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Abstract

A hybrid second derivative three-step method of order 7 is proposed for solving first
order stiff differential equations. The complementary and main methods are generated
from a single continuous scheme through interpolation and collocation procedures.
The continuous scheme makes it easy to interpolate at off-grid and grid points. The
consistency, stability, and convergence properties of the block formula are presented.
The hybrid second derivative block backward differentiation formula is concurrently
applied to the first order stiff systems to generate the numerical solution that do not
coincide in time over a given interval. The numerical results show that the new method
compares favorably with some known methods in the literature.
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Introduction
The numerical solutions of stiff systems have been one of the major worries for numerical
analysts. A numerical method that is potentially good for solving systems of stiff ODEs
must have some reliablity in terms of its region of absolute stability and good accuracy
[1]. Consider the system of initial value problems (IVPs) given by

y′ = f (t, y), y(t0) = y0 (1)

where f : � × �2s −→ �s; y, y0 ∈ �s, and s is the dimension of the system. f sat-
isfies the Lipschitz condition, and the Jacobian

(
∂ f
∂y

)
with the negative real parts of its

eigenvalues varies slowly (see [2]). These types of equations are called stiff equations,
and they arise frequently in sciences and engineering. It is well known that many prob-
lems of this type do not have analytic solutions; therefore, numerical methods remain
important. Recall that Eq. (1) can be expeditiously solved usingmethods that are A-stable,
and to obtain high accuracy, methods with higher order are preferred. But according to
Dahlquist theorem (Theorem 2.2, see [3]), high order linear multistep methods (LMMs)
for solving (1) cannot have order greater than 2. To overcome this barrier theorem of
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Dahlquist, several linear multistep methods have been developed including continuous
ones. Continuous multistep methods have been the subject of growing interest due to the
fact that continuous methods enjoy certain advantages, such as they have the potential to
provide defect control (see Enright [4]) as well as they are able to generate complemen-
tary methods, which are applied together as a single block scheme (see Onumanyi et al.
[5], Akinfenwa et al. [6]–[11], and Jator [12]–[14]). Most of the block methods proposed
in the literature such as Chartier [15], Shampine and Watts [16], Chu and Hamilton [17],
and Suleiman et al. [18] to mention but a few are usually implemented in the predictor-
corrector mode. In this paper, we propose an Hybrid Block Second Derivative Backward
Differentiation Formula (HBSDBDF) which simultaneously provides the solution of (1)
in each block without the use of predictors (see Akinfenwa et al. [6]–[11], Jator et al.
[12],[13], and Yakubu and Markus [19]).

Development of themethod
We seek the numerical estimation of the analytic solution y(t) by assuming an approxi-
mate solution Y (t) of the form

Y (t) =
7∑

j=0
mjϕj(t), (2)

where t ∈ [t0,Tn],mj are undetermined coefficients that must be obtained and ϕj(t) are
the basis polynomial functions of degree 7. It is required that the eight equations below
must be satisfied.

7∑
j=0

mjtj = yn+i, i = 0,
1
2
, 1,

3
2
, 2,

5
2
, (3)

7∑
j=0

mjjt
j−1
n+i = fn+i, i = 3, (4)

7∑
j=0

mjj(j − 1)tj−2
n+i = gn+i, i = 3. (5)

where n is the grid index, yn+i = Y (tn+i) is the numerical estimation of the analytical
solution y(tn+i) , and gn+i = df

dt (tn+i,Y (tn+i)) .
Equations (3), (4), and (5) will provide a system of eight equations whose solutions gen-

erate the coefficientsmj which are replaced in Eq. (2). After some algebraic manipulation,
the continuous form of the hybrid second derivative formula is obtained as

Y (t) =
5∑

i=0
α i

2
(t)yn+ i

2
+ hβk(t)fn+k + h2γk(t)gn+k , (6)

where α i
2 (t), i = 0, 1, 2, . . . , 5,βk(t), and γk(t) are continuous coefficients; k = 3 is the step

number; and h is the step length. We assume that yn+i/2 = Y
(
tn+ ih

2

)
is the numerical

estimation of the analytical solution y
(
tn+ ih

2

)
, y′

n+k = f
(
tn+k , yn+k

)
is an approximation

to y′ (tn+k
)
, and gn+k = df

dt (t, y(t))|tn+k
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The main method is generated from (6), by interpolating at t = (tn+3) to obtain

yn+3 = − 100
13489

yn + 864
13489

yn+ 1
2

− 3375
13489

yn+1 + 8000
13489

yn+ 3
2

− 13500
13489

yn+2

+ 21600
13489

yn+ 5
2

+ 630h
1927

fn+3 − 450h2

13489
gn+3.

