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Abstract Motivated by an open problem of Abawajy et al. [1] we find some relations between

power graphs and Cayley graphs of finite cyclic groups. We show that the vertex deleted subgraphs

of some power graphs are spanning subgraphs or equal to the complement of vertex deleted

subgraphs of some unitary Cayley graphs. Also we prove that some Cayley graphs can be expressed

as direct product of power graphs. Applying these relations we study the eigenvalues and energy of

power graphs and the related Cayley graphs.
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1. Introduction

The study of graphical representation of semigroups or groups
becomes an exciting research topic in the last few decades,

leading to many fascinating results and questions. In this con-
text the most popular class of graphs are the Cayley graphs.
Cayley graphs are introduced in 1878, well studied and having

many applications. The concept of power graphs is a very
recent development. In this paper we have worked on an open
problem of Abawajy et al. [1, Problem 10] which asked for link
between power graphs and Cayley graphs.

The concept of directed power graph was first introduced

and studied by Kelarev and Quinn [2–4]. The directed power
graph of a semigroup S is a digraph with vertex set S and for
x; y 2 S there is an arc from x to y if and only if x – y and

y ¼ xm for some positive integer m. Following this
Chakrabarty et al. [5] defined the undirected power graph
GðGÞ of a group G as an undirected graph whose vertex set is
G and two vertices u; v are adjacent if and only if u – v and

um ¼ v or vm ¼ u for some positive integer m. After that the
undirected power graph became the main focus of study in
[6–9]. In [5] it was shown that for any finite group G, the power

graph of a subgroup of G is an induced subgraph of GðGÞ and
GðGÞ is complete if and only if G is a cyclic group of order 1 or
pm, for some prime p and positive integerm. In [6] Cameron has

proved that for a finite cyclic group G of non-prime-power
order n, the set of vertices Tn of GðGÞ which are adjacent to
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all other vertices of GðGÞ, consists of the identity and the
generators of G, so that jTnj ¼ 1þ /ðnÞ, where /ðnÞ is the
Euler’s / function. For more results on power graphs we refer

the recent survey paper [1]. In this paper our main subject of
study is undirected power graph and so we use the brief term
‘power graph’ to refer to the undirected power graph.

For a finite group G and a subset S of G not containing the

identity element e and satisfying S�1 ¼ fs�1 : s 2 Sg ¼ S, the
Cayley graph of G with connection set S;CayðG;SÞ, is an undi-

rected graph with vertex set G and two vertices g and h are

adjacent if and only if gh�1 2 S. For any positive integer n,

let Zn denotes the additive cyclic group of integers modulo n.

If we represent the elements of Zn by 0; 1; . . . ; n� 1, then

Un ¼ fa 2 Zn : gcdða; nÞ ¼ 1g is a subset of Zn of order /ðnÞ,
where /ðnÞ is the Euler’s / function. The Cayley graph
CayðZn;UnÞ is known as unitary Cayley graph, see [10]. One

can observe that CayðZn;Zn � f0gÞ is the complete graph Kn

on n vertices.
For a finite simple graph G with vertex set fv1; v2; . . . ; vng,

the adjacency matrix AðGÞ ¼ ðaijÞ is defined as an n� nmatrix,

where aij ¼ 1 if vi � vj, and aij ¼ 0 otherwise. The eigenvalues

of AðGÞ are also called the eigenvalues of G and denoted by
kiðGÞ; i ¼ 1; 2; . . . ; n. Since AðGÞ is a symmetric matrix,
kiðGÞ’s are all real and so they can be ordered as

k1ðGÞP k2ðGÞP � � �P knðGÞ. By Perron Frobenious theo-
rem, see [11], k1ðGÞ is always positive and k1ðGÞ > jkiðGÞj for
all i ¼ 2; 3; . . . ; n. For the graph G, the energy EðGÞ of G, intro-
duced by Gutman [12], is the sum of the absolute values of all
its eigenvalues. The concept of energy of graphs arose in chem-
istry. The total p-electron energy of some conjugated carbon
molecule, computed using H€uckel theory, coincides with the

energy of its ‘‘molecular’’ graph [13]. One can easily check that
the eigenvalues of the complete graph Kn are n� 1 and �1 with
respective multiplicities 1 and n� 1 and so EðKnÞ ¼ 2ðn� 1Þ.
A graph G on n vertices is called hyperenergetic if
EðGÞ > 2ðn� 1Þ [13]. In [14] the authors found energy of all
unitary Cayley graphs and determined conditions for which

they are hyperenergetic.
Due to the applications of Cayley graphs in automata

theory as explained in the monograph [15] and other versatile

areas, the authors of [1] have given an open problem (Problem
10) to investigate the relations of power graphs and Cayley
graphs. In this paper we find some relations between power
graphs of finite cyclic groups Zn and the Cayley graphs.

