_L}^\circ = 0$. Hence $x^\circ \wedge d_L = y^\circ \wedge d_L$ and $(x^\circ, y^\circ) \in \theta_{d_L}$. Therefore θ_{d_L} is a congruence on *L*. Now we have

$$Coker\theta_{d_L} = \{x \in L : (x, 1) \in \theta_{d_L}\} = \{x \in L : x \land d_L = d_L\}$$
$$= \{x \in L : x \ge d_L\} = [d_L).$$

(2) Since $x = x^{\circ\circ} \land (x \lor d_L)$ for all $x \in L$, then we get

$$x \wedge d_L = x^{\circ \circ} \wedge (x \vee d_L) \wedge d_L = x^{\circ \circ} \wedge d_L$$

Then $(x, x^{\circ\circ}) \in \theta_{d_L}$ implies $[x]\theta_{d_L} = [x^{\circ\circ}]\theta_{d_L}$.

(3) It is known that the quotient set L/θ_{d_L} is $\{[x]\theta_{d_L} : x \in L\}$. Clearly $(L/\theta_{d_L}, \vee, \wedge)$ is a bounded distributive lattice with bounds $[0]\theta_{d_L}$ and $[1]\theta_{d_L} = [d_L)$, where $[x]\theta_{d_L} \wedge [y]\theta_{d_L} = [x \wedge y]\theta_{d_L}$ and $[x]\theta_{d_L} \vee [y]\theta_{d_L} = [x \vee y]\theta_{d_L}$. We can define a unary operation - on L/θ_{d_L} by $\overline{[x]}\theta_{d_L} = [x^\circ]\theta_{d_L}$. We observe $\overline{[0]}\theta_{d_L} = [1]\theta_{d_L}$ and $\overline{[1]}\theta_{d_L} = [0]\theta_{d_L}$. We have the following equalities

$$\overline{[x]}\theta_{d_L} = [x^{\circ\circ}]\theta_{d_L} = [x]\theta_{d_L},$$

$$\overline{[x]}\theta_{d_L} \wedge [y]\theta_{d_L} = \overline{[x \wedge y]}\theta_{d_L} = [(x \wedge y)^{\circ}]\theta_{d_L} = [x^{\circ} \vee y^{\circ}]\theta_{d_L}$$

$$= [x^{\circ}]\theta_{d_L} \vee [y^{\circ}]\theta_{d_L} = \overline{[x]}\theta_{d_L} \vee \overline{[y]}\theta_{d_L}.$$

Similarly we can prove that $\overline{[x]\theta_{d_L} \vee [x]\theta_{d_L}} = \overline{[x]}\theta_{d_I} \wedge \overline{[y]}\theta_{d_I}$. Then L/θ_{d_I} is a de Morgan algebra. \Box

The following Lemma characterizes the Cokernel d_L -filters.

Lemma 5.2. Let θ be a congruence relation on a principal MSalgebra L with the smallest dense element d_L such that $\theta \ge \theta_{d_L}$. Then Coker θ is a d_L -filter of L.

Proof. It is known that $Coker\theta$ is a filter of L. Since $d_L \wedge d_L = d_L = 1 \wedge d_L$, then $(d_L, 1) \in \theta_{d_L} \subseteq \theta$. Hence $(d_L, 1) \in \theta$ and $d_L \in Coker\theta$. Therefore $Coker\theta$ is a d_L -filter of L. \Box

For every element *a* of a principal *MS*-algebra *L*, define the relation θ_{K_a} on *L* as follows

 $(x, y) \in \theta_{K_a}$ if and only if $x^{\circ \circ} \wedge a = y^{\circ \circ} \wedge a$

The following Theorem reveals many basic properties of θ_{K_a} .

Theorem 5.3. Let *L* be a principal MS-algebra with the smallest dense element d_L . Then for any $a \in L$ we have the following

- (1) θ_{K_a} is a lattice congruence on L with $Coker\theta_{K_a} = K_a$,
- (2) $(x, x^{\circ\circ}) \in \theta_{K_a}$ for all $x \in L$,
- (3) $\theta_{K_1} = \theta_{d_L}$ and $\theta_{K_0} = \nabla$,
- (4) $heta_{K_a}= heta_{K_{a^{\circ\circ}}}$,
- (5) L/θ_{K_a} is a de Morgan algebra on its own.

Proof.