(7)

While the complementary methods are obtained by differentiating (6) with respect to t
to obtain

Y ′(t) = 1
h

⎛
⎝

5∑
j=0

α′
j
2
(t)yn+ j

2
+ hβ ′

k(t)fn+k + h2γk(t)gn+k

⎞
⎠ , (8)

and interpolating (8) at the points t =
(
tn+ i

2

)
, i = 1, 2, . . . , 5 to yield

hfn+ 1
2

= − 69035
242802

yn−235525
80934

n + 1
2

+ 81325
13489

yn+1 − 610850
121401

yn+ 3
2

+ 265675
80934

yn+2

− 29285
26978

yn+ 5
2

+ 706h
5781

fn+3 − 795h2

26978
gn+3.

(9)

hfn+1 = 28598
607005

yn− 8944
13489

yn+ 1
2

− 63800
40467

yn+1 + 405728
121401

yn+ 3
2

− 22118
13489

yn+2

+ 99184
202335

yn+ 5
2

− 295h
5781

fn+3 + 162h2

13489
gn+3.

(10)

hfn+ 3
2

= − 5053
269780

yn+ 5337
26978

yn+ 1
2

− 32229
26978

yn+1 − 6766
13489

yn+ 3
2

+ 106371
53956

yn+2

− 61281
134890

yn+ 5
2

− 79h
1927

fn+3
501h2

53956
gn+3.

(11)

hfn+2 = 17029
1214010

yn− 5336
40467

yn+ 1
2

+ 8072
13489

yn+1 − 244144
121401

yn+ 3
2

+ 45349
80934

yn+2

+ 65432
67445

yn+ 5
2

− 358h
5781

fn+3 + 177h2

13489
gn+3.

(12)

hfn+ 5
2

= − 23839
1214010

yn+ 4685
26978

yn+ 1
2

− 28505
40467

yn+1 + 217690
121401

yn+ 3
2

− 98495
26978

yn+2

+ 974513
404670

yn+ 5
2

+ 1210h
5781

fn+3 − 1035h2

26978
gn+3.

(13)

The hybrid methods are implemented by applying (7), (9)–(13), as a single block
method to provide the approximate solution yn+ 1

2
, yn+1, yn+ 3

2
, yn+2, yn+ 5

2
, yn+3, for n =

0, 3, . . . ,N − 3,N on the partition [t0, t3, t6, · · · , tN−3, tN ].

Analysis of HBSDBDF
This section is better discussed by first representing Eqs. (7), (9)–(13), with a matrix
difference equation as

W1Yσ+1 = W0Yσ + hU1Fσ + h2D1Gσ , (14)
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where

Yσ+1 =
(
yn+ 1

2
, yn+1, yn+ 3

2
, . . . , yn+3

)τ

,

Yσ =
(
yn−3, yn− 5

2
, yn−2, . . . , yn− 1

2
, yn

)τ

,

Fσ =
(
fn+ 1

2
, fn+1, fn+ 3

2
, . . . , fn+3

)τ

,

Gσ =
(
gn+ 1

2
, gn+1, gn+ 3

2
, . . . , gn+3

)τ

,

for σ = 0, 1, 2, . . . and n = 0, 3, 6, . . . ,N − 3.

W1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

235525
80934 − 81325

13489
610850
121401 − 265675

80934
29285
26978 0

8944
13489

63800
40467 − 405728

121401
22118
13489 − 99184

202335 0
− 5337

26978
32229
26978

6766
13489 − 106371

53956
61281
134890 0

5336
40467 − 8072

13489
244144
121401 − 45349

80934 − 65432
67445 0

− 4685
26978

28505
40467 − 217690

121401
98495
26978 − 974513

404670 0
− 864

13489
3375
13489 − 8000

13489
13500
13489 − 21600

13489 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

W0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 − 69035
24280

0 0 0 0 0 28598
607005

0 0 0 0 0 − 5053
269780

0 0 0 0 0 17029
1214010

0 0 0 0 0 − 23839
1214010

0 0 0 0 0 − 100
13489

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

U1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 706
5781

0 −1 0 0 0 − 295
5781

0 0 −1 0 0 79
1927

0 0 0 −1 0 − 358
5781

0 0 0 0 −1 1210
5781

0 0 0 0 0 630
1927

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 − 795
26978

0 0 0 0 0 162
13489

0 0 0 0 0 − 501
53956

0 0 0 0 0 177
13489

0 0 0 0 0 − 1035
26978

0 0 0 0 0 − 450
13489

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Zero stability

The zero stability of HBSDBDF can be determined from the difference system (14), as h
tends 0. Thus, as h → 0, the method (14) tends to the difference system (15)

