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1. Introduction

Random approximations and random fixed point theorems are
stochastic generalizations of classical approximations and
fixed point theorems. The study of random fixed point theo-
rems was initiated by Prague school of probabilities in the
1950s by Spacek [1] and Hans [2,3]. The interest in these prob-
lems was enhanced after the publication of the survey article of
Bharucha-Reid [4] in 1976. Random fixed point theory and
applications have been further developed rapidly in recent
years (see e.g. [5-12] and references therein).
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The class of asymptotically nonexpansive self-mappings
introduced by Goebel and Kirk [13] in 1972. In 2001, Xu
and Ori [14] introduced the following implicit iteration process
{x,} defined by

Xy = 0pXp—1 + (1 - (xn)Tn(madN)xmn > 17 Xo € K7 (11)

for a finite family of nonexpansive mappings {7, 7>, ..., Tn}:
K — K, where K is a nonempty closed convex subset of a
Hilbert space E and {«,},> is a real sequence in (0, 1). They
proved the weakly convergence of the sequence {x,} defined
by (1.1) to a common fixed point p € F=nNY, F(T;).

In 2003, Sun [15] introduced the following implicit iteration
process {x,} defined by

Xy = 0, X1 + (1 — oc,,)Tf&"))x,,,n =1, xy€K, (1.2)

for a finite family of asymptotically quasi-nonexpansive self-
mappings on a bounded closed convex subset K of a Hilbert
space E with {o,},>1 a sequence in (0, 1), where
n = (k(n) — DN + i(n), i(n) € {1, 2, ..., N}, and proved the
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strong convergence of the sequence {x,} defined by (1.2) to a
common fixed point p € F= Y, F(T}).

In 2010, Filomena Cianciaruso et al. [16] considered the
following implicit iterative process for a finite family of asymp-
totically nonexpansive mappings

Xn = (1 — 0y — Vn)xﬂ*] + O T{}g;)yr1 + ynunv
Yn = (1 - ﬁn - 5,,))(" + ﬁ Tk(n)-xrl + 5nvn>

n*i(n)

(1.3)

nz=l,

where n = (k(n) — V)N + i(n), i(n) € {1, 2, ..., N}, {0}, {Bn}»
{yn}> {0,} are sequences of real numbers in (0, 1) with «, +
y.<land B, +0,<1 forall n>1 and {u,}, {v,} are two
bounded sequences and x, is a given point. They proved con-
vergence of the implicit iterative process defined by (1.3) to a
common fixed point of asymptotically nonexpansive mappings
in uniformly convex Banach spaces.

Very recently, Hao et al. [17] studied the convergence of an
implicit iterative process with errors for two finite families
{T[}fi17 {S,«}}il : K — K of asymptotically nonexpansive map-
pings defined as follows:

Xp = (1 — 0y — Vn)xn—l + oy Tﬁ(nn))yn + Vultn,
Yn = (1 - ﬁn - (3,«,))(,, + ﬁ Sk(”)xn + 5nvn7

n~i(n)

(1.4)
nx=l,

where n = (k(n) — )N + i(n), i(n) € {1, 2, ..., N}, {0}, {Bn}>
{yn}> {0,}, are sequences of real numbers in [0,1] with «, +
y.<land 5, + 6,<1forall n > 1and {u,}, {v,}, are two
bounded sequences.

The development of random fixed point iterations was
initiated by Choudhury in [18] where random Ishikawa iteration
scheme was defined and its strong convergence to a random fixed
point in Hilbert spaces was discussed. After that, several authors
have worked on random fixed point iterations some of which are
noted in ([19-24]) and many others. Banerjee et al. [25]
constructed a composite implicit random iterative process with er-
rors for a finite family {7: i€ I = {1,2,..., N}} of N continuous
asymptotically nonexpansive random operators from Q X Cto C,
where C be nonempty closed convex subset of a separable Banach
space E. They discuss the necessary and sufficient conditions for
the convergence of this composite implicit random iterative pro-
cess defined in the compact form as follows:

E,(1) = oy (1) + BT (1,1,(0) + 182 (0),

Na(1) = @&, (1) + ba Ty (4,6,(0) + ag, (1), n =1, VieQ,

(1.5)

where {0}, {B.}, (7.}, {a.}, {b.}, {c,} are sequences of real
numbers in [0, 1] with o, + 8, + 7, = @, + b, + ¢, = 1 and
{fn(0}, {g.(t)} are bounded sequences of measurable functions
from Q to C.