(1) Obviously θ_{K_a} is an equivalent relation on *L*. Let $(x, y), (c, d) \in \theta_{K_a}$. Then $x^{\circ\circ} \wedge a = y^{\circ\circ} \wedge a$ and $c^{\circ\circ} \wedge a = d^{\circ\circ} \wedge a$. Then we have the following equalities

$$(x \lor c)^{\circ \circ} \land a = (x^{\circ \circ} \lor c^{\circ \circ}) \land a = (x^{\circ \circ} \land a) \lor (c^{\circ \circ} \land a)$$
$$= (y^{\circ \circ} \land a) \lor (d^{\circ \circ} \land a) = (y^{\circ \circ} \lor d^{\circ \circ}) \land a$$
$$= (y \lor d)^{\circ \circ} \land a$$

and

$$(x \wedge c)^{\circ \circ} \wedge a = (x^{\circ \circ} \wedge c^{\circ \circ}) \wedge a = (x^{\circ \circ} \wedge a) \wedge (c^{\circ \circ} \wedge a)$$
$$= (y^{\circ \circ} \wedge a) \wedge (d^{\circ \circ} \wedge a) = (y^{\circ \circ} \wedge d^{\circ \circ}) \wedge a$$
$$= (y \wedge d)^{\circ \circ} \wedge a$$

Consequently $(x \lor c, y \lor d), (x \land c, y \land d) \in \theta_{K_a}$. Therefore θ_{K_a} is a lattice congruence relation on *L*. Now we show that $Coker\theta_{K_a} = K_a$.

$$Coker\theta_{K_a} = \{x \in L : (x, 1) \in \theta_{K_a}\} = \{x \in L : x^{\circ \circ} \land a$$
$$= 1^{\circ \circ} \land a\} = \{x \in L : x^{\circ \circ} \land a = a\} = \{x \in L : x^{\circ \circ}$$
$$\geqslant a\} = \{x \in L : x^{\circ} \leqslant a^{\circ}\} = K_a$$

- (2) Since $x^{\circ\circ} = x^{\circ\circ\circ\circ}$ for all $x \in L$, then $x^{\circ\circ} \wedge a = x^{\circ\circ\circ\circ} \wedge a$. It follows that $(x, x^{\circ\circ}) \in \theta_{K_a}$.
- (3) Let $(x,y) \in \theta_{d_L}$. Thus $x \wedge d_L = y \wedge d_L$. Then $x^{\circ\circ} \wedge d_L^{\circ\circ} = y^{\circ\circ} \wedge d_L^{\circ\circ}$ implies $x^{\circ\circ} \wedge 1 = y^{\circ\circ} \wedge 1$. Hence $(x,y) \in K_1$ and $\theta_{d_L} \subseteq \theta_{K_1}$. Conversely, let $(x,y) \in K_1$. Then $x^{\circ\circ} \wedge 1 = y^{\circ\circ} \wedge 1$ implies $x^{\circ\circ} \wedge d_{d_L} = y^{\circ\circ} \wedge_{d_L}$. Then $(x^{\circ\circ}, y^{\circ\circ}) \in \theta_{d_L}$. By Theorem 5.1(2), $(x, x^{\circ\circ}), (y^{\circ\circ}, y) \in \theta_{d_L}$. Then by transitivity of θ_{d_L} we get $(x, y) \in \theta_{d_L}$. Then $\theta_{K_1} \subseteq \theta_{d_L}$ and $\theta_{K_1} = \theta_{d_L}$. Now we observe that
- $\theta_{K_0} = \{(x, y) \in L \times L : x^{\circ \circ} \land 0 = 0 = y^{\circ \circ} \land 0\} = L \times L = \nabla.$

(4) Now we proceed to show that $\theta_{K_a} = \theta_{K_{a^{\circ\circ}}}$

$$\begin{aligned} (x,y) &\in \theta_{K_a} \Longleftrightarrow x^{\circ\circ} \land a = y^{\circ\circ} \land a \Longleftrightarrow (x^{\circ\circ} \land a)^{\circ\circ} \\ &= (y^{\circ\circ} \land a)^{\circ\circ} \Longleftrightarrow x^{\circ\circ} \land a^{\circ\circ} = y^{\circ\circ} \land a^{\circ\circ} \text{ as } a^{\circ\circ\circ\circ} \\ &= a^{\circ\circ} \Longleftrightarrow (x,y) \in K_{a^{\circ\circ}}. \end{aligned}$$