W1Yσ+1 = W0Yσ , (15)

where W1 and W0 are 6 by 6 constant matrices. Hence, from (15), we obtain the first
characteristic polynomial π(L) given by

π(L) = det(LW1 − W0) = −9600
1927

L5(L − 1)
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The HBSDBDF is zero-stable since π(L) = 0 satisfies that the roots |Lj| ≤ 1 , j =
1, . . . , 6, and for those roots

∣∣Lj
∣∣ = 1, the multiplicity does not exceed 1.

Local truncation error

Theorem

The HBSDBDF has a local truncation error (LTE) of C8h8y8(tn) + © (
h9

)
.

Proof

Suppose y (tn) is a sufficiently differentiable function, and consider the Taylor series
expansions of y

(
tn + ih

2

)
, i = 0, 1, . . . , 5, y′ (tn + 3h) and y′′ (tn + 3h). We assume that

yn+i = y(tn + ih), fn+3 = y′(tn + 3h), gn+3 = y′′(tn + 3h) and substitute the coefficients
αi/2, i = 0, 1, . . . , 5 ,β3 and γ3 into the corresponding formula in (7); after simplifying, we
obtain

LTE = y(tn + 3h) −
( 5∑

i=0
α i

2
y
(
tn + ih

2

)
+ hβ3y′(tn + 3h) + h2γ3y′′(tn + 3h)

)

= C8h8y8(tn) + © (
h9

)
.

Following the same process, the local truncation error of each of the additional formulas
of HBSDBDF is obtained.
It is therefore established that LTE of the HBSDBDF in (14) have order

p = (7, 7, 7, 7, 7, 7)τ because from the local truncation error for all the methods 7, 9–13
after expansion of each method by Taylor’s series the coefficient C0 to C7 = 0 and C8 �= 0
is the error constant given by

C8=
(
− 76985
580134912

,
15919

362584320
,− 50487

1933783040
,

18799
725168640

,− 25909
580134912

,− 225
12086144

)T

where τ is transpose.

Consistency and convergence

The HBSDBDF (14) is consistent as each of the schemes has order p > 1. Following
Henrici [20], since the HBSDBDF is zero-stable and consistent, then the HBSDBDF is
convergent.

Stability

Applying the HBSDBDF to the test problems y′ = λy, y′′ = λ2y, λ < 0 yields

Y� = Q(z)Y�−1, z = λh

where the amplification matrix Q(z) is given by Q(z) = (
W1 − zU1 − z2D1

)−1
(W0). The

matrix Q(z) has eigenvalues {φ1,φ2,φ3,φ4,φ5,φ6} = {0, 0, 0, 0, 0,φ6}. φ6 is the dominant
eigenvalue called the stability function with real coefficient given by

R(z) = 2
6720 + 7200z + 3400z2 + 900z3 + 137z4 + 10z5

13440 − 25920z + 24080z2 − 14280z3 + 6034z4 − 1918z5 + 417z6 − 90z7
. (11)

The stability domain of the method is defined as δ = {z ∈ C : �(z) ≤ 1}. To determine
the stability of the HBSDBDF, we state the following definitions:
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(i) Dahlquist [3]: A numerical method whose stability region contains the entire left half
plane is said to be A-stable.

(ii) Ehle [21]: A method that is A-stable and Lim[R(z)]→ 0 as z → −∞ is said to be
L-stable.

The region of absolute stability (RAS) of the method is plotted using the boundary locus
technique. Figure 1 depicts the stability region for the HBSDBDF of the dominant eigen-
value R(z). It can be seen that the HBSDBDF is A-stable because the stability region
contains the whole left half complex plane whose interval [−3.4, 0]. Also the HBSDBDF
is A-stable and as in Ehle [21] the requirement that limz→−∞ R(z) = 0 is satisfied. Thus,
it is L-stable.

