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Abstract
A multiset is a collection of objects in which repetition of elements is essential. This
paper is an attempt to generalize the notion of filters in the multiset context. In
addition, many deviations between multiset filters and ordinary filters have been
presented. The relation between multiset filter and multiset ideal has been mentioned.
Many properties of multiset filters, multiset ultrafilters, and convergence of multiset
filters have been introduced. Also, the notions of basis and subbasis have been
mentioned in the multiset context. Finally, several examples have been studied.
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Introduction
In classical set theory, a set is a well-defined collection of distinct objects. If repeated
occurrences of any object is allowed in a set, then a mathematical structure is known as
multiset (mset [1] or bag [2], for short). Thus, an mset differs from a set in the sense
that each element has a multiplicity and a natural number not necessarily one that indi-
cates how many times it is a member of the mset. One of the most natural and simplest
examples is the mset of prime factors of a positive integer n. The number 400 has the
factorization 400 = 2452 which gives the mset {2, 2, 2, 2, 5, 5}. Also, the cubic equation
x3 − 5x2 + 3x + 9 = 0 has roots 3, 3, and − 1 which give the mset {3, 3,− 1}.
Classical set theory is a basic concept to represent various situations in mathematical

notation where repeated occurrences of elements are not allowed. But in various cir-
cumstances, repetition of elements becomes mandatory to the system. For example, in a
graph with loops, there are many hydrogen atoms, many water molecules, many strands
of identical DNA, etc. This leads to effectively three possible relations between any two
physical objects: they are different, they are the same but separate, or they are coinciding
and identical. For example, ammonia NH3 has with three hydrogen atoms, say H, H, and
H, and one nitrogen atom, sayN. Clearly,H andN are different. HoweverH,H, andH are
the same but separate, while H and H are coinciding and identical. There are many other
examples, for instance, carbon dioxide CO2, sulfuric acid H2SO4, and water H2O.
This paper is an attempt to explore the theoretical aspects of msets by extending

the notions of filters, ultrafilters, and convergence of filters to the mset context. The
“Preliminaries and basic definitions” section has a collection of all basic definitions and
notions for further study. In the “On multiset topologies” section, examples of new mset
topologies are introduced. In the “Filters in multiset context” section, the notion of mset
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filters has been introduced. Further, many properties of this notion have been mentioned.
In the “Basis and subbasis in multiset filters” section, basis and subbasis of mset filters
are mentioned. In the “Multiset ultrafilter” section, the concept of mset ultrafilter has
been presented and several examples and properties of this notion are introduced. In the
“Convergence of multiset filters” section, convergence of mset filters and its properties
are studied.

Preliminaries and basic definitions
In this section, a brief survey of the notion of msets as introduced by Yager [2], Blizard
[1, 3], and Jena et al. [4] have been collected. Furthermore, the different types of collec-
tions ofmsets, the basic definitions, and notions of relations and functions inmset context
are introduced by Girish and John [5–8]. Other important research about multiset theory
and its applications can be found in [9–16].

Definition 1 A collection of elements containing duplicates is called an mset. Formally,
if X is a set of elements, an mset M drawn from the set X is represented by a function count
M or CM defined as CM : X → N where N represents the set of nonnegative integers.

Let M be an mset from the set X = {x1, x2, . . . , xn} with x appearing n times in
M. It is denoted by x ∈n M. The mset M drawn from the set X is denoted by M =
{k1/x1, k2/x2, . . . , kn/xn} whereM is an mset with x1 appearing k1 times, x2 appearing k2
times, and so on. In Definition 10, CM(x) is the number of occurrences of the element x
in the msetM. However, those elements which are not included in the msetM have zero
count. An msetM is a set if CM(x) = 0 or 1 ∀ x ∈ X.

Definition 2 A domain X is defined as a set of elements from which msets are con-
structed. The mset space [X]m is the set of all msets whose elements are in X such that no
element in the mset occurs more than m times. The set [X]∞ is the set of all msets over a
domain X such that there is no limit on the number of occurrences of an element in anmset.

