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ity of our approach.

MATHEMATICS SUBJECT CLASSIFICATION (2010):

Abstract In this paper, the L’Hospital rule for evaluating limits of complex matrix functions is
introduced. We present some specific examples on certain matrix functions showing the applicabil-
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1. Introduction

Matrix functional calculus is a fundamental area of mathemat-
ics with wide applications not only to many branches of math-
ematics but also to science and engineering. It is a connection
to many different branches of mathematics (see e.g. [1-5] and
elsewhere). In [7], Kratz derived a limit theorem for matrices
from L’Hospital’s rule. Some applications of this theorem were
given to linear algebra and to differential equations. In this pa-
per we derive a limit theorem for complex matrix functions
from the L’Hospital’s rule. Using this theorem, applied exam-
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ples on some complex matrix functions are given. Further
investigations and extensions of this topic will be reported in
a forthcoming paper.

Throughout this paper, we consider the complex space
CYN of complex matrices of common order N. The matrices
I and 0 stand for the identity matrix and the null matrix in
CMV | respectively. A matrix X is a positive stable matrix in
CYN if Re(1) > 0 for all 1 € o(X), where a(X) is the set of
all eigenvalues of X. If ag, ay, ..., a, are elements of C and
a, # 0, then we call

Pn(X) = an)(n + an—anil + a',72X71—2 +- 1+ aOIna

a matrix polynomial of degree n in X. The exponential matrix
function and other matrix functions are defined in [1,3,5].

If f(z) and g(z) are holomorphic functions of the complex
variable z which are defined in an open set Q C C and 4 is a
matrix in CV*V such that o(4) c Q, then (see [1,2,6])

S(A)g(A4) = g(A)f(A).

Hence, if B in CV*V is a matrix for which o(B) c Q and if
AB = BA, then

1110-256X © 2013 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.

http://dx.doi.org/10.1016/j.joems.2013.01.007


mailto:zanhomkishka@yahoo.com
mailto:mabulez56@hotmail.com
mailto:mabulez56@hotmail.com
mailto:abuelhassan@yahoo.com
mailto:halla_mohamed2010@yahoo.com
http://dx.doi.org/10.1016/j.joems.2013.01.007
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2013.01.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

116

Z.M. Kishka et al.

J(A)g(B) = g(B)f(A).

The symbol for the quotient of two matrices 4 = does not have a
definite meaning. We interpret it as in [§] by AB ' or B 4.
These two products are in general distinct, it is only in an exact
significance and this can be obtained when AB = BA with B
non-singular.

Definition 1.1. We define X = [x;(z)], %, F(X) and G(X) to
be commutative complex matrices for all z in Q with the
following properties:

(1) [x(2)], F(X) = [fi{2)] and G(X) = [gi(z)] are analytic

functions of complex variables for all i,j = 1,2, ..., N
in Q;

(i) LF(X) =% % and £ G(X) =% . % for all z in Q;

(iii) hmHZUF (X) G'(X) = lim,_,,G"'(X) F(X) =
llmXA,Xo g((X;

The progress made and connection to the preceding Defini-
tion 1.1 can be formulated in the following interesting result,
which is considered to be the L’Hospital rule for matrix func-
tions. Our main theorem is stated as follows:

Theorem 1.1. Let X = [x;(z)], & &, F(X) and G(X) be defined
as in Definition 1.1. Suppose further that {(1])2( , G(X) and df are

non-singular for all z#zy in Q and as well as fj;(zy) = -

gii(z0) = 0, Vij=1, 2, ..., N. It follows that
FX) g FX) A
Moo~ Mian=Mom -5 7 A=

To proceed with the proof of Theorem 1.1, some definitions
and facts should be adopted as indicated through the following
sections.

2. Preliminaries

Definition 2.1 (see /,2). Let X = [x;(z)] be a square matrix of
order n (i,j = 1, 2, ..., N). Then, its determinant, represented
by det(X), is defined as follows:

det() = Y3 31y

i i> in

Yltl x212 e xni,,

where iy, . .., i,, represent the column numbers and p(iy, .. ., i,)
stands for the number of transpositions which are needed to
bring (iy, ..., i,) to the natural order (1, 2, ..., n).

Also, the determinant of the matrix X can be defined in the
form

N

= E xnxlm

v=1

det(X)

where x}, is the cofactor of the element x;,. A matrix X is said
to be non-singular if det(X) # 0, otherwise, it is termed as a sin-
gular matrix.

Definition 2.2. For a non-singular matrix
X = [x;{2)]yxn> the inverse of X is given by

square

1~

1
Y =em

where X is, as usual, the adjoint matrix of the matrix X.