Inspired and motivated by theses facts, we investigate con-
vergence of the following implicit random iterative process:

Definition 1.1. Let {7}, and {S;}Y, be two finite families of
2N asymptotically nonexpansive random mappings form
Qx C to C. where C is a nonempty closed convex subset of
a separable Banach space E. Let &;: Q@ — C be a measurable
function. Then, define the sequence {¢,(w)} as

&,(w) = (1= oy = 3,) &1 (W) + 0 Tht) (w, 1, (w)) + 715 (),

1.6
V’”(W) = (1 - ﬁn - 5")@1(”}) + ﬁnsf'{((nn))(w7 éﬂ(W)) + 5llgn(w)7 ( )

where n = (k(n) — )N + i(n), i(n) € {1, 2, ..., N}, {a,}, {B.},
{ya}> {9} are sequences of real numbers in [0,1] with «, +
< land f, + 6,<1 for all we Q and for all » > 1 and
{f(w)}, {g.(w)} are bounded sequences of measurable func-
tions from Q2 to C.

We extend the random iterative process (1.5) to the case of
two finite families of asymptotically nonexpansive random
mappings {7}, Si: i = 1,2, ..., N} and also study the random
version of the implicit iterative process (1.4). We obtain the
weak and strong convergence of an implicit random iterative
process (1.6) in a uniformly convex Banach space.

2. Preliminaries

Let (Q, ) be a measurable space, C a nonempty subset of E. A
mapping & Q — C is called measurable if ¢~ '(BN C) €  for
every Borel subset B of a Banach space E. A mapping T:
QxC— C is said to be random mapping if for each fixed
x € C, the mapping 7(.,x): @ — C is measurable. A measurable
mapping &: Q — Cis called a random fixed point of the random
mapping 7: Q x C — Cif T(w, £(w)) = &(w) for each w € Q.

We denote the set of all random fixed points of random
mapping T by RF(T).

Definition 2.1 [26]. A Banach space E is said to satisfy the
Opial’s condition if for any sequence {x,} in E, x,, — x weakly
as n — oo and x # y implying that

lim sup ||x, — x|| < limsup ||x, — yl,
n—o0

n—o0

forally e E.

Definition 2.2. A map 7: C — E'is called demiclosed at y € E if
for each sequence {x,} in C and each x € E, x,, — x weakly and
Tx, — y strongly imply that x € C and Tx = y.

Definition 2.3 [25]. A finite family {7:i€ 1= {1,2,3,..., N}}
of N continuous random operators from Qx C to E with
F =Y, RF(T;) # () is said to satisfy condition B on C if there
exists a nondecreasing function f: [0, oo) = [0, oo) with
f(0) =0, fir) = 0 for all r € (0, co) such that for all we Q,
J(E(w), F)) < max o {|E00) — T,0w, E))][} for all &(w),
where & Q—C is a measurable function and
d(e(w), F) = inf{|E0) — gw)]| : g(w) € F = (Y, RF(T))}.

Definition 2.4 [19]. Let C be a nonempty closed convex subset
of a separable Banach space E and 7: Q x C — E be a random
mapping. Then, T is said to be

(1) Nonexpansive random operator if for arbitrary x, y € C,
1700, %) = Tov )| < [lx =3, ¥we .
(2) Asymptotically nonexpansive random mapping if there
exists a measurable mapping sequence r,(w): Q — |1,
oo) with lim,,_,..r,(w) = 1 for each w € Q such that for
arbitrary x, y € C and for each w € Q

17" (w, x) = T"(w, )| < ma()llx =y, n=1,2,...

(3) Uniformly L-Lipschitzian random mapping if there exists a
constant L > 0 such that for arbitrary x, y € Cand w € Q



184

R.A. Rashwan, D.M. Albageri

17" (w, x) = T"(w, )| <

(4) Semicompact random mapping if for a sequence of
measurable mappings {¢,} from Q to C with
lim,,_yoo||E4(W) — T(w, &) = 0 for all we Q there
exists a subsequence {¢, (w)} of {£,(w)} such that
{&,(w)} — {&(w)} as k— oo for each we Q, where
{&(w)} is a measurable mapping from Q to C.

L||x_yH7 n:1>27"'

Remark 2.5. Every asymptotically nonexpansive random map-
ping is uniformly L-Lipschitzian, where L = sup,,co.,=17,(W).

The following lemmas are useful for proving our main results.

Lemma 2.6 [27]. Let {a,}, {b,} and {m,} be nonnegative real
sequences satisfying

apy < (L +my)a, +b,, Yn =1

If > m, < oo and Y b, < oo, then

(1) lim,_a, exists.
?2) lim,_-a, = 0 whenever liminf,_,.a, = 0.

