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Introduction and preliminaries
The idea of a zero-divisor graph of a commutative ring R was introduced by Beck in [1]
(1988). He considered all the elements of R to be vertices and two distinct vertices x and
y are adjacent if and only if xy = 0, where xy denotes the multiplication in R. He was
mainly interested in colorings. Beck’s work was continued by Anderson and Naseer in [2]
(1993), where they gave a counterexample of Beck’s conjecture. In 1999, Livingston and
Anderson in [3] gave a modified definition of the zero-divisor graph, denoted by I'(R),
by taking the nonzero zero-divisors of the ring as vertices and adjacency of two distinct
vertices remains unchanged, i.e., two distinct nonzero zero-divisors x and y are adjacent
if and only if xy = 0. This definition became the standard definition of the zero-divisor
graph. In the same year, they continued their work on the zero-divisor graphs with Frazier
and Lauve in [4]. They studied the cliques which are complete subgraphs of I'(R) and the
relationship between graph isomorphisms and ring isomorphisms.

In 2003, Redmond in [5] introduced the ideal-based zero-divisor graph I';(R) with ver-
tex set {x € R—I|xy € I for some y € R — I}, where [ is an ideal of R and two
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distinct vertices x and y are adjacent if and only if xy € I. This graph is considered to
be a generalization of zero-divisor graphs of rings. In 2002, Mulay in [6] provided the
idea of the zero-divisor graph determined by equivalence classes. Later on, Spiroff and
Wickham in [7] denoted this graph by I'g(R) and compared it with I'(R). This graph
was called the compressed graph by Anderson and LaGrange in [8] (2012). In the com-
pressed graph, the relation on R is given by r ~ s if and only if ann(r) = ann(s), where
ann(r) = {v € R|rv = 0} is the annihilator of r. This relation is an equivalence relation on
R. The vertex set of the compressed graph is the set of all equivalence classes induced by
~ except the classes [ 0]~ and [1]~. The equivalence class of ris [r]~. = {a € R|r ~ a}
and two distinct vertices [ 7]~ and [s]~ are adjacent if and only if 7s = 0. There have been
other ways to associate a graph to a ring R. For surveys on the topic of zero-divisor graphs,
see [9, 10].

In 2015, Badawi introduced in [11] the dot product graph associated with a commuta-
tive ring R. In 2016, his student Abdulla in his master thesis [12] introduced the unit dot
product graph and the equivalence dot product graph on a commutative ring with 1 # 0.
We are interested here primarily in these graphs.

In 2016, Anderson and Lewis introduced the congruence-based zero-divisor graph in
[13], which is a generalization of the zero-divisor graphs mentioned above. The vertices
of this graph are the congruence classes of the nonzero zero-divisors of R induced by a
congruence relation defined on the ring R. Two distinct vertices are adjacent if and only if
their product is zero. The concept of congruence relation is used in this paper.

In 2017, Chebolu and Lockridge in [14] found all cardinal numbers occurring as the
cardinality of the group of all units in a commutative ring with 1 # 0. This is very helpful
to us as we want to graph the units of a ring R.

In the second section, we generalize a result of [12] concerning the unit dot product
graph of a commutative ring R, where R = Z,, x Zj,, replacing Z, by a a commutative
ring A such that U(A) is finite. In the third section, a congruence relation on the unit dot
product graph is defined and some of its properties are characterized. In the last section,
we discuss the domination number of some graphs.

