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Abstract

In this study, we discussed the Bayesian property of unknown parameter and reliability
characteristic of the Shanker distribution. The maximum likelihood estimate is
calculated. The approximate confidence interval of the unknown parameter is
constructed based on the asymptotic normality of maximum likelihood estimator. Two
bootstrap confidence intervals for the unknown parameter are also computed.
Bayesian estimates of parameter and reliability characteristic against squared error loss
function are obtained. Lindley’s approximation and Metropolis-Hastings algorithm are
applied to obtain the Bayes estimates. In consequence, we also construct the highest
posterior density intervals. A numerical comparison is also made to compare different
methods through a Monte Carlo simulation study. Finally, two real data sets are also
analyzed using the proposed methods.
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Introduction
In the literature, a continuous one-parameter distribution named the “Shanker distribu-
tion” has its origin in the papers by Shanker [1]. Shanker distribution has been found
useful for modeling lifetime data from engineering and medical science. The author
studied its mathematical and statistical properties. He discussed its shape, moments,
skewness, kurtosis, and also its reliability characteristics. The author also obtained the
Bayesian estimation of the unknown parameter and applications for modeling lifetime
data from engineering and biomedical science.
The Shanker distribution with parameter θ has the probability density function (PDF)

and cumulative distribution function (CDF), respectively,

fX(x) = θ2

(θ2 + 1)
(θ + x) e−θ x , x > 0, θ > 0, (1)

FX(x) = 1 − (θ2 + θ x + 1)
(θ2 + 1)

e−θ x , x > 0. (2)

This distribution is the mixture of the exponential (θ) and gamma (2, θ) with their
mixing proportions θ2

θ2+1 and 1
θ2+1 respectively.

Then, the corresponding reliability function, hazard function, and mean residual life
function of X are given, respectively, by
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R(t) =
(
θ2 + θ t + 1

)

(θ2 + 1)
e−θ t , t > 0, (3)

h(t) = θ2(θ + t)
(
θ2 + θ t + 1

) , t > 0. (4)

m(t) =
(
θ2 + θ t + 2

)

θ
(
θ2 + θ t + 1

) , t > 0. (5)

In recent years, several researchers have investigated the inference problems for
Shanker distribution. In the literature, Shanker distribution has its origin in the papers
by Shanker [1]. He discussed statistical properties of Shanker distribution. In this paper,
the author discussed some inferential issues also. Three real-life data sets are provided
to illustrate its exibility and potentiality over the lindley and exponential distribution.
Shanker and Fesshay [2] studied themodeling of lifetime data using one-parameter Akash,
Shanker, Lindley, and exponential distributions.
Recently, many authors consider Bayesian estimation for univariate distributions. Ras-

togi and Merovci [3] detailed the study about the Bayesian estimation for parameters and
reliability characteristics of the Weibull Rayleigh distribution. Chandrakant et al. [4] dis-
cussed various inference properties of a Weibull inverse exponential distribution. The
authors estimated the unknown parameters using classical and Bayesian techniques. Two
real data sets are analyzed in support of the proposed estimation.
We obtain the different classical and Bayesian point estimators of unknown parame-

ter using maximum likelihood and Bayesian methods of estimation. The Bayes estimates
of unknown parameter are derived under the squared error loss function. We obtain
the interval estimation. The approximate and two bootstrap confidence intervals (CIs)
are derived. The highest posterior density (HPD) interval is considered as well. These
point and interval estimators are treated as an important problem in many practical
applications as well as financial, industrial, agricultural, and reliability experiments.
The layout of the paper is as follows: In “The maximum likelihood estimation” section,

the maximum likelihood estimate(MLE) of the unknown parameter is obtained. The
approximate and two bootstrap (CIs) are derived in the “Confidence intervals” section. In
“The Bayesian estimation” section, the Bayes estimates relative to square error loss func-
tion and HPD interval are considered. The Monte Carlo simulation results are presented
in the “Numerical comparison” section. The “Data analysis” section provided the illus-
tration of the proposed procedure by using a real-life data. Eventually, the conclusion is
inserted in the “Conclusions” section.