Lemma 2.7 [28]. Let E be a uniformly convex Banach space, and
0<p<t,<q < Iforallpositiveintegern = 1. Also suppose that
{x,} and {y,} are two sequences of E such that limsup,_,.|x,|| < r,
limsup,—solvll < v and lim,_o||t,x, + (1 — t,)v, = r hold for
somer = 0, then lim,_||x, — .| = 0.

Lemma 2.8 (Demiclosedness Principle, [29]). Let E be a uni-
Sformly convex Banach space, C a nonempty closed convex subset
of E and T: C— E be asymptotically nonexpansive mapping.
Then, I — T is demiclosed at zero. i.e., if x, — x weakly and
lx, — Tx,l| = 0 strongly, then x € F(T), where F(T) is the set
of fixed points of T.

Lemma 2.9 [30]. Let E be a Banach space which satisfies Opi-
al’s condition and let {x,} be sequence in E. Let u, v € E be such
that lim, . J||x, — ul| and lim,_|x, — v|| exists. If {x, } and
{Xm } are subsequence of {x,} which converge weakly to u and
v, respectively, then u = v.

3. Main results

Before proving our main results, we shall prove the following
crucial lemmas:

Lemma 3.1. Let E be a separable Banach space and C be a
nonempty closed convex subset of E. Let {T;, Si-iel = {1, 2,

., N}} be 2N asymptotically nonexpansive random mappings
with sequences of measurable mappings {r; } : Q@ — [1,00) such
that 02 (r;,(w) = 1) < 00, 1y, (w) — L asn — oo, for allw € Q
and iel= {1, 2, ..., N}. Suppose that F= X, (RF(T;)N
RF(S;))#0. Let {&,(w)} be the sequence defined as in (1.6)
with the additional assumption - 7y, < 00,y 228, < co and
limsup, o0, < 1. Then

(1) lin;neoo”fn(w) - f(W)“
iy (RE(T3) N RE(S;)).

exists for all &(w) €F =

() lim,_ood(E (W), F) exists where dié,(w),

F) = l'nfg(;‘:)eﬁﬂén(w) - é(w)”

Proof. Let ¢&(w) € F. Since {f,} and {g,} are bounded
sequence of measurable function from Q to C, we can put
for each w € Q

M(w) = Sg}lﬁllf»}(w) =<V SgI])IIgn(W) = E<w)ll- (3.1)
Then, M(w) < oo for each we Q and n > 1. For n > 1, let
ro(w) = max{r; (w) : i e I={1,2,...,N}}, then we can write
17505 (v, %) = T

o) 09, )| < o)l =

(3.2)
IS5 (w, x) = Sien! (w, )|

Using (1.6), (3.1) and (3.2), we have for {(w) € F and w € Q
that

<r(w)lx—yll, weQ.

”én(w) - C(W)” = H(] — 0Oy — Vn)én—l(w)

+ o, T (w,0,(0)) + 7,1 (W)

= [[(1 = oty = 3,) (&1 (w) = E(w))
+ o (T (w1, (w)) = E(w))
+ 0 (fu(w) = W)l

< (T =a = 7)1 &1 (w) = <]

| 75 (0, () — EQ0) |
+ 2allfa(w) = <)l
S (I =0 = )€1 (w) = <)
+ 0t (W), (w) = EOw) | + 7, M (w)
< (1= o)[[ & (w) = EW)|
+ ot (W), (w) = EW) I+ 9, M(w) — (3.3)
On the other hand,

[, (w) = EOw)Il = I(1 = B, = 6u) ulw)
nSf (n) (W7 5»1(”})) + 5ngn(w)

— &)

< (1=, = 8)lI&00) = )|
T+ BIISE O, &, (0)) — )]
+ 8,8, ) — 00|

< (1= B)IE(w) = Ew)]
+ BlISE (w, &, (w)) = Ew)|
+ 3,1, (w) — Ew)|
< (1= B)IE0w) = Ew)]
+ B ()1, (w) — Ew)| + 8,M (w)
= (1= B, + Bura (W) &, (w) — E)
+ 6, M(w)
< ()&, (w) =

where the last inequality follows from r,(w) >
into (3.3), we get

Ew)|| + 0. M(w), (3.4)
1. Putting (3.4)
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[[€u(w) = E(w)]

<(I = o) [[&ar (w) = E(W)]]
+ attn (W) [rn (W) [[ 0 (W) —
+ 0, M(w)] + 7, M(w)
= (1 = o) [[€u 1 (W)E(W)]|
+ o (W)€, (w) = Ew) |
+ (01 (W) Sy + 7, ) M (w)

<l
(3.5)

Rearranging both sides, we obtain

B 1— Ul (W), + 7,
) gi e ) _ 7
Q(W)H 1—a FZ(H) Hf ](H) (W)H + 1— O (W)