We recall some definitions which are used in this paper. Let G be an undirected graph.
Two vertices v; and vy are said to be adjacent if vi, v, are connected by an edge of G. A
finite sequence of edges from a vertex v; of G to a vertex v, of G is called a path of G.
We say that G is connected if there is a path between any two distinct vertices and it is
totally disconnected if no two vertices in G are adjacent. For two vertices x and y in G,
the distance between x and y, denoted by d(x, y), is defined to be the length of a shortest
path from x to y, where d(x,x) = 0 and d(x, y) = oo if there is no such path. The diameter
of G is diam(G) = sup{d(x,y)| x and y are vertices in G}. A cycle of length n,n > 3,in G
is a path of the form x; — x2 — ... — %, — x1, where x; # x; when i # j. The girth of G,
denoted by gr(G), is the length of the shortest cycle in G and gr(G) = oo if G contains
no cycle. A graph G is said to be complete if any two distinct vertices are adjacent and the
complete graph with # vertices is denoted by K;,. A complete bipartite graph is a graph
which may be partitioned into two disjoint nonempty vertex sets A and B such that two
distinct vertices are adjacent if and only if they are in distinct vertex sets. This graph is
denoted by K, ,, where |A| = m and |B| = .

Throughout the paper, R and A denote commutative rings with 1 # 0. Its set of
zero-divisors is denoted by Z(R) and Z(R)* = Z(R) — {0}. As usual, Z, Z, and GF(p")
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denote the integers, integers modulo #, and finite field with p” elements, respectively,
where p is a prime number and # is a positive integer. ¢ (n) is the Euler phi function of
a given positive integer n, which counts the positive integers up to # that are relatively

prime to n.

Unit dot product graph of a commutative ring
The unit dot product graph of R was introduced in [12] , denoted by L/D(R). This graph is
a subgraph of the total dot product graph, denoted by TD(R), where its vertex set is all the
elements of R. Some of its properties were characterized when R = A x A and A = Z,. In
this section, we generalize the UD(R), as A will be a commutative ring with 1 # 0, whose
multiplicative group of units is finite.

In the proof of Theorems 2 and 3, we use the order of the multiplicative group of units
U(R) of R. In this context, the following theorem is helpful.

Theorem 1 (Th. 8, [14]) Let A be a cardinal number. There exists a commutative ring R
with |{U(R)| = A if and only if A is equal to

1.  An odd number of the form ]_[f.:1 (2" — 1) for some positive integers ny, ..., ¢
2. An even number

3. An infinite cardinal number

We are interested only in commutative rings R = A x A, where A is a commuta-

tive ring with 1 # 0 and U(A) has a finite order. For instance, from [14], rings in the
Z[x]

(%2, mx)

to 2 m, where m € N. The units in these rings are in the form 1 4+ bx and —1 + b,

0 < b < m — 1. If the order of UU(A) is odd, then this odd number will be in the form
I_[f.:l (2" —1) for some positive integers n1, ..., n; and the characteristic of the ring must be

form Ry, = are examples of such a ring. Here, U/(A) has an even order equal

equal to 2.
The following two Theorems 2 and 3 characterize the graph of the rings R = Ry, X Royy,
and R = A x A, respectively.

Theorem 2 Let R = Ry, X Ryyy. Then, UD(R) is the union of m disjoint Koy om's.

Proof Since |U(Ry,,)| = 2m, then UD(R) has exactly 4m? vertices. Let vi = u(1,a) and
vy = v(1, b) in R, for some u,v,a, b € U(Ry,,). From [14], the units are in the form 1 + ax
and —1 + ax, where 0 < a < m — 1,so we have v; = u(1,1 + ax) and vo = v(1, —1 + bx)
in R for some u,v € U(Ryy,), 0 < a,b < m — 1. Hence, v; is adjacent to v, if and only if
v1-vo = uv(b—a)x = 0in Ryy,. This is equivalent to b = a4, since uv is a unit in Ry,,. Thus,
foreach0 <a <m—1,let V, = {u(1,14+ax) |u € U(Ry,)} and W, = {u(1, —1+4ax) |u €
U(Ry;,)}. For different units  and &’ in U (Ry,,,), we cannot have u(1, 1+ax) = u/(1, 1+ax)
oru(l,—1+ax) =u'(1,—1+ax),so |V, = |W,| =2m. Ifu(1,1+ax) = u'(1,—1+ax),
then u = u’ and u(1 + ax) = v/(—1 + ax). So u(1 + ax) = u(—1 + ax) which implies
that # = —u, a contradiction. Thus, V, N W, = @. It is clear that every two distinct
vertices in V, or in W, are not adjacent. By construction of V,; and W,, every vertex in
V, is adjacent to every vertex in W,,. Thus, the vertices in V,; U W, form the graph Ky, 21
that is a complete bipartite subgraph of TD(R). By construction, UD(R) is the union of m
disjoint Koy, 's. O
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Example 1 When m = 1, we have Ry = (fz[x,]c) which is isomorphic to Z. The graph of