LetM,N ∈[X]m. Then, the following are defined:
(1) M is a submset of N denoted by (M ⊆ N) if CM(x) ≤ CN (x) ∀ x ∈ X.
(2) M = N ifM ⊆ N and N ⊆ M.
(3) M is a proper submset of N denoted by (M ⊂ N) if CM(x) ≤ CN (x) ∀ x ∈ X and

there exists at least one element x ∈ X such that CM(x) < CN (x).
(4) P = M ∪ N if CP(x) = max{CM(x),CN (x)} for all x ∈ X.
(5) P = M ∩ N if CP(x) = min{CM(x),CN (x)} for all x ∈ X.
(6) Addition of M and N results is a new mset P = M ⊕ N such that

CP(x) = min{CM(x) + CN (x),m} for all x ∈ X.
(7) Subtraction of M and N results in a new mset P = M � N such that

CP(x) = max{CM(x) − CN (x), 0} for all x ∈ X, where ⊕ and � represent mset
addition and mset subtraction, respectively.

(8) An mset M is empty if CM(x) = 0 ∀ x ∈ X.
(9) The support set of M denoted byM∗ is a subset of X and

M∗ = {x ∈ X : CM(x) > 0}; that is,M∗ is an ordinary set and it is also called root
set.
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(10) The cardinality of an mset M drawn from a set X is Card(M) = ∑

x∈X
CM(x).

(11) M and N are said to be equivalent if and only if Card(M) = Card(N).

Definition 3 Let M ∈[X]m and N ⊆ M. Then, the complement Nc of N in [X]m is an
element of [X]m such that Nc = M � N.

Definition 4 A submset N of M is a whole submset of M with each element in N having
full multiplicity as in M; that is, CN (x) = CM(x) for every x ∈ N∗.

Definition 5 A submset N ofM is a partial whole submset of Mwith at least one element
in N having full multiplicity as in M. i.e., CN (x) = CM(x) for some x ∈ N∗.

Definition 6 A submset N of M is a full submset of M if each element in M is an element
in N with the same or lesser non-zero multiplicity as in M, i.e., M∗ = N∗ with CN (x) ≤
CM(x) for every x ∈ N∗.

Definition 7 Let M ∈[X]m. The power whole mset of M denoted by PW (M) is defined
as the set of all whole submsets of M.

Definition 8 Let M ∈[X]m. The power full msets of M, PF(M), is defined as the set of all
full submsets of M. The cardinality of PF(M) is the product of the counts of the elements
in M.

Definition 9 Let M ∈[X]m. The power mset P(M) of M is the set of all submsets of M.
We have N ∈ P(M) if and only if N ⊆ M. If N = φ, then N ∈1 P(M), and if N �= φ, then

N ∈k P(M) such that k = ∏
z

(|[M]z |
|[N]z |

)

, the product
∏

z is taken over distinct elements of

the mset N and |[M]z | = m iff z ∈m M, |[N]z | = n iff z ∈n N, then(|[M]z |
|[N]z |

)

=
(
m
n

)

= m!
n!(m−n)! .

The power set of an mset is the support set of the power mset and is denoted by P∗(M).
The following theorem shows the cardinality of the power set of an mset.

Definition 10 Let M1 and M2 be two msets drawn from a set X, then the Cartesian
product of M1 and M2 is defined as M1 × M2 = {(m/x, n/y)/mn : x ∈m M1, y ∈n M2}.
Here, the entry (m/x, n/y)/mn in M1 × M2 denotes x is repeated m times in M1, y is

repeated n times in M2, and the pair (x, y) is repeated mn times in M1 × M2.

Definition 11 A submset R of M1 × M2 is said to be an mset relation on M if every
member (m/x, n/y) of R has a count, the product of C1(x, y) and C2(x, y). m/x related to
n/y is denoted by (m/x)R(n/y). The domain of the mset relation R on M is defined as
follows:

Dom(R) = {x ∈r M : ∃ y ∈s M such that (r/x)R(s/y)}, where

CDom (R)(x) = Sup{C1(x, y) : x ∈r M}.

Also, the range of the mset relation R on M is defined as follows:
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Ran(R) = {y ∈s M : ∃ x ∈r M such that (r/x)R(s/y)}, where

CRan (R)(y) = Sup{C2(x, y) : y ∈s M}.

Definition 12 An mset relation f is called an mset function if for every element m/x in
Dom f, there is exactly one n/y in Ran f such that (m/x, n/y) is in f with the pair occurring
as the product of C1(x, y) and C2(x, y).

Definition 13 An mset function f is one-one (injective) if no two elements in Dom f have
the same image under f with C1(x, y) ≤ C2(x, y) for all (x, y) in f, i.e., if m1/x1,m2/x2 in
Dom f and m1/x1 �= m2/x2 implies that f (m1/x1) �= f (m2/x2). Thus, the one-one mset
function is the mapping of the distinct elements of the domain to the distinct elements of
the range.