Themaximum likelihood estimation
Suppose that X1,X2, . . . ,Xn is a random sample of n-independent units obtained from
a Shanker distribution as defined in (1). The likelihood of θ for the model (1) can be
described as

L(θ) ∝ θ2 n e−θ s

(θ2 + 1)n
n∏

i=1
(θ + xi) (6)

where s = ∑n
i=1 xi. The logarithm of the likelihood (6) is

log L(θ) ∝ 2 n log θ − n log
(
θ2 + 1

) − θ s +
n∑

i=1
log(θ + xi). (7)
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Making the differentiation of Eq. (7) with respect to θ and then equating them to zero,
we have, respectively,

d log L
dθ

= 2 n
θ

− 2 nθ

θ2 + 1
− s +

n∑

i=1

1
(θ + xi)

= 0. (8)

The MLE θ̂ of θ is a solution of Eq. (8). We observe that θ̂ can not be obtained in
closed form and have to solve Eq. (8) numerically to obtain the desired estimate. So, some
numerical technique, for instance, the Newton- Raphson and Broydan method, may be
used. We used the package “nleqslv" in (software) R to find the solution of the unknown
parameter θ .
Note that (8) can be written in the form:

θ = h(θ) (9)

where

h(θ) = 2 n
[

2 nθ

θ2 + 1
+ s −

n∑

i=1

1
(θ + xi)

]−1

We design a simple iterative scheme to solve the above Eq. (9) for θ . We can start with
an initial guess of θ , say θ(0) , then find θ(1) = h(θ(0)) and, proceeding in this way, obtain
θ(k) = h

(
θ(k−1)). Stop the iterative procedure, when

∣
∣θ(k) − θ(k−1)∣∣ < η, where η some

pre-assigned tolerance limit.
Finally, using the invariance property of the MLE, the MLEs of R(t), h(t), and m(t) ,

respectively, defined as R̂(t), ĥ(t), and m̂(t), are obtained as

R̂(t) = (θ̂2 + θ̂ t + 1)
(θ̂2 + 1)

e−θ̂ t , ĥ(t) = θ̂2(θ̂ + t)
(θ̂2 + θ̂ t + 1)

, and m(t) = (θ̂2 + θ̂ t + 2)
θ̂(θ̂2 + θ̂ t + 1)

t > 0.

In next section, we obtain asymptotic intervals of θ using asymptotic normality property
of MLEs.

Confidence intervals
Approximate CI

The asymptotic variance of θ̂ for Shanker distribution is given by Var(θ̂ ) =[ IX(θ̂)]−1

where I(θ̂) is the observed Fisher’s information which is given by I(θ̂) = −d2 log L
dθ2

∣∣
∣∣
θ=θ̂

.

Since the Shanker distribution belongs to one-parameter exponential family of distribu-
tions, therefore, the sampling distribution of (θ̂−θ)√

Var(θ̂)
can be approximated by a standard

normal distribution. The symmetric 100(1 − ξ)% approximate CI for the parameter θ is

then obtained by θ̂ ± z ξ
2

√
Var(θ̂), where 0 < ξ < 1 and z ξ

2
denotes the upper ξ

2 th per-
centile of the standard normal distribution. Using the simulation, we can estimate the
coverage probability

P

⎡

⎢
⎣

∣∣∣∣∣
∣∣

(θ̂ − θ)
√
Var(θ̂)

∣∣
∣∣∣∣∣
≤ z ξ

2

⎤

⎥
⎦ .

We construct some more CIs for the unknown parameter in the next subsection.
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Bootstrap CIs

We propose to use CIs based on the parametric bootstrap methods. It is known that
CIs with the asymptotic results do not implement very well for small samples. There are
three types of resampling plans: non-parametric, semi-parametric, and parametric. The
bootstrap techniques depend on these three resampling plans, see Efron [5]. We used
the parameteric bootstrap methods where the parametric model for the data is known
f
(
x; .