Numerical examples
Example 1 This example is a linear system on the range 0 ≤ t ≤ 10 (see [6]).

y′
1 = −0.1y1, y1(0) = 1

y′
2 = −10y2, y2(0) = 1

y′
3 = −100y3, y3(0) = 1

y′
4 = −1000y4, y4(0) = 1

For the problem, the maximum absolute error was computed on the given interval. It was
found that the HBSDBDF of order 7 is more accurate when compared to the BBDF in [6]
of the same order. Although when h = 0.1250, the max error is greater than the error in

Fig. 1 Stability region
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Table 1Maximum absolute error for HBSDBDF for Example 1

h MaxError BBDF P = 7 [6] MaxError HSDBBDF P = 7

2.0000 3.0525 × 10−7 1.6387 × 10−9

1.000 1.9084 × 10−9 1.2010 × 10−11

0.5000 1.4070 × 10−11 8.3211 × 10−14

0.2500 1.0558 × 10−13 1.3378 × 10−14

0.1250 7.1054 × 10−15 2.7867 × 10−14

[1]. This was due to the fact that the new method converges with correct digit of 13 from
h = 0.5 to h = 0.1250 as shown in Table 1.

Example 2 Our second example is a nearly sinusoidal problem given in ([10], Example
5.1, p 636) in the range 0 ≤ t ≤ 10

y′
1 = −2y1 + y2 + 2Sint, y1(0) = 2

y′
2 = 998y1 − 999y2 + 999Cost − 999Sint, y2(0) = 3

with exact solution

y1 = 2e−t + Sint

,

y2 = 2e−t + Cost

Our aim here is to demonstrate the accuracy, rate of convergence (ROC), and good stabil-
ity properties of the HBSDBDF . For different step sizes h, the relative error maxi |yi−y(ti)|

|(1+y(ti))|
and the ROC are calculated with the formula ROC = log2

(
e2h
eh

)
, where eh is the greatest

absolute error for h shown in Table 2. Clearly, the ROC is consistent with the order of the
new block scheme.

Example 3 Consider the highly stiff system, see [19].

y′
1 = −107y1 + 0.075y2, y1(0) = 1

y′
2 = 7500y1 − 0.075y2, y2(0) = −1

The eigenvalues of the Jacobian of the system are approximately λ1 =
−1.000000000562500 × 106 and λ2 = −0.0743749995813. The result of the HBSDBDF
is compared with that of Yakubu and Markus [19] using second derivative method and
shown as displayed in Table 3.

Table 2 Relative error for HBSDBDF for Example 2

h Maximum error Relative error ROC

0.4 8.9924 × 10−7 3.6279 × 10−7 –

0.2 5.9042 × 10−9 2.6294 × 10−9 7.25

0.1 4.5695 × 10−11 1.8848 × 10−11 7.01

0.05 2.9376 × 10−13 1.2826 × 10−13 7.28
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Table 3 Absolute errors = |yi(T) − yi| at points T = 5, 40, 70, and 100 at h = 0.01 for Example 3

Method 3.2 in [19] p = 8 Method 3.4 in [19] p = 11 HBSDBDF p = 7

T Erry1 Erry2 Erry1 Erry2 Erry1 Erry2

5 4.8198 × 10−5 1.0083 × 10−1 2.3725 × 10−7 8.8134 × 10−1 1.0123 × 10−17 1.3497 × 10−9

40 8.1806 × 10−9 1.0908 × 10−1 2.2033 × 10−9 2.9378 × 10−1 5.8776 × 10−18 7.8381 × 10−10

70 8.7510 × 10−9 1.1668 × 10−1 8.593 × 10−10 1.1456 × 10−1 4.0276 × 10−18 5.3701 × 10−10

100 9.361 × 10−9 1.2482 × 10−1 3.351 × 10−10 4.4677 × 10−2 5.3649 × 10−19 7.1532 × 10−11

Example 4 Next consider the chemistry problem in Gear [22] , Cash [23], and Yakubu
[19],

y′
1 = −0.013y1 − 1000y1y3, y1(0) = 1

y′
2 = −2500y2y3, y2(0) = 1
y′
3 = −0.013y1 − 1000y1y3 − 2500y2y3, y3(0) = 0

We solve this problem in the interval 0 ≤ t ≤ 50 using the HBSDBDF. The result is y1 in
blue, y2 in brown, and y3 in red as shown in Fig. 2 with the numerical values for h = 0.001
at the point T = 10, 20, 30, 40, and 50. See Table 4.