Definition 14 An mset function f is onto (surjective) if Ran f is equal to co-dom f and
C1(x, y) ≥ C2(x, y) for all (x, y) in f. It may be noted that images of distinct elements of the
domain need not be distinct elements of the range.

Definition 15 Let M be an mset drawn from a set X and τ ⊆ P∗(M). Then, τ is called
an mset topology if τ satisfies the following properties:

(1) φ and M are in τ .
(2) The union of the elements of any subcollection of τ is in τ .
(3) The intersection of the elements of any finite subcollection of τ is in τ .

An mset topological space is an ordered pair (M, τ) consisting of an mset M and an
mset topology τ ⊆ P∗(M) onM. Note that τ is an ordinary set whose elements are msets
and the mset topology is abbreviated as an M-topology. Also, a submset U of M is an
open mset of M if U belongs to the collection τ . Moreover, a submset N of M is closed
msetM � N is open mset.

Definition 16 Let (M, τ) be an M-topological space and N be a submset of M. Then, the
interior of N is defined as the mset union of all openmsets contained in N and is denoted by
No; that is, No = ∪{V ⊆ M : V is an open mset and V ⊆ N} and CNo(x) = max{CV (x) :
V ⊆ N}.

Definition 17 Let (M, τ) be an M-topological space and N be a submset of M. Then,
the closure of N is defined as the mset intersection of all closed msets containing N and is
denoted by N; that is, N = ∩{K ⊆ M : K is a closed mset and N ⊆ K} and CN (x) =
min{CK (x) : N ⊆ K}.

Definition 18 An mset M is called simple if all its elements are the same. For example,
{k/x}. In addition, k/x is called simple multipoint (for short mpoint).

Definition 19 Let (M, τ) be a M-topological space, x ∈k M, and N ⊆ M. Then, N is
said to be a neighborhood of k/x if there is an open mset V in τ such that x ∈k V and
CV (y) ≤ CN (y) for all y �= x that is, Nk/x = {N ⊆ M : ∃ V ∈ τ such that x ∈k

V and CV (y) ≤ CN (y) for all y �= x} is the collection of all τ -neighborhood of k/x.
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Onmultiset topologies
Theorem 1 Let f : M1 −→ M2 be an mset function, V ⊆ M2 and N ⊆ M1. Then:

(1) f −1(M2 � V ) = f −1(M2) � f −1(V ).
(2) N ⊆ f −1(f (N)), equality holds if f is one-one.
(3) f (f −1(V )) ⊆ V , equality holds if f is onto.

Proof (1) Let x ∈k f −1(M2 � V ). Hence f (k/x) ∈ (M2 � V ). So f (k/x) �∈ V ; that is,
k/x ∈ f −1(M2) and k/x �∈ f −1(V ). Thus, f −1(M2 � V ) ⊆ f −1(M2) � f −1(V ).
Also, let x ∈k f −1(M2) � f −1(V ). It follows that f (k/x) ∈ M2 and f (k/x) �∈ V .
Consequently, x ∈k f −1(M2 � V ). Therefore, f −1(M2) � f −1(V ) ⊆ f −1(M2 � V ).
Hence, f −1(M2 � V ) = f −1(M2) � f −1(V ).

(2) Let x ∈k N . Hence, f (k/x) ∈ f (N). So x ∈k f −1(f (N)), and hence, N ⊆ f −1(f (N)).
Now, let f be one-one and x ∈k f −1(f (N)). It follows that f (k/x) ∈ f (N). So there
exists y ∈r N such that f (k/x) = f (r/y). Since f is one-one, then k/x = r/y.
Therefore, x ∈k N . Thus, if f is one-one, then f −1(f (N)) ⊆ N .

(3) Let x ∈k f (f −1(V )). It follows that there exists y ∈r f −1(V ) such that
f (k/x) = f (r/y) and f (r/y) ∈ V . So f (k/x) ∈ V . Thus, f (f −1(V )) ⊆ V . Also, if f is
onto and x ∈k V . Hence, f −1(k/x) ∈ f −1(V ), f is onto, so k/x ∈ f (f −1(V )).
Therefore, if f is onto, then V ⊆ f (f −1(V )).

Theorem 2 Let N1 and N2 be submsets of an mset M. Then:

(1) If C(N1∩N2)(x) = 0 for all x ∈ M∗, then CN1(x) ≤ C(M�N2)(x) for all x ∈ M∗.
(2) CN1(x) ≤ CN2(x) ⇔ C(M�N2)(x) ≤ C(M�N1)(x) for all x ∈ M∗.