)
up to the unknown parameter θ , so that the bootstrap data are sampled from

f
(
x; θ̂

)
, where θ̂ is the MLE from the original data. Many studies dealt with percentile

bootstrap method (Boot-p) based on the idea of Efron and Tibshirani [6] and bootstrap-t
method (Boot-t) based on the idea of Hall [7] and Hall [8], such as Kundu and Joarder [9]
among others. Kundu and Joarder [9] proposed two parametric bootstrap confidence
intervals for the unknown parameter, say θ . The following procedures are followed to
obtain bootstrap samples for the two methods:
The following steps are required to construct CI using Boot-p method:
1. Draw sample X1,X2, . . . ,Xn from (1) and calculate the estimate θ̂ .
2. Next, draw a bootstrap sample

(
X∗
1 ,X∗

2 , . . . ,X∗
n
)
using θ̂ . Derive the updated

bootstrap estimate of θ , say θ̂∗, using this sample.
3. Repeat Step [2] B times.
4. Let F̂(x) = P(θ̂∗ ≤ x) be the cumulative distribution function of θ̂∗. Then, define

θ̂Boot−p(x) = F̂−1(x) for a given x. The approximate 100(1−ξ)% CI for θ is given by(
θ̂Boot−p

(
ξ
2

)
, θ̂Boot−p

(
1 − ξ

2

))
,

and the following steps are required to construct CI using Boot-t method:
1. Draw sample X1,X2, . . . ,Xn from (1) and obtain the estimate θ̂ .
2. Next, draw a bootstrap sample

(
X∗
1 ,X∗

2 , . . . ,X∗
n
)
using θ̂ . Then, derive the estimates

θ̂∗ and V̂ (θ̂∗).
3. Obtain the T∗ statistic defined as

T∗ = θ̂∗−θ̂√
V̂ (θ̂∗)

.
4. Repeat Step 2 B times.
5. Let F̂(x) = P(T∗ ≤ x) be the cumulative distribution function of T∗. Define

θ̂Boot−t(x) = θ̂ +
√
V̂ (θ̂∗)̂F−1(x) for a given x. The approximate 100(1 − ξ)% CI

for θ is given by(
θ̂Boot−t

(
ξ
2

)
, θ̂Boot−t

(
1 − ξ

2

))
.

The Bayes estimators of unknown parameter and reliability characteristics are obtained
in the next section.

The Bayesian estimation
The Bayesian inference procedures have been developed under the usual squared error
loss function (quadratic loss), which is symmetrical, and associates equal importance to
the losses due to overestimation and underestimation of equal magnitude. One may refer
to paper by Canfield [10] for detail exposition in this direction. The mathematical form of
squared loss function may simply be expressed as:

Squared error loss : Ls(υ , η) = (η − υ)2.

Suppose that X1,X2, . . . ,Xn is a complete sample drawn from the model (1). We assume
that θ is a prior distributed as gamma distribution denoted as G (a, b) where a > 0 and
b > 0 with corresponding probability density function written as
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π(θ) ∝ θa−1 e−b θ θ > 0, a > 0, b > 0. (10)

After a simple calculation, the posterior distribution of θ is obtained as

π(θ | x) ∝ θ2 n+a−1 e−θ (b+s)

(θ2 + 1)n
n∏

i=1
(θ + xi) , (11)

where x = (x1, x2, . . . , xn).
Now, the corresponding Bayes estimate of θ against the loss function Ls is obtained as

θ̃s = E[ θ | x ]= 1
k

∫ ∞

0

θ2 n+a

(θ2 + 1)n
e−θ (b+s)

n∏

i=1
(θ + xi) dθ ,

k =
∫ ∞

0

θ2 n+a−1

(θ2 + 1)n
e−θ (b+s)

n∏

i=1
(θ + xi) dθ .