(5) Since L is a bounded distributive lattice, then (L/θ_{Ka}, ∨, ∧, [0]θ_{Ka}, Ka) is a bounded distributive lattice. Define the unary operation ⁻ on L/θ_{Ka} by [x]θ_{Ka} = [x^o]θ_{Ka}. Then we observe that

$$\overline{[x]}\theta_{K_a} = [x^{\circ\circ}]\theta_{K_a} = [x]\theta_{K_a},
\overline{[x]}\theta_{K_a} \wedge [y]\theta_{K_a} = \overline{[x]}\theta_{K_a} \vee \overline{[y]}\theta_{K_a},
\overline{[x]}\theta_{K_a} \vee [y]\theta_{K_a} = \overline{[x]}\theta_{K_a} \wedge \overline{[y]}\theta_{K_a}.
Therefore (L/\theta_{K_a}, \lor, \land, -, [0]\theta_K$$

Therefore $(L/\theta_{K_a}, \lor, \land, -, [0]\theta_{K_a}, K_a)$ is a de Morgan algebra. \Box

Let $Con_M(L) = \{\theta_{K_a} : a \in L^{\circ\circ}\}$. Now we prove the following.

Theorem 5.4. Let *L* be a principal MS-algebra with the smallest dense element d_L . Then for any $a, b \in L^{\circ\circ}$ we have the following

(1) $a \leq b$ in $L^{\circ\circ}$ if and only if $\theta_{K_b} \leq \theta_{K_a}$ in $Con_M(L)$, (2) $\theta_{K_a} \cap \theta_{K_b} = \theta_{K_{a\vee b}}$, (3) $\theta_{K_a} \vee \theta_{K_b} = \theta_{K_{a\wedge b}}$.

Proof.

- (1) Let $a \leq b$ and $(x, y) \in \theta_{K_b}$. Then $x^{\circ\circ} \wedge b = y^{\circ\circ} \wedge b$. Hence $x^{\circ\circ} \wedge b \wedge a = y^{\circ\circ} \wedge b \wedge a$. This leads to $x^{\circ\circ} \wedge a = y^{\circ\circ} \wedge a$. Then $(x, y) \in \theta_{K_a}$ and $\theta_{K_b} \subseteq \theta_{K_a}$. Conversely, let $\theta_{K_b} \subseteq \theta_{K_a}$. Then we have $(b, 1) \in \theta_{K_b} \subseteq \theta_{K_a}$. This implies that $b^{\circ\circ} \wedge a = 1^{\circ\circ} \wedge a = a$. Thus $b = b^{\circ\circ} \geq a$.
- (2) Since $a, b \leq a \lor b$, then by (1), $\theta_{K_{a \lor b}} \subseteq \theta_{K_a}$, θ_{K_b} . Hence $\theta_{K_{a \lor b}} \subseteq \theta_{K_a} \cap \theta_{K_b}$. Conversely, let $(x, y) \in \theta_{K_a} \cap \theta_{K_b}$. Then $(x, y) \in \theta_{K_a}, \theta_{K_b}$. Then we have $x^{\circ\circ} \land a = y^{\circ\circ} \land a$ and $x^{\circ\circ} \land b = y^{\circ\circ} \land b$. Now

$$\begin{aligned} x^{\circ\circ} \wedge (a \lor b) &= (x^{\circ\circ} \wedge a) \lor (x^{\circ\circ} \wedge b) = (y^{\circ\circ} \wedge a) \lor (y^{\circ\circ} \wedge b) \\ &= y^{\circ\circ} \wedge (a \lor b). \end{aligned}$$

Consequently $(x, y) \in \theta_{K_{a \lor b}}$. Then $\theta_{K_a} \cap \theta_{K_b} \subseteq \theta_{K_{a \lor b}}$.

(3) It is clear that θ_{K_a∧b} is an upper bound of both θ_{K_a} and θ_{K_b} on Con_M(L). Let θ_{K_z} be an upper bound of both θ_{K_a} and θ_{K_b} on Con_M(L), for some z ∈ L[∞]. Then, we obtain θ_{K_a} ⊆ θ_{K_z} and θ_{K_b} ⊆ θ_{K_z}. This result leads to a ≥ z and b ≥ z, which implies a ∧ b ≥ z. Hence by (1), we have θ_{K_a∧b} ⊆ θ_{K_z}. Thus, θ_{K_{a∧b} is the supremum of both θ_{K_a} and θ_{K_b} on Con_M(L). □}

From above Theorem 4.2, the following Theorem is an immediate consequence.