Applying these relations we obtain the eigenvalues and energy
of GðZnÞ as well as of the related Cayley graphs and also find
the relations between the energy of power graphs and Cayley

graphs.
2. Relations between power graphs and Cayley graphs

It is known [10] that if n ¼ p is a prime number, then the
unitary Cayley graph CayðZn;UnÞ is the complete graph Kn

and if n ¼ pa is a prime-power then it is a complete p-partite

graph. So we have the observations below.

(i) For any prime p;GðZpÞ ¼ Kp ¼ CayðZp;U pÞ.
(ii) If n ¼ pa for some prime p and a positive integer a > 1

then CayðZn;U nÞ is a regular spanning subgraph of

GðZnÞ.
Notations: Let Tn be a subset of Zn consists of the identity

and generators i.e. Tn ¼ Un [ f0g. We denote the vertex
deleted subgraph GðZnÞ � Tn of the graph GðZnÞ by G�ðZnÞ
and similarly Cay�ðZn;UnÞ ¼ CayðZn;UnÞ � Tn. Again for

any graph G let G be the complement of G.

Theorem 2.1 gives a relation between G�ðZnÞ and
Cay�ðZn;UnÞ for some values of n. From the definition of
power graph it is clear that the vertices of Tn are adjacent to

all other vertices in GðZnÞ. So roughly speaking, this theorem
gives an expression of GðZnÞ in terms of CayðZn;UnÞ for a class
of values of n. Now since CayðZn;UnÞ is highly symmetric and

also widely studied in the literature, this theorem may help us
to investigate the structure and various properties of GðZnÞ.
For instance in the next section we apply this theorem to inves-

tigate the eigenvalues and energy of GðZpqÞ which may not be

so easy to get otherwise.

Theorem 2.1. If n ¼ paqb, where p; q are distinct primes and a; b
are positive integers, then G�ðZnÞ is a spanning subgraph of

Cay�ðZn;UnÞ. These two graphs are equal if and only if
a ¼ 1 ¼ b.

Proof. Both the graphs have the same vertex set Zn � Tn,

where Tn ¼ Un [ f0g. Let Ep ¼ fap 2 Zn : q - ag;Eq ¼ fbq 2
Zn : p - bg and Epq ¼ ftpq 2 Zng � f0g. Then Ep;Eq, and Epq

are pairwise disjoint sets whose union is Zn � Tn.

First we look into the adjacency among the vertices in the
graph Cay�ðZn;UnÞ. If possible suppose that for some integers
c and d; cp � dp. Then there exists s 2 Un such that for some

integer r,

cpþ s ¼ dp) s ¼ ðd� cþ rpa�1qbÞp

which is a contradiction because p - s. So for any integers c and

d; cp ¿ dp. Similarly it can be shown that for any integers c
and d; cq ¿ dq. Thus no vertex of Ep;Eq is adjacent to a vertex

in the same set and each vertex of Epq is an isolated vertex in

the graph Cay�ðZn;UnÞ. Now for any s 2 Un; gcdðs; nÞ ¼ 1
and so there exist integers u and v such that suþ nv ¼ 1.
Consider any vertex ap from Ep and bq from Eq. Then

ap� bq ¼ ðap� bqÞðsuþ nvÞ � ðap� bqÞsu ðmod nÞ:

Since p - apu� bqu as well as q - apu� bqu; ðap� bqÞ
us 2 Un and so ap � bq. Hence Cay�ðZn;UnÞ is a complete

bipartite graph with bipartition Ep [ Eq along with the isolated

vertices Epq. So in the graph Cay�ðZn;UnÞ, none of the vertices
of Ep is adjacent to any vertex of Eq and these are the only non-

adjacency of vertices in Cay�ðZn;UnÞ.