Next, the Bayes estimates of R(t), h(t) and m(t) with respect to square error loss
function can be written, as

R̃s(t) = 1
k

∫ ∞

0

θ2 n+a−1 (θ2 + θ t + 1)
(θ2 + 1)(n+1) e−θ (b+s+t)

n∏

i=1
(θ + xi) dθ ,

h̃s(t) = 1
k

∫ ∞

0

θ2 n+a+1(θ + t)
(θ2 + θ t + 1)(θ2 + 1)n

e−θ (b+s)
n∏

i=1
(θ + xi) dθ ,

m̃s(t) = 1
k

∫ ∞

0

θ2 n+a−2 (θ2 + θ t + 2)
(θ2 + θ t + 1) (θ2 + 1)n

e−θ (b+s)
n∏

i=1
(θ + xi) dθ ,

It is clear that all the above Bayes estimators do not have simple closed forms. There-
fore, in next sections, we employ two popular approximation procedures to calculate the
approximate Bayes estimates of the parameter and reliability characteristic.

Lindley’s approximation

In the previous subsection, we obtained the Bayes estimates of θ under squared error loss
function. These estimates are of the form of the ratio of the two integrals. Lindley [11]
developed a procedure to approximate the ratio of the two integrals. In this subsection,
using this technique, we obtain the approximate Bayes estimates of θ under the stated loss
functions. For illustration, consider the ratio of integral I(x), where

I(x) =
∫
θ
u(θ) el(θ)+ρ(θ) dθ
∫
θ
el(θ)+ρ(θ) dθ

, (12)

where u(θ) is function of θ only and l(θ) is the log-likelihood and ρ(θ) = logπ(θ). Let θ̂

denote the MLE of θ . Applying Lindley’s approximation procedure, I(x) can be written as

I(x) = u(θ̂) + 0.5
[(
ûθθ + 2 ûθ ρ̂θ

)
σ̂θθ + ûθ σ̂ 2

θθ l̂θθθ

]
,

where uθθ denotes the second derivative of the function u(θ) with respect to θ , and ûθθ

represents the same expression evaluated at θ = θ̂ . All other quantities appearing in the
above expression of I(x) are interpreted as follows

l̂θθ0 = ∂2l
∂θ2

∣∣∣∣
θ=θ̂

= − 2 n
θ̂2

− 2 n (θ2 − 1)
(θ2 + 1)2

−
n∑

i=1

1
(θ̂ + xi)2

, σ̂θθ = − 1
l̂θθ

,

l̂θθθ = ∂3l
∂θ3

∣∣∣∣
θ=θ̂

= 4 n
θ̂3

+ 4 n θ (θ2 − 3)
(θ2 + 1)3

+
n∑

i=1

2
(θ̂ + xi)3

, ρ̂θ = (a − 1)
θ̂

− b.
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Now, to obtain the Bayes estimate of θ under the loss function Ls, we have

u(θ) = θ , uθ = 1, uθθ = 0, θ̃s = θ̂ + 0.5
[(
ûθθ + 2 ûθ ρ̂θ

)
σ̂θθ + ûθ σ̂ 2

θθ l̂θθθ

]
.

In a similar manner, we can derive the Bayes estimates of R(t), h(t), and m(t) with
respect to the square error loss functions.
In the next subsection, we use the Metropolis-Hastings (MH) algorithm and compute

some more estimates of unknown parameter. One may refer to Metropolis et al. [12] and
Hastings [13] for various applications of this method.

Metropolis-Hastings algorithm

We generate samples from the given posterior distribution using the normal as proposal
distribution for θ . We need the following procedure to generate posterior samples using
the proposed algorithm.
Step 1: Choose an initial guess of θ and call it θ0.
Step 2: Generate θ ′ using the proposal N

(
θn−1, σ 2) distribution.

Step 3: Compute h = π(θ ′|x)
π(θn−1|x) .

Step 4: Then, generate a sample u from the uniform U(0, 1) distribution.
Step 5: If u ≤ h, then set

θn → θ ′; otherwise θn → θn−1.
Step 6: Repeat steps (2–5) Q times and collect adequate number of replicates.
In order to avoid dependence of the sample on the initial values, the first few samples

are discarded, and to minimize the correlation between subsequent samples, lagging is
used. Then, the resulting sample is approximately independent. In this way, we are able
to generate sample from the posterior distribution of θ . Suppose that Q denotes the total
number of generated sample and Q0 denotes the initial burn-in sample.
Finally, we observe that the associated Bayes estimate of θ under square error loss

function is given by

θ̂MH ,s = 1
Q − Q0

Q∑

i=Q0+1
θi.