UD(Ry x Ry) will be a complete bipartite graph of 4 vertices which are (1,1), (1,-1), (-1,1),
and (-1,-1). Thus, its diameter = 2 and girth = 4 (Fig. 1).

The following theorem deals with the case R = A x A, where |U(A)| is odd. In this case,
the unit —1 in A (from Cauchy Theorem) must have order 1. Then, Char(4) = 2.

Theorem 3 Let R = A x A. If the order of the multiplicative group U(A) is odd, then
UD(R) is the union of’"T_1 disjoint Ky, 1, ’s and one Ky,.

Proof From [14], the order of U(A) is an odd number if and only if this odd number
is of the form []¢_, (2" — 1) for some positive integers 71, .., #;. Let m be the odd order
of LI(A), so UD(R) has exactly m? vertices. Let vi = u(1,a) and vo = v(1,b) in R, for
some u,v,a,b € U(A). v; is adjacent to vy if and only if v; - vo = uv + uvab = 0. This
will occur if and only if 1 + ab = 0. This is equivalent to @ = b~!, since uv is a unit
in A and Char(R) = 2. Thus, for each, a # 1 € U(A),let V, = {u(1,a) |lu € U(A)}
and W, = {u(1,a™ 1) |u € U(A)}. For different units z and #’ in U(A), we cannot have
u(l,a) = w'(1,a 1), so |V, = |W,| = m. If u(l,a) = v/(1,a 1), then u = ' and
ua =u'al.So,u(a —al) =0, ie a= a1, which implies that a?® = 1 a contradiction
since U (A) has an odd order. Thus, V,NW, = @. It is clear that every two distinct vertices
in V, or in W, are not adjacent. By construction of V, and W,, every vertex in V, is
adjacent to every vertex in W,. Thus, the vertices in V,,; U W, form the graph K}, ,,, that is
a complete bipartite subgraph of TD(R). By construction, there are exactly ’”T_l disjoint
complete bipartite K, ,,, subgraphs of TD(R). For a = 1, we have m vertices in the form
of u(a, a). Since Char(R) = 2, these m vertices form the graph Kj,, that is a complete
subgraph of TD(R). Hence, UD(R) is the union of mTfl disjoint K, ,,,’s and one Kj,,. O

(1,1) (—1,—-1)

(1,-1) (—1,1)

Fig. 1 Unit dot product of Ry x R
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Congruence dot product graph of a commutative ring

In 2016, Anderson and Lewis in [13] introduced the congruence-based zero-divisor graph
'~ (R) = T'(R/ ~), where ~ is a multiplicative congruence relation on R and showed that
R/ ~ is a commutative semigroup with zero. They showed that the zero-divisor graph
of R, the compressed zero-divisor graph of R, and the ideal based zero-divisor graph of
R are examples of the congruence-based zero-divisor graphs of R. In this paper, we are
interested in the multiplicative congruence relation ~ on R, which is an equivalence rela-
tion on the multiplicative monoid R with the additional property that if x, y, z, w € R with
x ~ yand z ~ w, then xz ~ yw.