—_ “”rn(w)_‘:xn o N R
=T A 11 (w) = <)

n'n o”
oty (W)0, + 7, M(w)
1 —o,r2(w)

= (L+ A, (W)[[ €1 (W) EOI] + B ().

l1€u(w) = M(w)

(3.6)

Since limsup, .2, < 1, then there exists 4 < 1 such that

o, < A for big n, therefore

trp (W) — oty oy (ra(w) — 1) .
L —o,r2(w) 1 —or2(w)

_ Alrp(w) + D) (ra(w) — 1)

Ar2(w) —1)

Y —
n(v) 1 —r2(w)

1 — 2r2(w) ’
and since lim,_,..r,(w) = 1, we obtain lim,_ ”](r”f:‘)(t 1)) <,
then there exists a real constant k such that ’fr”g_‘;)(t ,;)

A, (w) =7 AUV PN

=1 =2 (w)

< k,Vn = 1. it follows that >,
Similarly, we can prove that > 2 B,(w)=> %
M(w) < oo. It follows by Lemma 2.6 and inequality (3.6) that
lim,,_,» [|E.(w) — E(w)| exists for all E(w) € F.

To prove (2). Putting inf: ron both sides of (3.6), we get d(,,(w),
F) < + A,w)) d&,_1(w), F) + B,w), then also by Lemma 2.6,
we obtain that lim,,_,..d(,(w), F) exists and for allw € Q. [0

Lemma 3.2. Let E be a uniformly convex separable Banach
space and C be a nonempty closed convex subset of E. Let
{T;, Siie I =1{1,2,..., N}} be 2N asymptotically nonexpan-
sive random mappings with sequences of measurable mappings
{ri,} € [1,00) such that % (r;,(w) — 1) < o0, r;,(w) — 1 as
n—oo, forallwe Qandiel = {1, 2, ..., N}. Suppose that
F= ﬂil(RF(T,-) N RE(S))#0. Let {&,(w)} be the sequence
defined as in (1.6) with the additional assumption
S e < 00, >0 18, < 00 and limsup,_o0, < 1. Then

o limy, oll|En(w) — Tifw, Eu(w)|| = 0,
L4 limnﬁoc”én(w) - S[(W, én(w)” = 0)
o [imy o | To(W, Eu(w)) = Si(w, Eu(w))|| = 0,

forallwe Qand foralll =1, 2, ..., N.

Proof. Let &(w) € F. Since {f,} and {g,} are bounded sequence
of measurable function from Q to C, we can put for each w € Q

M(w) = sup|lfu(w) — Cw)[| v suplig, (w) = &(w)]l

Then M(w) < oo for each w € Q and n > 1. By Lemma 3.1, we
see that lim,,_,oo||E,(w) — E(w)|| exists for each w € Q. Assume that
lim,,_,»o||E(w) — E(W)|| = c. Similarly, by using (3.4), we have

1, () = EW)| < ra (W)€ (w) = EOwW)| + 6, M (w).

Taking limsup,_,, on both sides of the inequality, (where

lim,,_,5.0, = 0) we have
tim sup ||, (w) — E(w)| < c. (3.7)

In addition |73 (w,n,(w)) = E00)I| < ralln, (w) = Ew)]],
taking limsup,,_,., on both sides of the inequality, we have

lim sup | 75 (w,1, (w)) — E(w)| < c. (3.8)

n—oo

Since lim,,_,..y, = 0, it follows from (3.8) that

T4 (w1, () = EO9) + 7, (fu(w) = Euci ()]
< T3 (w1, (w)) = EW) |+ 7,5 (9) = & (W) (3.9)
= limsup || 750 (w,1,(w)) — E00) + 9, (1) — & ()| < .

n—o00

Also,
lim sup [, (w) = <0w) + 2, (fu(w) = S W)

< limsup &, (w) — )| = c. (3.10)
Now, by using (1.6) we have
c= lim ||é,,(w) —&(w)]]

= 1im [[(1 = o = 7,)& 1 (9) + 27505 (w1, ()

+ 7 (w) = EW)|

= 11m||an7{‘ " (w1, (W) A+ (1= )&,y (W)

= Puam1 (W) + 9fu(w) — (1 — ) E(w) — o ()|

= 11m ||oc,,74‘ (w,11,(w)) — a, E(W) + ot fu(w)

= 07, (W) + (1= a) &, () — (1 = 04,)E(w)

- ’ynén—l (wy) + ’VVJVI(‘/V) - an’ynf;l(w) + (xn’ynén—l (wy)H

= lim o, (T30 (0,1, (w)) = E00) + 9, (s (09) = &y ()

+ (1= o) (&t () = Ew) + 9, (fa(w) = i (W)l

(3.11)