Proof (1) If C(N1∩N2)(x) = 0 for all x ∈ M∗. Since
C(N1∩N2)(x) = min{CN1(x),CN2(x)}, then CN1(x) = 0 or CN2(x) = 0 for all
x ∈ M∗. It follows that CN1(x) + CN2(x) ≤ CM(x) for all x ∈ M∗, and hence,
CN1(x) ≤ CM(x) − CN2(x) = C(M�N2)(x) for all x ∈ M∗, then the result.

(2) CN1(x) ≤ CN2(x) ⇔ −CN2(x) ≤ −CN1(x) ⇔ CM(x) − CN2(x) ≤
CM(x) − CN1(x) ⇔ C(M�N2)(x) ≤ C(M�N1)(x) for all x ∈ M∗.

The following example shows that the converse of Theorem 2 is not true in general.

Example 1 Let M = {2/a, 4/b, 5/c}, N1 = {1/a, 1/b, 2/c}, and N2 = {1/a, 1/b}. Hence,
M � N2 = {1/a, 3/b, 5/c}. It is clear that N1 ⊆ M � N2 but N1 ∩ N2 = {1/a, 1/b}.

The following example shows that N1 � N2 �= N1 ∩ (M � N2) in general.

Example 2 LetM = {3/x, 4/y}, N1 = {2/x, 3/y}, and N2 = {1/x, 2/y}. Hence, M�N2 =
{2/x, 2/y}, N1 � N2 = {1/x, 1/y}, and N1 ∩ (M � N2) = {2/x, 2/y}.

Definition 20 Let X be an infinite set. Then, M = {kα/xα : α ∈ �} be an infi-
nite mset drawn from X. That is, the infinite mset M drawn from X is denoted by M =
{k1/x1, k2/x2, k3/x3, . . . }.
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Notation 1 The mset space [X]m∞ is the set of all infinite msets whose elements are in X
such that no element in the mset occurs more than m times.

It may be noted that the following examples of mset topologies are not tackled before.

Example 3 Let M ∈[X]m∞ and {k0/x0} be a simple submset of M. Then, the collection
τ(k0/x0) = {V ⊆ M : CV (x0) ≥ k0} ∪ {∅} is an M-topology on M called the particular point
M-topology.

Example 4 Let M ∈[X]m∞ and {k0/x0} be a simple submset of M. Then, the collection
τk0/x0 = {V ⊆ M : CV (x0) < k0} ∪ {M} is an M-topology on M called the excluded point
M-topology.

Example 5 Let M ∈[X]m∞. Then, the collection τ = {V ⊆ M : M � V is finite } ∪ {∅} is
an M-topology on M called the cofinite M-topology.

Example 6 Let M ∈[X]m∞ and N be a submset of M. Then, the collection τ(N) = {V ⊆
M : CN (x) ≤ CV (x) for all x ∈ M∗} ∪ {∅} is an M-topology on M.

Example 7 Let M ∈[X]m∞ and N be a submset of M. Then, the collection τN = {V ⊆ M :
CN (x) ≥ CV (x) for all x ∈ M∗} ∪ {M} is an M-topology on M.

Filters in multiset context
Definition 21 An mset filter F on an mset M is a nonempty collection of nonempty

submsets of M with the properties:

(MF1) φ �∈ F ,
(MF2) If N1,N2 ∈ F , then N1 ∩ N2 ∈ F ,
(MF3) If N1 ∈ F and CN1(x) ≤ CN2(x) for all x ∈ M∗, then N2 ∈ F .

It should be noted that F is an ordinary set whose elements are msets and the multiset
filter is abbreviated as anM-filter.

Proposition 1 Let F be an M-filter on a nonempty mset M. Then:

(1) M ∈ F ,
(2) Finite intersections of members of F are in F .

Proof The result follows immediately from Definition 21.

Remark 1 It should be noted that the collection of complements of msets in a proper M-
filter is a nonempty collection closed under the operations of subsets and finite unions. Such
a collection is called M-ideal [17].

Example 8 PF(M) is an M-filter on M.

Example 9 P∗(M) is not an M-filter. For one thing, the empty set belongs to it. Secondly,
it contains the disjoint msets.
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Example 10 Let F = {M}. Then, F is an M-filter. This is the smallest M-filter one can
define on M and is called the indiscrete M-filter on M.