The equivalence unit dot product graph of U(R) was introduced in [12], where R =
A x A and A = Z,. The equivalence relation ~ on U(R) was defined such that x ~ y,
where x,y € U(R), if x = (¢,¢)y for some (¢,c) € U(R). Let EU(R) be the set of all
distinct equivalence classes of U(R). If X € EU(R), then 3a € U(A) such that X =
[(L,a)]~ = {u(1,a) |u € U(A)}. Thus, the equivalence unit dot product graph of U(R)
is the (undirected) graph EUD(R) with vertices EU(R). Two distinct vertices X and Y are
adjacentifand only ifx -y = 0 € A, where x - y denotes the normal dot product of x and y.

From the definition of the congruence relation, we find that the relation defined by
Abdulla is not only an equivalence relation but also a congruence relation. In fact, let
x ~yand w ~ v.So, x = (c1,¢1)y and w = (c3, c2)v for some (c1,¢1), (¢2,¢2) € U(R).
Then, xw = (c1, ¢1)y(c2, c2)v = (c1, ¢1) (€2, c2)yv = (¢, ¢)yv and hence xw ~ yv. We denote
this congruence unit dot product graph by CUD(R), and its set of vertices is the set of all
distinct congruence classes of U(R), denoted by CU (R).

In this section, we characterize the generalized case of the congruence unit dot product
graph CUD(R), as we will apply the congruence relation on the unit dot product graph we
introduced in the first section.

Theorem 4 Let R = Ry, X Ryyy. Then, CUD(R) is the union of m disjoint Ky 1’s.

Proof For each a € U(Ryy), let V, and W, be as in the proof of Theorem 2. Then,
Vau, W, € CU(R). Indeed, for each a € U(Ry,,), there exist V, and W, € CU(R) each
has cardinality 2m. We conclude that each Ky, 2., of UD(R) is a K3,; of CUD(R). From
Theorem 2 the result follows. O

Example 2 In Example 1, we graphed the unit dot product graph of Ry x Ry, and now,
we graph the congruence dot product graph of the same ring. This graph will be a complete
graph of 2 vertices as Ry is isomorphic to Z. So, we will have only two congruence classes
[(1, D]~ ={1L1D, (=L -D}and [(1,-D]~ = {(1, -1, (=1, D} (Fig. 2).

Theorem 5 Let R = A x A. If the order of U(A) is odd, then CUD(R) is the union of"‘T_1
disjoint K1,1’s and one Kj.

(1, )]~ (1, =1)]~
® o

Fig. 2 Congruence dot product graph of R, x R
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Proof For eacha € U(A), let V, and W, be as in the proof of Theorem 3. Then, V,;, W, €
CU(R). Indeed, for each a € U(R) and a # 1, there exist V, and W, € CU(R) each of
cardinality m. For a = 1, we have one congruence class V, where V = {u(a,a) |u € U(A)}.
We conclude that each K, ,, of UD(R) is a K1,; of CUD(R), and each K, of UD(R) is a K3
of CUD(R). From Theorem 3, the result follows. O

Let R = Z, x Z,. We make a little change on the congruence relation defined above by
taking the vertices from the whole ring R not only from U (R). Define a relation on R such
that x ~ y, where x,y € R, if x = (¢, c)y for some (c,c) € U(R). It is clear that ~ is an
equivalence relation on R and also a congruence relation.

The congruence total dot product graph of R is defined to be the undirected graph
CTD(R), and its vertices are the congruent classes of all the elements of R induced by
the defined congruence relation ~. Two distinct classes [ X]~. and [ Y]~ are adjacent if
and only if x - y = 0 € Z,, where x - y denotes the normal dot product of x and y. Also,
the congruence zero-divisor dot product graph, denoted by CZD(R), is defined to be an
undirected graph whose vertices are the congruent classes of the nonzero zero-divisor
elements in R and adjacency between distinct vertices remains as defined before.

Obviously, this congruence relation is well-defined. Indeed, let x,%’,y,5" € R be such
that y = (y1,92) and y' = (y},5,) and let u,u’ € U(R) be such that u = (c1,¢1) and
u' = (c}, c}), where y1, 91, y2, 95, 1, ¢} € Zy. Assume thatx ~ yandx’ ~ . Then,x-x’ = 0
if and only if (c1y1)(c}y]) + (c1¥2)(c}y,) = 0. This happens if and only if y1y] + y29, =0,
since ¢1¢] is a unit in Z,,.