From (3.9), (3.10) and (3.11) and Lemma 2.7, we obtain
Tim | 7507 0,1, (9) = &1 ()] = 0. (3.12)

On the other hand,

[1€,(w) = T3 (w,m, (w)) ]| <

| < N1 w) = &y (W) + [1€,1(w)

— T3 (w,m,(w)

= [I(1 = oty = ,)&,1 ()

+a, T (0, 1,(w)) + 7, (00)

= &t W+ 160 () = T4 (w1, (w)|
=11 (W) — o0&y (W) = 1, &t (W)

+ o, T30 (0,1, (9)) + 7fa (W) = &,y ()]
+11&u(w) = 741‘(,,) (w, 1, (W)l

< ol T4 (w, 0, () = &0y (W)

+ 9l 9) = G W]+ (1€ (w)

— T3 (wn, ()|
:u+meme»

— &t )+ 7allfa(w) = i (W)
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By (3.12), we have

lim [1€,0v) = 7357 (v, m, (W) || = 0 (3.13)

Also, we have

12,0w) = E)I| < [1€,(w) — T4 (w, m, (W)
+ 1T (v, n,,<w>> Ew)ll
< &, (w) = T (w,m, ()|
+ 1 () 1, (w) = EOW)I,

which implies by (3.13) that

¢ = lim |&,(w) — <)

< liminf|n, (w) — E(w)|.

Since ¢ < liminf,, o |[n, (W) — EW)|| < limsup,_so|n.(w) —

Ew)| < ¢, Thus,

lim [|7, (w) — E(w)[| = ¢. (3.14)

Now, we have

lim sup 18565 0w, & (w)) = EOw)| < limsup r, (W)[[€,(w) = EW) | = ¢ (3.15)

n—oo

Also,
156 0, &0()) = E08) + 8 (g, (w) = EW))]

<185 (w, E4(w)) = EO)|| + Bulg, (w) — E(w)]|
Using (3.15), we have
Tim |50 (0, £,(9)) = E00) + Su(g, (w) — €Dl < e (3.16)
In addition,

lim sup &, (1) = £(v) + 8, (g,(v) = EW))]

< limsup|&,(w) — E(w)]| = c. (3.17)
On the other hand,
¢ = lim ||, (w) = &)

= lim [(1 = B, = 6,)&(w) + B, (v, & (w))

+8,8,(w) — Ew)|

= lim |8, 5561 (0, &,(0)) + (1 = B,)&, () = 8,&,(w)

+0,g,(w) = (1= B,)E(w) = B,E(w)|

= lim |8, S50 0w, &,(9)) = B,E00) + B,6,,(w)

= Budula(w) + (1= B,)E,(w) = (1= B,)E(w)

= 048y (W) + 0,8, (W) — B,0,2, (W) + B0, (W)

= lim ||, (Si57) (w, &, (w)) = EO0) + 8u(8, (W) = &,(w)))

+ (1= B (6 (w) = E0w) + 38, (w) = &u(w)))l (3.18)
From (3.16), (3.17) and (3.18) and Lemma 2.7, we obtain
lim |37 (0w, &, () = &,(w)]| = 0. (3.19)
Notice that,

1, (w) = &)l = [[(1 = B, = 8)E,(w) + B, S (w, &, ()

+ 5ngn(w) - n(W)”
< BlISE (w, &, (w)) —
- én(W)H7

En W)+ Oullg, (w)

Using (3.19), we obtain
Tim ||, () = &,(w)| =0, (3.20)
Since,

T3 w, &, (w)) = &, )| < (I Ty (v, €, (w)) = T3 (w,m, () |
+ (T4 vy, (w)) = &, (w)|

(
< rall&a(w) =, (w)|
(

T (v, () = &, ()]
By using (3.13) and (3.20), we get
lim || 737 (w, &,(w)) — &,(w)]| = 0. (3.21)

also,

1,1 (w) = Ti) (w, &, ()| < (1€, (w) = T4 (w1, (w)) |
+ T3 (w,m, (0)) = T4 (w, &, ().

Both (3.12) and (3.20) imply that

lim [1€,-1(w) = T35 (v, &,(0))]| = 0. (3.22)
Now,
1€,09) = Ears W) < @l 750 00, 1,(9)) = Eu (9] + 7,16 ()

- énfl(w)”'

USing (312)> we gEt limn%oouén(w) - énfl(W)H =0.