Finally, we observe that the associated Bayes estimate of R(t) under square error loss
function is given by

ˆR(t)s = 1
Q − Q0

Q∑

i=Q0+1

(
θ2i + θi t + 1

)

(
θ2i + 1

) e−θi t .

In a similar manner, we can derive the Bayes estimates of h(t) andm(t) with respect to
the square error loss functions.
It should be noticed that the 100(1 − ξ)% HPD interval for the unknown parameter θ

can easily be constructed using the MH samples. The idea was developed by Chen and
Shao [14]. First, arrange the sample θ1, θ2, ..., θQ in increasing order. Then, the 100(1−ξ)%
credible interval for θ is obtained as (θ1, θ	(1−ξ)Q+1
) ,..., (θ	Qξ
, θQ), where 	z
 denotes
the greatest integer less than or equal to z. Among all such credible intervals, the shortest
one is the HPD interval.

Numerical comparison
In order to evaluate the performance of all the point estimates and different methods of
constructing CIs and HPD interval discussed in the preceding sections, a Monte Carlo
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simulation study was conducted and the results are presented in this section. For the sim-
ulation study, we took θ = 0.5, n = 30, 50, 70, 90, 110. The main idea to take different
combinations of n is to see how the MLE and Bayes estimates perform for them. The
informative and non-informative prior were used to obtain the Bayes estimates and HPD
intervals. The hyper-parameters were taken as follows: a = 4, b = 8 for informative prior
and a = 0, b = 0 for non-informative prior. They were chosen such that the expectation
of prior match with the true parameter value. To obtain the Bayes estimates and HPD
intervals using MH algorithm, we set Q=10000 replications and Q0 = 2000 as the initial
burn-in sample. In all cases, Bayes estimates are against square error loss function. Under
these settings, the average estimates and the estimated mean squared errors (MSEs) of
different estimates based on the 10000 simulated complete samples from the Shanker dis-
tribution are listed in Tables 1, 2, 3, and 4. Also, for comparison purposes, using simulated
samples, the coverage probabilities and average lengths of various CIs and HPD intervals
based on 95% of the true coverage probability were computed. To obtain the bootstrap
CIs, we set B=10000 replications. The average lengths and the corresponding coverage
probabilities are reported in Table 5.
All the computations were conducted in R software (R i386 3.2.2), and R codes can

be obtained from the author upon request. Some of the points are quite clear from the
simulation study. Based on tabulated the average estimates, the estimated MSE, cover-
age probability, and average length values following the conclusions can be drawn from
Tables 1, 2, 3, 4, and 5.
1. It is observed that the average estimates of the MLE and Bayes estimates are all

close to the true parameter for different combinations of n. Also, the performance
of the MLE and Bayes estimates of the unknown parameter is quite satisfactory, in
terms of their MSEs. We found that Bayes estimators have smaller MSE values
than the MLE of θ .

2. The performance of the Lindley estimates is very similar to that of the
corresponding Bayes estimates using the MH algorithm.

3. As expected, the MSE values of all estimates decrease as the sample size n grows.
4. It is observed that coverage probabilities obtained by approximate CI, Boot-p, and

Boot-t CIs are better than HPD interval and they are close to the nominal level. But
HPD interval provides a good balance between the coverage probabilities as well as
average lengths. Therefore, in general, we would recommend to use the HPD
interval. If one wants to guarantee that the coverage probability is close to the
nominal level and the length of HPD interval is not the major concern, then
approximate CI and Boot-t CI are proposed in most cases.

5. From the comparison of Boot-p and Boot-t CIs, it is observed that the performance
of Boot-t CI is marginally better than Boot-p CI in terms of average lengths and
coverage probabilities.