Example 11 Let x ∈k M and < k/x >= {N ⊆ M : k/x ∈ N}. Then, < k/x > is an
M-filter called the principle M-filter at < k/x >.

Example 12 More generally, let N be a nonempty submset of M and < N >= {G ⊆ M :
N ⊆ G}. Then, < N > is an M-filter called the principle M-filter at N. In addition to that,
the indiscrete M-filter is the principle M-filter at M.

Example 13 Let M be an infinite mset and F = {N ⊆ M : Ncis a finite}. Then, F is
called the cofinite M-filter on M.

Example 14 Let (M, τ) be anM-topological space and x ∈k M. Then,Nk/x is anM-filter
on M.

It should be noted that the M-filter may contain the submset and it is comple-
ment because the intersection between submset and its complement is not necessary
empty.

Example 15 Let M = {2/a, 3/b} and F = {M, {1/a}, {2/a}, {1/a, 1/b}, {1/a, 2/b},
{1/a, 3/b}, {2/a, 1/b}, {2/a, 2/b}}. It is clear that F is an M-filter and {1/a} and its
complement {1/a, 3/b} belong to F .

Definition 22 Let M be a nonempty mset and F1, F2 be two M-filters on M. Then, F1
is said to be coarser or smaller than F2, denoted by F1 ≤ F2, if F1 ⊆ F2, or alternatively
F2 is said to be finer or stronger than F1.

Theorem 3 Let M be an mset and {Fi}, i ∈ I be a nonempty family of M-filters on M.
Then, F = ∩i∈IFi is an M-filter on M.

Proof SinceM ∈ Fi for each i ∈ I, henceM ∈ ∩i∈IFi; that is,M ∈ F . Moreover, (MF1)

implies φ �∈ Fi for each i ∈ I. Therefore, F be a nonempty collection of a nonempty
submsets ofM. LetN1,N2 ∈ F , thenN1,N2 ∈ Fi for each i ∈ I. SinceFi is anM-filter for
each i ∈ I, hence (MF2) implies N1 ∩ N2 ∈ Fi for each i ∈ I. Thus, N1 ∩ N2 ∈ F . Now
let N1 ∈ F and CN1(x) ≤ CN2(x) for all x ∈ M∗. It follows that N1 ∈ Fi for each i ∈ I.
Hence ,(MF2) implies that N2 ∈ Fi for each i ∈ I. Therefore, N2 ∈ F , and hence, the
result follows.

The following example shows that the union of twoM-filters on a nonempty msetM is
not necessarily anM-filter onM.

Example 16 Let M = {3/a, 4/b, 2/c, 5/d}, F1 = {M, {3/a, 4/b, 2/c}}, and
F2 = {M, {3/a, 4/b, 5/d}}. Then, F1 ∪ F2 = {M, {3/a, 4/b, 2/c}, {3/a, 4/b, 5/d}}.
Although F1 and F2 are two M-filters on M, F1 ∪ F2 is not M-filter. Since
{3/a, 4/b, 2/c}, {3/a, 4/b, 5/d} ∈ F1 ∪ F2, but {3/a, 4/b, 2/c} ∩ {3/a, 4/b, 5/d} =
{3/a, 4/b} �∈ F1 ∪ F2.
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Basis and subbasis in multiset filters
Definition 23 Let B be a nonempty collection of a nonempty submsets of M. Then, B is

called an M-filter basis on M if

(MB1) φ �∈ B,
(MB2) If B1,B2 ∈ B, then there exists a B ∈ B such that CB(x) ≤ C(B1∩B2)(x) for all

x ∈ M∗.

Theorem 4 Let B be an M-filter basis on M, and F consists of all msets which are super
msets in B; that is, F = {N ⊆ M : ∀ x ∈ M∗ CN (x) ≥ CN1(x), for some N1 ∈ B}.Then, F
is an M-filter on M. Furthermore, it is the smallest M-filter which contains B. It is called
the M-filter generated by B.