Next we check for the non-adjacency of vertices in the
graph G�ðZnÞ. If possible suppose that ap of Ep is adjacent to

bq of Eq in the graph G�ðZnÞ. Then for some positive integers

m1 and m01,

ap ¼ m1bq or bq ¼ m01ap:

First consider ap ¼ m1bq which implies ap ¼ m1bqþm2p
aqb

for some m2 2 Z. But then q j ap which is a contradiction as
q is a prime and q - p as well as q - a. Hence ap – m1bq.
Similarly it can be proved that bq – m01ap. Thus none of the

vertices of Ep is adjacent to any vertex of Eq. Hence G�ðZnÞ
is a spanning subgraph of Cay�ðZn;UnÞ.



Fig. 1 GðZ3Þ and GðZ4Þ.
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For a ¼ 1 ¼ b i.e. for n ¼ pq;Epq ¼ /;Ep ¼ fp; 2p; . . . ;

ðq� 1Þpg and Eq ¼ fq; 2q; . . . ; ðp� 1Þqg. Thus Cay�ðZpq;UpqÞ
is a complete bipartite graph with bipartition Ep [ Eq and so

Cay�ðZpq;UpqÞ is the disjoint union of Kq�1 and Kp�1. Again

Ep [ f0g and Eq [ f0g, being closed under addition modulo pq,

are subgroups of Zpq of order q and p respectively. Therefore

both Ep [ f0g and Eq [ f0g are cyclic groups of prime order

and so GðEpÞ ¼ Kq�1;GðEqÞ ¼ Kp�1. Thus G�ðZpqÞ is the

disjoint union of Kq�1 and Kp�1 and so G�ðZpqÞ ¼
Cay�ðZpq;UpqÞ.

Next we take a > 1. If possible suppose that p2 of Ep is

adjacent to pq of Epq in the graph G�ðZnÞ. Then for some

positive integers m and m0,

p2 ¼ mpq or pq ¼ m0p2:

First consider p2 ¼ mpq. Then for some integer

r; p ¼ ðmþ rpa�1qb�1Þq which is a contradiction. Hence

p2 – mpq. Similarly it can be proved that pq – m0p2. Thus

for a > 1, the two graphs G�ðZnÞ and Cay�ðZn;UnÞ can not

be equal. The same thing is also valid for b > 1. Hence

G�ðZnÞ ¼ Cay�ðZn;UnÞ if only if a ¼ 1 ¼ b. h

Next we give another relation between power graphs and

Cayley graphs using the direct product concept of graphs as
well as that of groups. Recall that the direct product G1 � G2

of graphs G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ is the graph with
vertex set V1 � V2, the cartesian product of V1 and V2, and

ðu1; u2Þ is adjacent to ðv1; v2Þ in G1 � G2 if and only if u1; v1
are adjacent in G1 and u2; v2 are adjacent in G2. Also, for the

groups Zp
ai
i
; 1 6 i 6 k, the direct product

Qk
i¼1

Zp
ai
i
is the group

with elements fðu1; . . . ; ukÞ : ui 2 Zp
ai
i
g and binary operation

ðu1; . . . ; ukÞ þ ðv1; . . . ; vkÞ ¼ ðu1 þ v1; . . . ; uk þ vkÞ, where addi-

tion in ith component is modulo pai
i .

In Theorem 2.2 we show that with the appropriate choice of
the connection set S, the Cayley graph CayðZn;SÞ is either the
power graph of Zn or the direct product of the power graphs of
suitable proper subgroups of Zn. Lemma 2.1 below will be use-
ful to prove this theorem. However this Lemma is similar to

Lemma 2.6 of [16] and so here we omit its proof.

Lemma 2.1. For distinct primes pi, positive integers ai and
subsets Si 	 Zp

ai
i
; ði ¼ 1; 2; . . . ; kÞ, CayðZp

a1
1
;S1Þ � � � � � Cay

ðZp
ak
k
;SkÞ ¼ Cay

Qk
i¼1

Zp
ai
i
;
Qk
i¼1

Si

� �
.

Notations: For a natural number n > 1, we take its prime

factorization as n ¼ pa1
1 p

a2
2 � � � p

ak
k , where p1; p2; . . . ; pk are

distinct primes and a1; a2; . . . ; ak are positive integers. It is

known [17] that Zn ffi
Qk
i¼1

Zp
ai
i

as groups (under addition)

through the isomorphism g : Zn !
Qk
i¼1

Zp
ai
i

defined by

gð½a�nÞ ¼ ð½a�pa1
1
; ½a�pa2

2
; . . . ; ½a�pak

k
Þ. We consider the mapping

f ¼ g�1. Then f :
Qk
i¼1

Zp
ai
i
! Zn is also a group isomorphism.