Hence

}Lrg‘lén(w) - énJrI(W)” = 07 (323)

for all w € Q and for all / € I. Since
T3 (v, &, (w)) = Sy (w, &, (w) |
< Tii (w, & (w)) = &) |+ 1€,00) = Sy (v, &, (),
By (3.19) and (3.21), we get
Tim || 736 (v, &, () = Sii5) (v, &) | = . (3.24)
Notice that

€01 09) = Ty (9, EOO) | < &t (9) = T2 (w, &, (0
+ T3 (w, &0 (w)) = Ty (w, &, ()
<& (w) = T3 (w, &, ()|
+ LT (0, &, () = &, (W)
< [I&wr (w) = T3 (v, &, ()| (3.25)
+ L[| Ty ™" (w, &, (w))
— T 0, &y ()|
+ T30 00 Ea v (9)) = Eumya ()]
+ (1€ () = E W]
Since for each »n >N, n=@m— N)(mod N) and
n = (K(mn)— 1)N + i(n), we have k(n — N) = k(n) — 1 and
i(n — N) = i(n).
I Tf.‘(;”))’l(w, &) — 74,;(:,);,1)01’, Enn (W)l

< L”f,,(W) - 611—N(W)H7 (326)
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and

HTZ((;« N) 10r, &y (w)) — Eem—1 (W)l

= | T30 0, En (W) = Emya (W) (3.27)
Substituting (3.27) and (3.26) into (3.25), we obtain
1€-109) = Ti O, GO < 1101 (w) = T O &, (w)|
+ L2 E,(w) = Eun (W)
+ LT3 (00, Euy (W) Eya ()]
+ L”C.(an)fl(W) - én(w)”
It follows by (3.22) and (3.23) that
Tim [[€,_1 () = Tigy (w, & (W) = 0. (3.28)
and
€2 (w) = Tign (w, S (W) | < (1€, (w) = & (W)l
+ [[&n-1 (W)
= Ty (w, & (W)
— 0 as (n— o). (3.29)

Now foreach /=1,2, ...,

(1€2(w) = Toa(w, E (DI < NE W) = SaiaW) |+ 11510 (w)
= Lot w, S D+ N Tois (0, Ea (W)
= Tt (w, SO < 1S 0w)
= St W+ 11E0s(w) = Toss(w, S (W)
+ L[| &i(w) = &, (W) — 0
as n— oo for each w € Q.

N, we have

(3.30)
Consequently, we have
1€, (w)e = Ti(w, &, (w))|l — 0,

foreach we Q and foreach/ =1, 2, ...,
prove that

(3.31)

N. Similarly, we can

Tlim [1€,() = Si(w, &,(w))]| =0, (3.32)
for each we Q and foreach / =1, 2, ...,

170w, & (w)) = Silw, &) <

N. Finally, since

(750w, &u(w)) = Su(W)l
+ Hén(w) - SI(W7 6):(W))”
Thus by (3.31) and (3.32), we obtain

’}LHOLHTI(W7 én(w)) - S[(W, in(w))H = 07 (333)

for each we Q and foreach/=1,2, ..., N. O

In the next, we study strong convergence of the sequence
{&,(w)} defined by (1.6) to a common random fixed point of
{T[, S,*: i= 1, 2, . N}

Theorem 3.3. Let E be a separable Banach space and C be a
nonempty closed convex subset of E. Let {T;, S;-iel = {1, 2,

., N}} be 2N asymptotically nonexpansive random mappings
with sequences of measurable mappings {r; } C [1,00) such that
S (riy(w) = 1) < oo, 1y, (W) = 1 as n — oo, for all w € Q and
ie{l, 2, ..., N}. Suppose that F = (X, (RF(T;) N RF(S;))#0.
Let {ﬁ,,(w)} be the sequence defined as in (1.6) with the additional
assumption Y ;2 1y, < 00, Y 28, < co and limsup,_, o, < l.

Then {&,(w)} converges to a common random fixed point of {T},

Sii=1,2,..., N} if and only if
liminfd(&,(w), F) =0 ,we Q. (3.34)

Proof. The necessity of (3.34) is obvious. To prove the suffi-
ciency of (3.34), we have by Lemma 3.1, that lim,,_,,.d(&,(w),
F) exists for w e Q and we have from the hypothesis of the
Theorem that liminf, . d(&,(w), F)=0,weQ, then
lim,,_,..d(é,(w), F) = 0. Now, since 1 + x< ¢* for x > 0
and from (3.6), we have that

l[€nem (W) = EOII < (T4 Apsm W) Enimar (0) = )| + B (w)

A £ (W) = EOW) || 4 By (W)
Anm () et (0 | £ () — E(w)]|

A/ fm “)Bn+m71 (W) + B/Hm(w) T

n+m
Ai(w)