Example 5 Consider the well-known nonlinear problem (Kaps problem) in the range
0 ≤ t ≤ 10

y′
1 = −1002y1 + 1000y22, y1(0) = 1.

y′
2 = y1 − y2(1 + y2), y2(0) = 1.

This problem is solved using method in [10] and the new HBSDBDF so as to show the
advantage of the new method over that in [10]. The absolute error at the end point t = 10,
NFE the number of function evaluations, h the step size, and N the number of computation
steps are displayed in Table 5.

Results and discussion
The stability of the newly derived method was obtained by using the boundary locus
approach. The technique involves finding the roots of the stability function which is a

Fig. 2 Graph of Example 4
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Table 4 Result at end points T = 10, 20, 30, 40, and 50 for Example 4

HBSDBDF

T y1 y2 y3

10 0.9091683236244189 1.0908284259644867 − 3.2503998003542024 × 10−6

20 0.8229907673721323 1.1770063913090394 − 2.841295747232276 × 10−6

30 0.7421287903652325 1.2578687274279043 − 2.4821720560758213 × 10−6

40 0.6669652093152717 1.3330326227473712 − 2.1678899097492703 × 10−6

50 0.5976546980536864 1.4023434084998894 − 1.893386540451178 × 10−6

rational complex function and by plotting the imaginary root against the real root. The
interval of stability read from the plot of the region of absolute stability gives [−3.4,0].
The result obtained in Example 1 showed the accuracy and stability of the method. How-
ever, when h = 0.1250, the max error is greater then the error in [1]. This was due the
fact that the new method converges with correct digit of 13 from h = 0.5 to h = 0.1250.
The second example was solved to show that the rate of convergence of the method is in
agreement with the order of the method. The third example is a highly stiff system, and
it is solved to show the effectiveness of the method. Despite the fact that the method is
of order 7, it was compared with those [19] of orders 8 and 11. Table 3 shows the superi-
ority of the new method over those in [19]. The fourth problem solved is also a standard
chemistry problem and the result plotted in Fig. 2 and the numerical solution shown in
Table 4 is in agreement with those in the literature. The advantage of the HBSDBDF can
be seen in Table 5 where the new method converges even for very large step size. The low
number of function evaluation shows that the new method can save computer memory
with reduced computation time.

Conclusion
In this article, a new hybrid second derivative block backward differentiation formula for
solving stiff systems of first order initial value problems is reported. The stability analysis
has been conducted based on the boundary locus technique to obtain the region of abso-
lute stability. The HBSDBDF is implemented without the need for predictors or starting
values, and therefore, subroutines that are sometimes complicated are not necessary. Five
standard numerical examples, both linear and non-linear stiff systems, have been solved
to show the accuracy and efficiency of the methods. From the results obtained, the rate of
convergence confirmed the order of the method. Detailed results are displayed in Tables
1, 2, 3, 4 and 5. The results have shown that HBSDBDF is suitable for solution of stiff
problems and converges accurately even for large step size h. The advantages of the new
method are that it is more accurate than those in [10] and [19] in the manuscript. It has
less number of function evaluation when compared with [10] and [19], hence reduced the

Table 5 Absolute errors = |yi(T) − yi| at end point T = 10 for Example 5

Method in [10] p = 7 HBSDBDF p = 7

h N Erry1 Erry2 NFE Erry1 Erry2 NFE

2.5 4 8.0566 × 10−1 2.9659 × 10−1 13 2.1670 × 10−9 1.35068 × 10−5 8

1.25 8 4.9431 × 10−4 2.2187 × 10−2 25 2.3329 × 10−9 2.8914 × 10−5 16

0.83333 12 6.1434 × 10−2 3.6890 × 10−2 37 2.3078 × 10−9 2.9695 × 10−5 24

0.625 16 1.5517 × 100 1.6227 × 100 49 2.2987 × 10−9 2.9986 × 10−5 32

0.5 20 5.3551 × 10−1 7.6341 × 10−1 61 2.2948 × 10−9 3.0115 × 10−5 40
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time of computation and reduced use in computer memory. Another advantage is that
it converges accurately with large step size h while those in [10] and [19] are less accu-
rate as evident in Tables 3 and 5. This is the goal of numerical analysts. The disadvantage
however is that the new method will converge with very fewer digit/s of accuracy when
compared with the method in [10] for problems using very small h.
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