Proof Since F consists of all msets which are super msets in B, hence every member of
B is also a member of F . Consequently, B ⊆ F and hence F �= φ. Since F contains all
submsets of M which contain a member of B and φ �∈ B, hence φ �∈ F . Thus, F satisfies
(MF1). To prove thatF satisfies (MF2), letN1,N2 ∈ F . Hence, for all x ∈ M∗,CN1(x) ≥
B1(x) and CN2(x) ≥ CB2(x) for some B1,B2 ∈ B. It follows that there exists B ∈ B such
that CB(x) ≤ C(B1∩B2)(x) for all x ∈ M∗ and hence C(N1∩N2)(x) ≥ C(B1∩B2)(x) ≥ CB(x) for
all x ∈ M∗. Consequently, N1 ∩N2 ∈ F . For (MF3), let N1 ∈ F and CN1(x) ≤ CN2(x) for
all x ∈ M∗. It follows that for all x ∈ M∗ CN1(x) ≥ CB(x) for some B ∈ B. Therefore, for
all x ∈ M∗ CN2(x) ≥ CN1(x) ≥ CB(x) for some B ∈ B. Thus, N2 ∈ F . Hence, F is an M-
filter onM. Now, let F1 be anM-filter which contains B such that F1 ≤ F . Let N ∈ F . It
follows that for all x ∈ M∗ CN (x) ≥ CN1(x), for some N1 ∈ B. This result, combined with
N1 ∈ F1 and (MF3), implies N ∈ F1. Hence, F ≤ F1. Therefore, F = F1. Thus, F is
the smallestM-filter which contains B.

Example 17 Every M-filter is trivially an M-filter basis of itself.

Example 18 B = {k/x} is an M-filter basis and generates the principle M-filter at k/x.

Example 19 B = {N} is an M-filter basis and generates the principle M-filter at N.

Example 20 LetM = {k1/x1, k2/x2, k3/x3, . . . , km/xn}. Then,B = {1/x1, 1/x2, 1/x3, . . . ,
1/xn} is an M-filter basis and generates PF(M).

Theorem 5 Let M be a nonempty mset, B an M-filter basis which generates F1, and B∗

an M-filter basis which generates F2. Then, F1 ≤ F2 if and only if every member of B
contains a member of B∗.

Proof Suppose F1 ≤ F2 and B ∈ B. Since B is an M-filter basis which generates F1,
then B ∈ F1. Since F1 ≤ F2, thus B ∈ F2, which implies that there exists B∗ ∈ B∗ such
that CB∗(x) ≤ CB(x) for all x ∈ M∗. Therefore, every member of B contains a member
of B∗. On the other hand, let every member of B contain a member of B∗ and F ∈ F1.
Since B is an M-filter basis which generates F1, it follows that there exists B ∈ B such
that CB(x) ≤ CF(x) for all x ∈ M∗. From the assumption, there exists B∗ ∈ B∗ such that
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CB∗(x) ≤ CB(x) ≤ CF(x) for all x ∈ M∗. This result, combined with B∗ is anM-filter basis
which generates F2, implies F ∈ F2. Consequently, F1 ≤ F2.

Definition 24 The two M-filter basis (M-filter subbasis) are F-equivalent if they
generate the same M-filter.

Theorem 6 Let B and B∗ be an M-filter basis on a nonempty mset M. Then, B and B∗

are equivalent if and only if every member ofB contains a member ofB∗ and every member
of B∗ contains a member of B.

Proof The result follows immediately from Theorem 4.

Theorem 7 Let M1 and M2 be two nonempty msets drawn from X and Y, respectively,
f : M1 → M2 be an mset function, B be an M-filter basis on M1, and B∗ be an M-filter
basis on M2. Then:

(1) K1 = {f (B) : B ∈ B} is an M-filter basis onM2.
(2) If every member of B∗ intersects f (M1), then K2 = {f −1(B∗) : B∗ ∈ B∗} is an

M-filter basis onM1.

Proof (1) Since B is an M-filter basis onM1. It follows that B �= φ. So, K1 �= φ. For
(MB1), since φ �∈ B, hence φ �∈ K1. To prove (MB2), let f (B1), f (B2) ∈ B such
that B1,B2 ∈ B. Since B is an M-filter basis onM1, it follows that there exists
B ∈ B such that CB(x) ≤ C(B1∩B2)(x) for all x ∈ M∗. Thus,
Cf (B)(y) ≤ Cf (B1∩B2)(y) ≤ Cf (B1)∩f (B2)(y) for all y ∈ Y . Therefore, there exists
f (B) ∈ K1 such that Cf (B)(y) ≤ Cf (B1)∩f (B2)(y) for all y ∈ Y . Hence, K1 is an
M-filter basis onM2.

(2) The proof is similar to part (1).

Multiset ultrafilter
Definition 25 An M-filter F is called an mset ultrafilter on M, M-ultrafilter, if there

is no strictly finer M-filter than F . That is, if F∗ is an M-ultrafilter and F∗ ≥ F , then
F∗ = F .