Data analysis
For illustrative purposes, we have analyzed two real data sets which have been recently
considered by Ghitany et al. [15]. They fitted these real data sets to the Shanker

Table 6 Point and interval estimates of θ from data set 1

θ̂ θ̃LI θ̃MH Boot-p Boot-t Approx HPD

0.198317 0.19828 0.202179 (0.174585, 0.22991) (0.172089, 0.223403) (0.171315, 0.225319) (0.175729, 0.237283)
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Table 7 Point estimates of R(t), h(t) andm(t) for different choices of T from data set 1

T=5 T=15

MLE LI MH MLE LI MH

R(t) 0.724934 0.724977 0.717301 0.197203 0.199483 0.199312

h(t) 0.100668 0.093463 0.100593 0.148912 0.143261 0.149109

m(t) 7.52527 7.57265 7.40809 6.29862 6.33843 6.33607

distribution and found that the Shanker distribution fits both real data sets reasonably
good. They also obtained useful inference for the prescribed model.
Data set 1: The first data-set represents the waiting times (in minutes) before service

of 100 bank customers and was examined and analyzed by Ghitany et al. (2008) for fitting
the Lindley distribution. The data are as follows:
0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2,

3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7,

4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2,

6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6,

8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0,

11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1,

13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2,

18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6,

33.1, 38.5

Based on the original data, the MLEs of unknown parameter θ were evaluated from
Eq. (8).We also computed different Bayes estimates under square error loss function using
Lindley’s approximation and MH algorithm. Since we did not have any prior information
on a and b, we assumed the non-informative prior, i.e., a=b=0. The MLEs and all Bayes
estimates of unknown parameter θ are displayed in Table 6 , and also, we constructed the
approximate CI, Boot CIs, and HPD interval. From Table 6, it is observed that all the esti-
mates are close to each other. The HPD interval performs better among all the intervals in
respect of length. The MLEs and Bayes estimates of reliability characteristics are derived
in Table 7.
Data set 2: This data set is the strength data of glass of the aircraft window reported by

Fuller et al. [16]. The data are as follows
18.83, 20.80, 21.65, 23.03, 23.23, 24.05, 24.32, 25.50, 25.52,

25.8, 26.69, 26.77, 26.78, 27.05, 27.67, 29.90, 31.11, 33.20,

33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09,

39.58, 44.05, 45.29, 45.38.

Table 8 shows theMLEs and Bayes estimates of the unknown parameter θ . The 95%CIs,
Boot CIs, and HPD intervals for θ are also presented in Table 8. All the Bayes estimates
and HPD intervals were evaluated against non-informative prior distribution. Similar to
the obtained result from data set 1, we observe that the MLE and Bayes procedures have
similar values for θ . Also, HPD intervals have shortest lengths among all the interval
estimates. In Table 9, the classical and Bayes estimation of reliability characteristics are
calculated.

Table 8 Point and interval estimates of θ from data set 2

θ̂ θ̃LI θ̃MH Boot-p Boot-t Approx HPD

0.064712 0.064708 0.06421 (0.051105, 0.083133) (0.048903, 0.079355) (0.048637, 0.080787) (0.050355, 0.08026)
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Table 9 Point estimates of R(t), h(t), andm(t) for different choices of T from data set 2

T=5 T=15

MLE LI MH MLE LI MH

R(t) 0.95671 0.956272 0.956938 0.627386 0.628503 0.628073

h(t) 0.015974 0.015421 0.015905 0.031944 0.031126 0.031814

m(t) 27.0916 27.5866 27.7599 22.1764 22.63 22.6315

Conclusions
In this paper, we have discussed the classical and Bayesian inferential of unknown param-
eter and reliability characteristics of the Shanker distribution. We have provided the MLE
and Bayes estimates and the corresponding CIs and HPD interval. A numerical simula-
tion has been conducted to compare the performance of different methods, and results of
a simulation study have been reported comprehensively in this paper. The method can be
extended for progressively type-I hybrid censoring scheme and other censoring schemes
also. We believe that more work is needed along these directions.
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