Theorem 6 Let A = Z,, where p is a prime number and R = A x A. Then, CTD(R) is
disconnected and CZD(R) = I'~.(R) is a complete graph of 2 vertices.

Proof If CTD(R) was connected, then 3%,y € R such that x is adjacent to y. x-y = O ifand
only if xy = 0, leads to a contradiction with (Theorem 2.1, [11]). So, CZD(R) = T'.(R) is
connected. Since A is a field, then all the nonzero zero-divisors in R will be in two classes
only, which are [ (¢,0)]~ and [ (0,0)]~,Ya,b € U(A) and since (4,0) - (0,5) = 0,soitisa
complete graph of two vertices. O

IfA =7Zyand R = Zy X ... X Zp, k times and k < oo, then the diameter and girth of
CZD(R) and CTD(R) are the same as the case of TD(R) and ZD(R), which was discussed
before in [11]. This reduces the number of vertices but adjacency is the same in both cases.

Example 3 IfA = Z, then R=7 x Z. Here, the only units in the form (c, c) are (1,1) and
(-1,-1) so the classes of the zero-divisors will be in the form [ (a,0)]~ = {(a,0),(—a,0)}
and [ (0,a)]~ = {(0,a), (0, —a)}, Va € U(A). For two distinct vertices (a,0) - (b,0) # O,
because ab # 0. Then, there will be an edge only between classes in the form [ (a,0)]~ and
[ (0, b)]~, which means diam(CZD(R)) = 2 and gr(CZD(R)) = 4.

Theorem 7 Let R = Z, X Z, for n € N and n is not a prime number. Then, CTD(R) is
a connected graph with diam(CTD(R)) = 3 and gr(CTD(R)) = 3.

Proof The proof is similar to that of Theorem 2.3 [11], taking into consideration that
the vertices we used are in distinct classes. O
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Domination number
Let G be a graph with V as its set of vertices. We recall that a subset S C V is called a
dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The
domination number y (G) of G is the minimum cardinality among the dominating sets of
G. The study of the domination number started around 1960s; however, there are some
domination-related problems before that date. Namely, about 100 years earlier, in 1862,
De Jaenisch [15] posed the problem of finding the minimum number of queens required
to cover (attack) each square of an # x n chess board. In 1892, there were three basic types
of problems that chess players studied during this time reported by Rouse Ball in [16]. For
more details on this topic, see [17, 18].

In this section, we find a new upper bound of the domination number of the total dot
product graph of Z, x ... x Z,, k times and k < oo. It is an improvement of the upper
bound of the same graph given in [12].

Theorem 8 Let n > 4 be an integer that is not prime, A = Z,, and R = Ax A. Then, write
n= pllq...p],(,i", where pi's,1 < i < m, are distinct prime numbers. Let M = {pli |1 <i<m}
Then

1. Ifniseven, thenD = {(0,b) |b € M} U {(d,0)|d € M} U{(5, 5)} is a minimal
dominating set of TD(R), and thus, y (TD(R)) < 2m + 1.

2. Ifnisodd, thenD = {(0,b) |b e M} U {(d,0)|d e M} U{(1,¢)|c € U(A))}isa
minimal dominating set of TD(R), and thus, y (TD(R)) < 2m + ¢ (n).

Proof 1. Letn beevenandx = (x1,x7) a vertex in TD(R). We consider two cases:

(@)  Assume that x is a unit. Since (x1,%2) - (3, 5) = 5(x1 +x2) = nc’ =0
(because x1 + x3 is an even number), then x is adjacent to a vertex in D,
(b)  Assume that xy is a zero-divisor of A, i.e., p;|x2 in A for some
i1 <i < m.Then,v= (0, [%) € Dis adjacent to x in TD(R) (the same
case is true if x1 is a zero-divisor of A).