Theorem 5.5. $Con_M(L)$ forms a de Morgan algebra on its own.

Proof. From the above Theorem 4.2(2) and (3) we proved that the infimum and the supremum of any two elements of $Con_M(L)$ are elements of $Con_M(L)$. Then $(Con_M(L), \cap, \vee)$ is a lattice. For every $\theta_{K_a}, \theta_{K_b}, \theta_{K_c} \in Con_M(L)$, We get the following equalities.

$$\begin{aligned} \theta_{K_a} \cap (\theta_{K_b} \vee \theta_{K_c}) &= \theta_{K_a} \cap \theta_{K_{b \wedge c}} = \theta_{K_{a \vee (b \wedge c)}} = \theta_{K_{(a \vee b) \wedge (a \vee c)}} \\ &= \theta_{K_{a \vee b}} \vee \theta_{K_{a \vee c}} = (\theta_{K_a} \cap \theta_{K_b}) \vee (\theta_{K_a} \cap \theta_{K_c}) \end{aligned}$$

This shows that $Con_M(L)$ is a distributive lattice. Since $\theta_{K_1} = \theta_{d_L}$ and $\theta_{K_0} = \nabla$ are the least and the greatest elements of $Con_M(L)$ respectively, then $Con_M(L)$ is bounded. Now, we

define a unary operation $\overline{}$ on $Con_M(L)$ by $\overline{\theta}_{K_a} = \theta_{K_a^\circ}$. Then we get the following equalities.

$$\begin{split} \overline{\theta}_{K_a} &= \theta_{K_a}, \\ \overline{\theta_{K_a} \cap \theta_{K_b}} &= \overline{\theta}_{K_{a \lor b}} = \theta_{K_{(a \lor b)^\circ}} = \theta_{k_{a^\circ \land b^\circ}} = \theta_{K_{a^\circ}} \lor \theta_{K_{b^\circ}} = \overline{\theta}_{K_a} \lor \overline{\theta}_{K_b}, \\ \overline{\theta_{K_a} \lor \theta_{K_b}} &= \overline{\theta}_{K_{a \land b}} = \theta_{K_{(a \land b)^\circ}} = \theta_{K_{a^\circ \lor b^\circ}} = \theta_{K_{a^\circ}} \cap \theta_{K_{b^\circ}} = \overline{\theta}_{K_a} \cap \overline{\theta}_{K_b}. \end{split}$$

Therefore $(Con_M(L), \lor, \cap, -, \theta_{d_L}, \nabla)$ forms a de Morgan algebra on its own. \Box

Finally, we conclude this paper with the following.

Theorem 5.6. Let *L* be a principal MS-algebra with the smallest dense element d_L . Then for any $a \in B(L)$ we have the following

- (1) θ_{K_a} is a congruence on L,
- (2) $\theta_{K_a} \cap \theta_{K_{a^\circ}} = \theta_{d_L}$,
- (3) $\theta_{K_a} \vee \theta_{K_{a^\circ}} = \nabla$,
- (4) L/θ_{K_a} is a Boolean algebra, whenever $L \in \mathbf{S}$,
- (5) $Con_B(L) = \{\theta_{K_a} : a \in B(L)\}$ is a Boolean subalgebra of $Con_M(L)$.

Proof.

We proved in Theorem 5.3(1) that θ_{Ka} is a lattice congruence on L. Now for every element a of a Boolean subalgebra B(L) of L, we prove that θ_{Ka} preserves the operation ◦. Since B(L) is a Boolean algebra, then a ∨ a° = 1 and a ∧ a° = 0 for all a ∈ B(L). Now we get the following equalities

$$(x, y) \in \theta_{K_a} \Rightarrow x^{\circ\circ} \land a = y^{\circ\circ} \land a \Rightarrow (x^{\circ\circ} \land a) \lor a^{\circ}$$
$$= (y^{\circ\circ} \land a) \lor a^{\circ} \Rightarrow (x^{\circ\circ} \lor a^{\circ}) \land (a \lor a^{\circ})$$
$$= (y^{\circ\circ} \lor a^{\circ}) \land (a \lor a^{\circ}) \Rightarrow x^{\circ\circ} \lor a^{\circ} = y^{\circ\circ} \lor a^{\circ} \text{ as } a \lor a^{\circ}$$
$$= 1 \Rightarrow (x^{\circ\circ} \lor a^{\circ})^{\circ} = (y^{\circ\circ} \lor a^{\circ})^{\circ} \Rightarrow x^{\circ\circ\circ} \land a^{\circ\circ} = y^{\circ\circ\circ} \land a^{\circ\circ}$$
$$\Rightarrow x^{\circ\circ\circ} \land a = y^{\circ\circ\circ} \land a \text{ as } a^{\circ\circ} = a \Rightarrow (x^{\circ}, y^{\circ}) \in \theta_{K_a}$$

Therefore θ_{K_a} is a congruence on *L*.