The image of an element in
Qk
i¼1

Zp
ai
i
under f can be computed

by applying the Chinese remainder theorem.
Theorem 2.2. Let n ¼ pa1
1 pa2

2 � � � p
ak
k be the prime factorization of

a natural number n > 1;Si ¼ Zp
ai
i
� f0g; i ¼ 1; 2; . . . ; k, and S

be the image of
Qk
i¼1

Si under the above mentioned group

isomorphism f :
Qk
i¼1

Zp
ai
i
! Zn. Then CayðZn;SÞ is isomorphic

to GðZp
a1
1
Þ � GðZp

a2
2
Þ � � � � � GðZp

ak
k
Þ.

Proof. Clearly GðZp
ai
i
Þ ¼ Kp

ai
i
¼ CayðZp

ai
i
;SiÞ for all i ¼ 1;

2; . . . ; k. Now from Lemma 2.1, CayðZp
a1
1
;S1Þ�

CayðZp
a2
2
;S2Þ� � � ��CayðZp

ak
k
;SkÞ ¼Cay

Qk
i¼1

Zp
ai
i
;
Qk
i¼1

Si

� �
. Next

we show that Cay
Qk
i¼1

Zp
ai
i
;
Qk
i¼1

Si

� �
is isomorphic to

CayðZn;SÞ. In fact the group isomorphism f :
Qk
i¼1

Zp
ai
i
! Zn is

also a graph isomorphism i.e. it preserves adjacency as shown
below:

ðu1; . . . ;ukÞ � ðv1; . . . ;vkÞ in Cay
Yk
i¼1

Zp
ai
i
;
Yk
i¼1

Si

 !
;

()ðu1; . . . ;ukÞ� ðv1; . . . ;vkÞ 2
Yk
i¼1

Si;

() fððu1; . . . ;ukÞ� ðv1; . . . ;vkÞÞ 2 f
Yk
i¼1

Si

 !
; as f is a bijection

() fðu1; . . . ;ukÞ� fðv1; . . . ;vkÞ 2 S; as
f is a group homomorphism

() fðu1; . . . ;ukÞ � fðv1; . . . ;vkÞin CayðZn;SÞ:

Therefore f preserves adjacency and we get CayðZn;SÞ ffi Cay
ðZp

a1
1
;S1Þ � � � � � CayðZp

ak
k
;SkÞ ¼ GðZp

a1
1
Þ � � � � � GðZp

ak
k
Þ. h

We illustrate this theorem by giving an example.
Example 1: Let us consider the group Z12 ffi Z4 � Z3 with

Zn ¼ f0n; 1n; . . . n� 1n; g. Therefore S1 ¼ f14; 24; 34g;S2 ¼
f13; 23g and S ¼ fðS1 � S2Þ. The graphs GðZ4Þ;GðZ3Þ and
GðZ4Þ � GðZ3Þ are given in Fig. 1 and Fig. 2. The images of f
and so the elements of S can be computed applying the

Chinese remainder theorem. Here S ¼ f112; 212; 512; 712;
1012; 1112g and so CayðZ12;SÞ can be drawn as given in

Fig. 3. From Figs. 2 and 3 one can check that f is a graph
isomorphism from the graph GðZ4Þ � GðZ3Þ to the graph
CayðZ12;SÞ.



Fig. 2 GðZ4Þ � GðZ3Þ.

Fig. 3 CayðZ12;SÞ.
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3. Energy of GðZnÞ and CayðZn;SÞ

For the rest of this paper the connection set S appears in

CayðZn;SÞ will be that subset of Zn given in Theorem 2.2. In
this section we apply the relation between power graph and
Cayley graph to investigate the eigenvalues and energy of

GðZnÞ as well as that of CayðZn;SÞ. Since the eigenvalues
and energy of unitary Cayley graph is well studied (for exam-
ple see [10,14]) we compare the energies of the graphs GðZnÞ
and CayðZn;SÞ with that of the unitary Cayley graph. In the

following theorem we apply Theorem 2.1 to find the eigenval-
ues and energy of GðZpqÞ.

Theorem 3.1. For the power graph GðZpqÞ, where p and q are

two distinct primes, we have the following.

(i) k2ðGðZpqÞÞ 6 pþq
2
� 2 and kjðGðZpqÞÞ ¼ �1;

j ¼ 3; 4; . . . ; pq� 1;

(ii) � pþq
2
6 kpqðGðZpqÞÞ 6 �1

(iii) EðGðZpqÞÞ 6 2pqþ p þ q� 6
Proof. ðiÞ It is well known [11] that for any graph G on n ver-

tices k2ðGÞ þ knðGÞ 6 �1. Also if G is connected and G is the
union of a complete bipartite graph and some isolated vertices
then from [18] one gets that kjðGÞ ¼ �1, for j ¼ 3; 4; . . . ; n� 1.