This shows that D is a dominating set of TD(R). We show that it is minimal. We
have to find when (a,p;) - (5,5) =0, a € A. It is clear that if both a and p; are
even or odd together, then (a, p;) - (5, 5) = 0. But if a is even and p; is odd or the
opposite, we have (a, p;) - (3, 5) # 0. Now, when we remove the vertex (0, 1%), the
vertex (a, p;) is not adjacent to any other vertex in D, where a and p; are different.
The same argument holds if we remove the vertex ( 1%’ 0). Moreover, when we
remove the vertex (3, 5), the vertex u = (u1, up) which is a unit will not be
adjacent to any other vertex in D. Thus, D is a minimal dominating set and
therefore y (CTD(R)) < 2m + 1.

2. Letnbeodd, ¢(n) =randx = (x1,%2) avertex in TD(R). We consider two cases:

(a)  Assume that x is a unit. From Theorem 3.3 parts 2 & 3 [12], UD(R) is
either a union of 5 disjoint K, ,’s or a union of § — 2"=1 disjoint K, » and
2" disjoint K,’s. In both graphs, every unit (1, ¢) is adjacent to r units in
the form u(1, ¢) for all u € U(A),
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(b)  Assume that xy is a zero-divisor of A, i.e., p;|x2 in A for some
pi»1 <i<m. Then,v= (0, 1%) € Dis adjacent to x in TD(R) (the same
case takes place if x is a zero-divisor of A).

This shows that D is a dominating set of TD(R). In order to show that it is
minimal, let us first remove the vertex v = (0, 1%) from D for some i, 1 <i < m.
We have (a,p;) - (1,¢) = a+ cp; = 0 if and only if 2 = —cp;. So, when we remove
(0, l%), we will find a vertex (a, p;) for some a € A which is not adjacent to any
other vertices in D (as an example, take @ = 1). Thus, v cannot be removed from
D. The same argument is true if we remove (1%, 0). If we remove the unit (1, ¢), we
will have distinct r units that are not adjacent to any other vertex in D. Thus, D is a
minimal dominating set, and then, y (TD(R)) < 2m + ¢ (n). N

Example 4 Let R = Z4 X Za. As a result of part 1 in the previous theorem, y (TD(R)) <
2x 141 = 3. The following figure shows that the dominating set of R is {(0, 2), (2,0), (2,2)}
(Fig. 3).

We note that the upper bound of the domination number of the congruence total dot
product graph of Z,, x Z,, is the same as the previous result of the total dot product graph,
taking into consideration that the vertices we used are in distinct classes.

Example 5 Let R = Za4 X Za as in example 4. The vertices of CTD(R) are the con-
gruence classes [ (0,1)]~ = {(0,1),(0,3)}, [(0,2)]~ = {(0,2)}, [(1,0)]~ = {(1,0),(3,0)},
[(LD]~={11),33)}L[12]~=1{(12),32)}[13)]~={(13),3 D} [(2,0].=
{2,0)}, [(2,D]~= {(2,1),(2,3)}, [(2,2)]~= {(2,2)}. The following graph shows that
y(CTD(R)) = 3 and its dominating set is {[ (0,2)]~, [ (2,0)]~, [ (2,2)]~ } (Fig. 4).

The following corollary is a generalization of Theorem 8 when R = Z,, X ... X Zy, k

times, k < oo and # is even.

Corollary 1 Letn > 4 be an even integer, A = Z,, and R = Ax...xX A, ktimes and k < oo.
Then, write n = pllq...plfn’”, where pi's,1 < i < m, are distinct prime numbers. Let M =
{ﬁ |1 <i<m} Then,D ={(0,..,0,b) |b e M}U{(,0,..,0)|d € M}U {(%,O, ey 0, g)} is
a minimal dominating set of TD(R), and thus, y (TD(R)) < 2m + 1.