Example 21 Let M = {2/a, 3/b}. Then, F1 = {M, {1/a}, {2/a}, {1/a, 1/b},
{1/a, 2/b}, {1/a, 3/b}, {2/a, 1/b}, {2/a, 2/b}} and F2 = {M, {1/b}, {2/b}, {3/b}, {1/a, 1/b},
{2/a, 1/b}, {1/a, 2/b}, {2/a, 2/b}, {1/a, 3/b}, {2/a, 3/b}} are M-ultrafilters on M.

Theorem 8 Let M be a nonempty mset. An M-filter F is an M-ultrafilter if it contains
all submsets of M which intersects every member of F .

Proof Let F be an M-ultrafilter on M and N be a submset of M such that F ∩ N �= φ

for all F ∈ F . Now, we want to show that the collection F∗ = {F∗ : ∀ x ∈ M∗ CF∗(x) ≥
C(N∩F)(x) for some F ∈ F} is an M-filter on M. For (MF1), since C(N∩F)(x) ≥ Cφ(x)
for all x ∈ M∗. Thus, φ �∈ F∗. For (MF2), let F∗

1 , F∗
2 ∈ F∗. Hence, for all x ∈ M∗

CF∗
1
(x) ≥ C(N∩F1)(x) and CF∗

2
(x) ≥ C(N∩F2)(x) for some F1, F2 ∈ F . It follows that for
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all x ∈ M∗ C(F∗
1∩F∗

2 )(x) ≥ C[N∩(F1∩F2)](x). Therefore, F∗
1 ∩ F∗

2 ∈ F∗. To prove that F∗

satisfies (MF3), let F∗
1 ∈ F∗ and CF∗

1
(x) ≤ CF∗

2
(x) for all x ∈ M∗. It follows that for all

x ∈ M∗ CF∗
2
(x) ≥ CF∗

1
(x) ≥ C(N∩F)(x) for some F ∈ F . Consequently, F∗

2 ∈ F∗. Hence,
F∗ is an M-filter on M. Since CF(x) ≥ C(N∩F)(x) for all x ∈ M∗, then F∗ ≥ F . Since
F is an M-ultrafilter on M, it follows that F∗ = F . Moreover, N ∈ F as for all x ∈ M∗

CN (x) ≥ C(N∩F)(x).

Theorem 9 Let F be an M-ultrafilter on a nonempty mset M. Then, for each N ⊆ M,
either N or Nc ∈ F .

Proof Let F be an M-ultrafilter on M and N ⊆ M. If there exists F ∈ F such that
C(F∩N)(x) = 0 for all x ∈ M∗, then Theorem 2 part (1) implies CF(x) ≤ CNc(x) for all
x ∈ M∗. Thus, Nc ∈ F . Otherwise, C(F∩N)(x) > 0 for all x ∈ M∗. Thus, Theorem 8
implies N ∈ F , then the result.

The following example shows that the converse of Theorem 9 is incorrect in general.

Example 22 Let M = {2/a, 3/b}. Then, F = {M, {2/b}, {3/b}, {1/a, 2/b}, {1/a, 3/b},
{2/a, 2/b}, {2/a, 1/b}, {2/a, 2/b}} is an M-filter on M. Although for each N ⊆ M,
either N or Nc ∈ F , F is not M-ultrafilter. As F∗ = {M, {1/b}, {2/b}, {3/b}, {1/a, 1/b},
{1/a, 2/b}, {1/a, 3/b}, {2/a, 1/b}, {2/a, 2/b}, {2/a, 3/b}} is finer than F .

Theorem 10 Let F be an M-ultrafilter on a nonempty mset M. Then, for each two
nonempty submsets N1,N2 of M such that N1 ∪ N2 ∈ F , either N1 ∈ F or N2 ∈ F .