Now for two distinct primes p and q;GðZpqÞ is a connected

graph and from Theorem 2.1, GðZpqÞ is the union of

Cay�ðZpq;UpqÞ and the vertices of Tpq i.e. GðZpqÞ is the graph

Kq�1;p�1 plus /ðpqÞ þ 1 isolated vertices. Thus

kjðGðZpqÞÞ ¼ �1; j ¼ 3; 4; . . . ; pq� 1 ð1Þ

and k2ðGðZpqÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 1Þðq� 1Þ

p
6 �1 (since the smallest

eigenvalue of Kq�1;p�1 is �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 1Þðq� 1Þ

p
). This implies

k2ðGðZpqÞÞ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� 1Þðq� 1Þ

p
� 16

pþ q

2
� 2 ðA:M P G:MÞ:

ð2Þ

ðiiÞ Since kpqðGðZpqÞÞ 6 kpq�1ðGðZpqÞÞ the right hand side

inequality follows from ðiÞ. Again it is known that (for
instance, see [11]) for any graph G on n vertices,

k1ðGÞ 6 n� 1 and the sum of the eigenvalues of G is zero.
Using these facts and Eqs. (1), (2) we get the left hand side
inequality.

ðiiiÞ From ðiiÞ it follows that

jkpqðGðZpqÞÞj 6
pþ q

2
: ð3Þ

Thus from Eqs. (1)–(3) and using 0 < k1ðGðZpqÞÞ 6 pq� 1 we

get

EðGðZpqÞÞ ¼
Xpq
i¼1
jkiðGðZpqÞÞj 6 2pqþ pþ q� 6: � ð4Þ

It is known [13] that for any two graphs G1 and

G2;EðG1 � G2Þ ¼ EðG1ÞEðG2Þ. Since EðGðZp
ai
i
ÞÞ ¼ 2ðpai

i � 1Þ,
for 1 6 i 6 k, applying Theorem 2.2 we get the energy of
CayðZn;SÞ as given below.

Theorem 3.2. Let n ¼ pa1
1 pa2

2 � � � p
ak
k be the prime factorization of

any natural number n > 1. Then

EðCayðZn;SÞÞ ¼ EðGðZp
a1
1
ÞÞEðGðZp

a2
2
ÞÞ � � �EðGðZp

ak
k
ÞÞ

¼ 2kðpa1
1 � 1Þðpa2

2 � 1Þ � � � ðpak
k � 1Þ: ð5Þ

In the following few results we give comparison of energies
of power graph and Cayley graph.

Corollary 3.1. For n ¼ pq, where p; q are distinct odd primes,
EðGðZnÞÞ 6 EðCayðZn;SÞÞ.

Proof. For p ¼ 3; q ¼ 5 we get from (4) and (5),

EðGðZpqÞÞ 6 32 ¼ EðCayðZpq;SÞÞ: ð6Þ

Now for both p; q P 5 it is easy to verify that

5ðpþ q� 2Þ < 2pq which implies that
pþ q� 6 < 2pq� 4p� 4qþ 4. Thus using (4) and (5)

EðGðZpqÞÞ < 4pq� 4p� 4qþ 4 < 4ðp� 1Þðq� 1Þ
¼ EðCayðZpq;SÞÞ: �
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Corollary 3.2. For n ¼ 2q, where q is an odd prime,

EðGðZnÞÞ > EðCayðZn;SÞÞ.

Proof. It is well known [11] that for any graph G on n vertices

k1ðGÞP 2M
n
, where M is the number of edges in G. By

Corollary 4.3 of [5] the number of edges, M of GðZ2qÞ is given
by

2M ¼ ½4� /ð2Þ � 1�/ð2Þ þ ½2q� /ðqÞ � 1�/ðqÞ
þ ½4q� /ð2qÞ � 1�/ð2qÞ ¼ 2þ 4qðq� 1Þ:

Therefore

k1ðGðZ2qÞÞP
2M

2q
¼ 2ðq� 1Þ þ 1

q
: ð7Þ

Now it is well known (see [13]) that for any graph
G;EðGÞP 2k1ðGÞ. Combining this fact with Eqs. (5) and (7)
we get that

EðGðZ2qÞÞP 4ðq� 1Þ þ 2

q
¼ EðCayðZ2q;SÞÞ þ

2

q
: �

Theorem 3.3. For any natural number n > 1;
EðCayðZn;SÞÞP EðCayðZn;UnÞÞ.