(2) Using Theorem 5.4 (2) and $a \lor a^\circ = 1$, we get.

 $\theta_{K_a} \cap \theta_{K_{a^\circ}} = \theta_{K_{a \lor a^\circ}} = \theta_{K_1} = \theta_{d_L}$

- (3) By Theorem 5.4 (3) and $a \wedge a^\circ = 0$, we obtain the following.
- $heta_{K_a} ee heta_{K_{a^\circ}} = heta_{K_{a \wedge a^\circ}} = heta_{K_0} =
 abla$
 - (4) By Theorem 5.3(5), for every $a \in L$, we proved that L/θ_{K_a} is a de Morgan algebra. Let $L \in \mathbf{S}$ and $a \in B(L)$.

Then for every $x \in L$ we have $x \wedge x^{\circ} = 0$ and $x \vee x^{\circ} \in [d_L) \subseteq K_a$. Consequently

$$[x]\theta_{K_a} \vee [x^\circ]\theta_{K_a} = [x \vee x^\circ]\theta_{K_a} = K_a = [1]\theta_{K_a}$$

and

$$[x]\theta_{K_a} \wedge [x^\circ]\theta_{K_a} = [x \wedge x^\circ]\theta_{K_a} = [0]\theta_{K_a}$$

Then every element of L/θ_{K_a} has a complement. Then L/θ_{K_a} is a Boolean algebra.

(5) For every $a, b \in B(L)$ we have $\theta_{K_a} \vee \theta_{K_b} = \theta_{K_{a \wedge b}} \in Con_B(L)$ and $\theta_{K_a} \wedge \theta_{K_b} = \theta_{K_{a \vee b}} \in Con_B(L)$ as $a \vee b, a \wedge b \in B(L)$. Then $(Con(L), \vee, \wedge)$ is a sublattice of $Con_M(L)$. Since $0, 1 \in B(L)$, then $\theta_{K_0}, \theta_{K_1} \in Con_B(L)$. Hence $Con_B(L)$ is a bounded distributive lattice. Now we can define the unary operation - on $Con_B(L)$ by $\overline{\theta}_{K_a} = \theta_{K_{a^o}}$. Then we get $\overline{\theta}_{K_a} \cap \theta_{K_a} = \theta_{K_{a^o}} \cap \theta_{K_a} = \theta_{K_1} = \theta_{d_L}$ and $\overline{\theta}_{K_a} \vee \theta_{K_a} = \theta_{K_{a^o}} \vee \theta_{K_a} = \theta_{K_0} = \nabla$. Then every element of $Con_B(L)$ has a complement. Therefore $Con_B(L)$ is a Boolean subalgebra of $Con_M(L)$. \Box

Acknowledgments

The author would like to thank the referees for their useful comments and valuable suggestions given to this paper.

References

- T.S. Blyth, J.C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh 94A (1983) 301–308.
- [2] T.S. Blyth, J.C. Varlet, Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh 94a (1983) 301–308.
- [3] A. Badawy, D. Guffova, M. Haviar, Triple construction of decomposable MS-algebras, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 51 (2) (2012) 53–65.
- [4] A. Badawy, De Morgan filters of decomposable MS-algebras, Southeast Asian Bull. Math. (2015) (in press).
- [5] S. El-Assar, A. Badawy, Homomorphisms and Subalgebras of MS-algebras, Qatar Univ. Sci. J. 15 (2) (1995) 279–289.
- [6] C. Luo, Y. Zeng, Kernel ideals and congruences on MSalgebras, Acta Math. Sci. B 26 (2) (2006) 344–348.
- [7] M. Sambasiva Rao, β -filters of MS-algebras, Asian–Euro. J. Math. 5 (2) (2012) 1250023 (8 pages).
- [8] M. Sambasiva Rao, e-filters of MS-algebras, Acta Math. Sci. 33 (B3) (2013) 738–746.
- [9] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag, London Limited, 2005.
- [10] T.S. Blyth, J.C. Varlet, Ockham Algebras, Oxford University Press, London, 1994.