<ot 1g (w) = E(w)
n+m

ntm— Ai(w)
+ +Z lBk (w) eig;]

k=n+1

S RW)[IE(w) = Ew)[| + R(w) i By (w),

k=n+1

<
<
<e

+

+ Bn+m (W)

(3.35)

for each_w e Q and for all natural numbers m, n where
R(w) = PINRHCII Therefore, for any &(w) € F, (3.35)
implies that

”éner(W) - fn(w)H < ||én+m(w) - E(W)H + Hén(w)
=<l
< RW)[IE,(w) = <)l
R(w) >~ Be(w) + [|€,(w)
k=n+1
— <)l
= (R(w) + D)[[&,(w) = E(w)|
w) Z Bi(w). (3.36)
k=n+1
Since lim,_,d(&,(w), F) =0, and )~ B,(w) < oo, given
€ > 0, there ex1sts a natural number n, such that
d(&,(w), F) < s m oy and S Ba(w) < srey for all n > ng.
So there ex1sts f “(w) € F such that ||&,(w) — & (w)| < TROGTT)

for all n > ny. Therefore from (3.36), we have for all n >
no that

E )] + R(w) Zm: Bi(w)

k=n+1

||§n+m(w) - in(w)H < (R(W) + 1)”5/1(‘4}) -

D R

< (R(w) +1) SR(w)

which implies that {&,(w)} is a Cauchy sequence in C for each
w € Q. Since C is closed subset of E, then there exists p(w) such
that lim,,_,..&,(w) = p(w), where p being the limit of measur-
able functions is also measurable. Now, we show that
p(w) € F. Since for each w € Q, lim,,_,..&,(w) = p(w), there ex-

ists m € N such that [|,(w) — p(w)|| < 3755 for all n = ny.
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Since lim,,_,.d(¢,(w), F) = 0 for each w € Q there exists n, € N
such that d(¢,(w), F) < sy for all n = na. So there exists
g € F such that ||&,(w) — q(ng <11y for all n = no. Let
n3 = max{n;, n,}. For all [e ] = %1, 2, ..., N} and for all

n=n;

I Ti0w, p(w)) = pO) | < 1730w, p(w)) = g(W)]| + llg(w) = p(w)]|
<A Ti(w, p(w)) = Tilw, g(w)) | + llg(w) — p(w)l
< rw)llgow) = pw)[| + llg(w) — p(w)l
= (T+r()llg(w) = p(w)ll
< (L+n(w)llg(w) = <)l
+ (L +rw)]l n(w) p(w)l|
< +rO)sqr

2(1+ r,(w)

+ (1 +r(w)) m =

(3.37)

which implies that T(w, pw) forall/e{l, 2, ..., N}
and for all w € Q.

In addition, by (3.32), we have Si(w, &,(w)) — &,(w), then
there exists n4 € N such that ||.S;(w, &,(w)) — &,(w)|| < £ for all

n = ny. Let ns = max{n;, ny}, then we have

p(w)) =

[Si(w, p(w)) = pO)II < [1S:0w, p(w)) = Si(w, & (W) + (1810w, Eu(w))
= &I+ [1Sa(w) = p(w)]
<& (w) = W)l + [1Si(w, Su(w))

= &I+ 11Sa(w) = pOw)l
= (L+rw)[[&0w) = pw)
F1Si0w; €u(w) = Su(w)l

< (L+r(w))

€
— =,

2(1 +r(w) + 2
(3.38)

which implies that Si{(w, p(w)) = p(w) for all /€ {1, 2, ..., N}
and for all w € Q. Thus p € F =, (RF(T;) N RE(S,)). O

Theorem 3.4. Let E be a uniformly convex separable Banach
space and C be a nonempty closed convex subset of E. Let
{T;, Si-ie I =1{1,2, ..., N}} be 2N asymptotically nonexpan-
sive random mappings with sequences of measurable mappings
{ri,} C[1,00) such that > = (r;,(w) — 1) < o0, r;,(w) — 1 as
n—oo, forallweQandiel = {1, 2, ..., N}. Suppose that
F =Y, (RF(T;)) N RE(S;))#0. Let {f,,(n)} be the sequence
defined as in (1.6) with the additional assumption
S e < 00,30 18, < 0o and limsup,_eot, < 1. If one of
the families {T;: i € I} or {S;: i € I} satisfy the condition B for
all we Q. Then {,(w)} converges strongly to a common
random fixed point of {T;, Sz i = 1,2, ..., N}.

Proof. By Lemma 3.2, we have lim,_J||E,(w) — Ty(w,
Em)l=0,i=1,2,..., N. Suppose {T: i=1,2, ..., N}
satisfy the condition B, then

S (w), B)) < max {[I€,(w) = Ti(w, &, (w))l
= lim/(d(S,(w), F)) = 0.