Proof Assume N1 ∪ N2 ∈ F and N1 ∈ F and N2 ∈ F . Define F∗ = {G ⊆ M :
G ∪ N2 ∈ F}. Now, we want to prove that F∗ is an M-filter on M. Since N1 ∪ N2 ∈ F ,
then N1 ∈ F∗. Hence, F∗ �= φ. For (MF1), since φ ∪ N2 = N2 �∈ F∗, it follows that
φ �∈ F∗. To prove that F∗ satisfies (MF2), let G1,G2 ∈ F∗. Hence, G1 ∪ N2 ∈ F
and G2 ∪ N2 ∈ F . Thus, (G1 ∪ N2) ∩ (G2 ∪ N2) ∈ F . Therefore, (G1 ∩ G2) ∪ N2 ∈
F . Hence, G1 ∩ G2 ∈ F . For (MF3), let G1 ∈ F∗ and CG1(x) ≤ CG2(x) for all x ∈
M∗. Hence, G1 ∪ N2 ∈ F and C(G1∪N2)(x) ≤ C(G2∪N2)(x) for all x ∈ M∗. Thus, G2 ∪
N2 ∈ F . Hence, G2 ∈ F∗. Consequently, F∗ is an M-filter on M. Let F ∈ F . Since
CF(x) ≤ C(F∪N2)(x) for all x ∈ M∗, then (MF3) implies F ∪ N2 ∈ F . Therefore, F ∈ F∗;
that is, F ≤ F∗. But F is an M-ultrafilter. Thus, there is a contradiction. Therefore,
N1 ∈ F or N2 ∈ F .

The following example shows that the converse of Theorem 10 is wrong in general.

Example 23 Let M = {3/a, 4/b} and F = {M, {3/a}, {3/a, 1/b}, {3/a, 2/b}, {3/a, 3/b}}
be an M-filter on M. Although for all N1,N2 ⊆ M such that N1 ∪ N2 ∈
F , either N1 ∈ F or N2 ∈ F , F is not M-ultrafilter. As F∗ =
{M, {3/a}, {4/b}, {3/a, 1/b}, {3/a, 2/b}, {3/a, 3/b}, {1/a, 4/b}, {2/a, 4/b}} is finer than F .

Convergence of multiset filters
Definition 26 Let (M, τ) be an M-topological space and F be an M-filter on M. F is

said to τ -converge to k/x (written F τ−→ k/x) ifNk/x ⊆ F ; that is, if F ≥ Nk/x.
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Example 24 For each mpoint, k/x,Nk/x converges to k/x.

Example 25 Let τ be the cofinite M-topology on M and F be the cofinite M-filter. Then,
F converges to each mpoint.

Example 26 Let (M, τ) be the indiscrete M- topology and F any M-filter on M; then, F
converges to each mpoint.

Theorem 11 Let (M, τ) be an M-topological space and F and F∗ be M-filters on M
such that F∗ ≥ F . If F τ−→ k/x, then F∗ τ−→ k/x.

Proof Since F τ−→ k/x and F∗ ≥ F , it follows that F∗ ≥ F ≥ Nk/x. Hence,
Definition 26 implies that F∗ τ−→ k/x.

Theorem 12 Let (M, τ1) and (M, τ2) be two M-topological spaces such that τ2 ≤ τ1 and
F be an M-filter on M such that F τ1−→ k/x. Then, F τ2−→ k/x.

Proof Since τ2 ≤ τ1 and F τ1−→ k/x, it follows that N τ2
k/x ≤ N τ1

k/x and N τ1
k/x ≤ F . Thus,

N τ2
k/x ≤ N τ1

k/x ≤ F . Hence, Definition 26 implies F τ2−→ k/x, then the result.

Theorem 13 Let (M, τ) be an M-topological space, then the following assertions are
equivalent:

(1) F τ−→ k/x,
(2) Every M-ultrafilter containing F converges to k/x.

Proof On the one hand, let F∗ be an M-ultrafilter containing F ; that is, F ≤ F∗. This
result, combined with assertion (1), impliesNk/x ≤ F ≤ F∗. Thus, Definition 26 implies
F∗ τ−→ k/x. Hence, (1) implies (2). On the other hand, (2) implies thatNk/x is contained
in every M-ultrafilter containing F . Hence, Nk/x is contained in the intersection of all
M-ultrafilter containing F . This result, combined with F is the intersection of all M-
ultrafilter containing F , impliesNk/x ≤ F . Then, F τ−→ k/x. Hence, (2) implies (1).

Theorem 14 Let (M, τ) be an M-topological space and N be a nonempty submset of M;
then, the following assertions are equivalent:

(1) N ∈ τ ,
(2) If F τ−→ k/x such that x ∈k N , then N ∈ F .

Proof The first direction is a direct consequence of Definition 26 and assertion (1). On
the other hand, let x ∈m N . Then Example 24 shows that Nm/x

τ−→ m/x. Thus, asser-
tion (2) implies that N ∈ Nm/x; that is, N is a neighborhood of m/x. Hence, N is a
neighborhood for every x ∈k N . Thus, N ∈ τ ; that is, (2) implies (1).
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