Proof Let x = (x1, ..., %) be a vertex in TD(R). We consider two cases:

(L,0) (3,00 (1,2 (3,2 (0,1) (0,3 (2,1

)y (2,3 (1,3)  (3,1) (1,1) (3,3
) (22)

0,2) (2,0

)

Fig. 3 Subgraph of the total dot product graph of Z4 x Za4
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[(1,0)]~ [(1,2)]~ [0, D]~ [(2, D]~ [(1,3)]~ [(1, D]~

[(0,2)]~ [(2,0)]~ [(2,2)]~

Fig.4 Subgraph of the congruence total dot product graph of Zs x Z4

1.  Assume that x is a unit, i.e., each coordinate is an odd number. Then,
n ny _
(xl, ,xk) . (i’ 0, veey 0, j) = O,
2. Assume that x; is a zero-divisor of A, 1 <i < n.Ifi = 1 or n, then x is adjacent to
(,..,0, 1%) or (;, 0, ...,0) and both of them are in D. But if i # 1 or i # n such that
x1 and x;, are units, then it is adjacent to (5,0, ...,0, 5) € D.

This shows that D is a dominating set of TD(R). We show that it is minimal. Since
(,0,0,p;) - (5,0,..,0,5) = 5(a + p;) for some a € A, which is equal to zero if and only
if a and p; are odd or even together. By removing (0, ..., 0, I%) from D, we will find a ver-
tex (a,0,0, p;) in TD(R) that is not adjacent to any other vertex in D. The same argument
works if we remove ( 1%’ 0,...,0) from D. Also, by removing (5,0, ..., 0, 5), we will find a ver-
tex in TD(R) where the first and the last coordinates are units that is not adjacent to any
other vertex in D. Thus, D is a minimal dominating set, and then, y (TD(R)) < 2m+1. O

Again here, we note that the upper bound of the domination number of the con-
gruence total dot product graph of Z, x .. x Z, is the same as the previous result
of the total dot product graph, taking into account that the vertices we used are in
distinct classes.

Theorem 9 For the unit dot product graph of R:

1. IfR = Ry X Ry, then D = {(1,a) |a € U(Ryy)} and y (UD(R)) = 2m.
2. IfR= A x A, where A is a commutative ring with 1 # 0 and |U(A)| is an odd
number, say m, then D = {(1,¢) | c € U(A)} and y (UD(R)) = m.

Proof 1. Letx = (cy,c2) beavertex in UD(R) and assume that x is not in D. Let
c= 0102_1 € U(Ryy). Then, (c1, ¢p) is adjacent to (1, ¢) in D. Assume that (1,¢) is
removed from D for some c in U(Ry,,). Then, (—¢, 1) is not adjacent to any other
vertex in D. Hence, D is a minimal dominating set, and thus, y (UD(R)) = 2m.

2. Holds by the same idea of the proof of part 1.

O

The following theorem is a direct consequence of Theorem 6 in this paper. In that
theorem, we find that CTD(R) is a complete graph of 2 vertices, and as a result its
dominating set contains only one vertex of these 2 vertices.
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Theorem 10 Let p be a prime number,n > 1,m=p" — 1, A = GFp") and R = A x A.

Then y (CZD(R)) = 1.

Conclusion

In our future work, we are looking forward to working on one of the following open

questions:

In the first section, we studied the case when R = Ry,,, X Ry,,. We are interested in
defining the unit dot product graph in the general case when R = Ry, X ... X Roy,
n times and n < co. For n odd, the simplest case is R = Ryy;; X ... X Roy, (i€,

m = 1). By straight forward calculations, the unit dot product graph will be isolated
vertices. But the case when m > 2 and n is odd is still an open question. For even n,
the case is more complicated.

Define the unit dot product graph on a commutative ring R = A x A relaxing the
conditions on the ring A and characterizing the case when |U(A)] is infinite.
Determine the domination number for all of the previous cases using the results of

this paper.
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