Lemma 3.1, says that lim,_,..d(&,(w), F) exists and since f:
[0, 00) — [0, c0) is a nondecreasing function satisfying f{0) = 0,
fir) > 0 for all re (0, o), we obtain that lim,_, d(&,(w),
F) = 0 and hence the result follows from Theorem 3.3.

We can get the same result if {S;:7 = 1, 2, ..., N} satisfy the

condition B. O

Theorem 3.5. Let E be a uniformly convex separable Banach
space and C be a nonempty closed convex subset of E. Let
{T;, Si-iel=1{1,2,..., N}} be 2N asymptotically nonexpan-
sive random mappings with sequences of measurable mappings
{ri,} C[1,00) such that > = (r;,(w) — 1) < o0, r;,(w) — 1 as
n—oo, for all we Q and i€ {l, 2, ..., N}. Suppose that
F=Y,(RF(T;)) N RF(S;))#0. Let {&,(w)} be the sequence
defined as in (1.6) with the additional assumption
D e < 00,300 10, < 0o and limsup, o0, < 1. If one of
{Ti:i=1,2, ..., N} is semicompact. Then {&,(w)} converge
strongly to a common random fixed point of {T;, S;: i =1, 2,
., N}.

Proof. Suppose that 7, is semicompact. By Lemma 3.2, we
have 1imn~>oo‘|én(w) - T](W, éll(‘/v))H =0 and ]imn%oc”én(w)
— Si(w, &)l = 0, so there exists subsequence {¢, (w)} of
{&u(w)} such that {&, (w)} converge strongly to {{(w)} for all
w € Q, where {&(w)} is a measurable mapping from Q2 to C.
Again by Lemma 3.2, we have

1€0w) = Ti(w, SO = Tim I, (w) —

for all w € Q and for all / € I, and
10) = Sitw, &Qw))]| = lim &, (w) -

for all weQ and for all /el It follows that
¢ e F=Y,(RF(T,) N RF(S;)). From Lemma 3.1, we see that
|E,(w) — Ew)|| exists and since {&,(w)} has a subsequence
{&,(w)} such that {&, (w)} converge strongly to {{(w)} for
all we Q, then we have lim,_,.[|&.(w) — Ew)|| = 0 for all
w € Q and hence {&,(w)} converges strongly to a common
random fixed point of {7}, S; i =1,2,...,N}. O

Ty(w, &, (w)|l =0,

Si(w, &, (W)l =0,

Finally, we prove weak convergence of the iterative scheme
(1.6) for 2N asymptotically nonexpansive random mappings in
a uniformly convex separable Banach space satisfying Opial’s
condition.

Theorem 3.6. Let E be a uniformly convex separable Banach
space which satisfy Opial’s condition and C be a nonempty
closed convex subset of E. Let {T;, S;-iel={1l,2,..., N}} be
2N asymptotically nonexpansive random mappings with
sequences of measurable mappings {r;} C [1,00) such that
S (w) = 1) < o0, 1y, (W) — 1 as n — oo, for all w € Q and
i€{l, 2, ..., N}. Suppose that F = (X, (RF(T;) N RF(S;))#0.
Let {&,(w)} be the sequence defined as in (1.6) with the
additional assumption Y7y, < 00, Y w010, < oo and lim-
SUPy_soctty < 1. Then {&,(w)} converges weakly to a common
random fixed point of {T;, Sz i =1, 2, ..., N}

Proof. From Lemma 3.2, we have that lim,_.|[&,(w) — Ty(w,
&) = 0 and lim (W) — Siw, Ew))| =0 for I =1,
2, ..., N. Since E is uniformly convex and {&,(w)} is bounded,
we may assume that &,(w) — &(w) weakly as n — oo, without
loss of generality. Hence, by Lemma 2.8, we have
E(w) € F= (Y, (RF(T)) N RF(S;)). Suppose that subse-
quences &, (w) and &, (w) of &,(w) converge weakly to u(w)
and v(w), respectively. By Lemma 2.8, we have
u(w), v(w) € F= (Y, (RF(T;) N RF(S;)), and by Lemma 3.1,
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lim,,_, oo || (W) — u(w)|| and lim,,_, o||E,(w) — v(w)|| exist. It fol-
lows from Lemma 2.9, that u(w) = v(w). Therefore, {&,(w)}
converges weakly to a common fixed point of {7}, S;: i =1,
2,.., N}y O

Remark 3.7

(1) Our results improve and extend the corresponding
results in [25] to the case of two finite families of asymp-
totically nonexpansive random mappings.

(2) Our results also improve and extend the results in [17] to
the case of two finite families of implicit random itera-
tive process.
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