Proof. Let n ¼ pa1
1 p

a2
2 � � � p

ak
k be the prime factorization of a

natural number n > 1. Since for all i ¼ 1; 2; . . . ; k; pi’s are

primes and ai’s are positive integers then pai
i � 1 P pai

i � pai�1
i .

So ðpa1
1 � 1Þðpa2

2 � 1Þ � � � ðpak
k � 1Þ

P /ðpa1
1 Þ/ðp

a2
2 Þ � � �/ðp

ak
k Þ

¼ /ðnÞ; since / is multiplicative: ð8Þ

Now by Theorem 3.7 of [14], EðCayðZn;UnÞÞ ¼ 2k/ðnÞ. So
from Eqs. (5) and (8) we get

EðCayðZn;SÞÞP 2k/ðnÞ ¼ EðCayðZn;UnÞÞ: �

From Corollary 3.2 and Theorem 3.3 the following corollary is
immediate.

Corollary 3.3. For n ¼ 2q, where q is an odd prime,
EðGðZnÞÞ > EðCayðZn;UnÞÞ.

Next theorem gives necessary and sufficient conditions of
CayðZn;SÞ to be hyperenergetic. Comparing this theorem with

Theorem 3.10 in [14] we see that the values of n for which
CayðZn;UnÞ is hyperenergetic, CayðZn;SÞ is also hyper-
energetic. However there are some values of n for which

CayðZn;SÞ is hyperenergetic but CayðZn;UnÞ is not.

Theorem 3.4. Let n ¼ pa1
1 p

a2
2 � � � p

ak
k be the prime factorization of

any natural number n > 1. Then CayðZn;SÞ is hyperenergetic if
and only if ðiÞ k P 3 or ðiiÞ k ¼ 2; n is odd or ðiiiÞ k ¼ 2; n is of

the form n ¼ 2aqb for some positive integers a; b with a P 2 and
q is an odd prime.

Proof. We consider three cases.

Case I: For k ¼ 1; n ¼ pa , CayðZn;SÞ is the complete graph
Kn on n vertices and so is not hyperenergetic.
Case II: Here k ¼ 2; n ¼ paqbðp < qÞ. We consider three

subcases:

Subcase 1: p ¼ 2; a ¼ 1; n ¼ 2qb; 2 < q. Then using Eq. (5)
we get

EðCayðZn;SÞÞ ¼ 4ðqb � 1Þ ¼ 2ð2:qb � 1Þ � 2 ¼ 2ðn� 1Þ � 2:

Thus EðCayðZn;SÞÞ < 2ðn� 1Þ and so CayðZn;SÞ is not
hyperenergetic.

Subcase 2: p ¼ 2; a P 2; n ¼ 2aqb; 2 < q. Then using Eq. (5)
we get

EðCayðZn;SÞÞ ¼ 4ð2a � 1Þðqb � 1Þ
¼ 2ðn� 1Þ þ 2:2aqb � 4:2a � 4:qb þ 6

¼ 2ðn� 1Þ þ AðsayÞ; ð9Þ

where

A ¼ 2:2aqb � 4:2a � 4:qb þ 6

¼ 2aðqb � 4Þ þ qbð2a � 4Þ þ 6: ð10Þ

Since a P 2; ð2a � 4ÞP 0. First we consider qb – 3. Then as q

is a prime with q > 2; ðqb � 4Þ > 0 and so from Eq. (10) we get

that A > 0. Next we consider qb ¼ 3. Then from Eq. (10) we

get that A ¼ 2aþ1 � 6 > 0 as a P 2. Therefore A > 0 for all
positive integers a; b with a P 2 and for all prime q with
q > 2. Then from Eq. (9) we get EðCayðZn;SÞÞ > 2ðn� 1Þ
and so CayðZn;SÞ is hyperenergetic.

Subcase 3: p; q P 3; n ¼ paqb; p < q. For this case authors
in [14] have shown that EðCayðZn;UnÞÞ > 2ðn� 1Þ. Then by

Theorem 3.3, we get that CayðZn;SÞ is hyperenergetic.

Case III: Here k P 3. This case is similar to subcase 3 of

Case II. h
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