Fact 2.1 (see 1,2). If the n X n matrices A;, i = 1, 2, ..., r, all
have inverses, then their product []._,A; has the inverse

r—1 1. . . o ,
1204, that is, the inverse of a product is the product of the
inverses in the reverse order.

Fact 2.2 (see 1,8). Let the matrix function F(X); X = [x;(z)]
is a square complex matrix whose its elements are functions of
the complex variable z. the limit of this function is defined as

follows:

Jim F(X) = [lim/()

we write

Jim AX) = 4 = limf;(z) = a,

where Xy = [x;(z0)] and 4 = [a;] is constant matrix.

Fact 2.3 (see 1). Let f( X) be matrix function of the square com-
plex matrix X = {x;(z)}, we say that f(X) is continuous in a
region Q if

lim[A0X + 1 )

/0l =0.

Fact 2.4. Suppose that X = [x;(z)] is a square complex matrix
of finite order N, whose elements are functions of the complex
variable z. The derivative [[‘—[Xf of the matrix function f(X) will
be defined as follows (cf. [1,8]):

SX+1h)—f1X)

—1i
m h N

ﬂ ' m h=h + ihz; /11,1’12 € R.

(2.1)

Fact 2.5 (see 1). We say that the matrix function f( X ) is differ-
entiable in Q if the limit (2.1) exists for all z € Q.

3. Limits of matrix functions

Suppose that F(X) and G(X) are two commutative complex
matrix functions defined in Q. Also, let G(X) be non-singular
for all z#zy, in Q, on the assumption that X = [x;(2)],
FX) = [fi(2)] and G(X) = [gi(2)], i = 1, 2, ..., N.

Then

F(X) =G '"(XFX)G(X); z#z,
FX)G'(X) =G " (X)F(X) = %; 27 20.

Using the algebraic properties of limits and matrices it follows
that

lim F(X)G~' (X)

1
= lim—— = F(X i G(X
Ea lim Setgn T ad 6(X)

AadiB=4 B™"'. (3.1)

~detB
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Similarly, we get Similarly, one can get
P 4jG(X) , , {E‘; éf\(Z)f.\-v(ﬂ}
1 HX)AX) = lim & F(X limg™! (X)F(X) = lim { =180
Hm G (/) = lim g Y L SR
i d 2 Ga(2)(2) Y > CACVCERAAC)
YN g (e () =0 | S en(2ei () +4 (212 ()
i N s - S (&) +28, (2 (2) + & (2
ZILHZ})Z&:lgu( z)f; (Z) Zjvlbma” = lim S 1( e x =
=<= - = 2z o | Ximi8n ()8 (4)+2g,-\(b)gn (z )+g,\( )gn(z)
hmzvzlgiv(z) ;A:((Z) Zv lb"bw s
2>z » { D SMTACTAE } [Z‘\:l:lgggLs(z),ﬂ/(z)]
— = lim —
=B'4, (32) = 2Ea @ () [T limg, ()i ()]
where _ (X buay) [ biay]
) Sl s Pt 2
G—l( ) _ 1 di G(X) _ [g,](Z)} . i
T detG(X) ad - SV gn(2)gi(2) From (4.1) and (4.2) it follows immediately that
N -1 _ 1: —1 T —1 _ -1
detG(X) = Y g, ()i (2), and adiG(X) = [g()]. AB™ = I FXNG () = G (FX) = B4~
v=1
That is t
Egs. (3.1) and (3.2) lead to atistosay
. o o _Fx) | HHa P 4
AB —ZILIE)F(X)G (X) —ZIHEJG (X)F(X)=B A4 )}Ln}o G 721227‘13(;),(’%7)}1}}0 009 =5 (4.3)

F(X) A

T x-xG(X) B’
where Xy = [x;(z0)] and B = [b;] is a non-singular matrix.
4. Proof of Theorem 1.1

Let X, % F(X) and G(X) be commutative complex matrices
for all z 1n Q. In addition, consider

lim f;(z) = lim g;(z) =0; i,j=1,2,...,N,
z—zo z—zo

d d
ZILIQ] e Ji(z) = a; and 11m dzg”( z) = by.
Then

limfi(2)g(z) = limg, (2)g;(2) = 0;  ijs=12,....N
I—Z0 z—Z()

Applying L’Hospital rule in the case of functions of the com-
plex variables z, we have

lim F(X)G~' (X) = lim {Zlf()}

=a | YV ¢.(2)gl (2)
ﬂm{zummw”““”}

=0 | 20 (en(2)gh (2) + 84080 (2))
[ EL (BOR O AR HGEE)
e Zlvw;lgn( )8 (2) + 285, (2)gh (2) + g1 (2)gi (2)
=lim {M}

z—29 221‘\:1&'“(‘) )

[ imf (2)2,(2)] _aby)

T lime(er ()]

_ [Z\ lal‘bv/]
detB

[0 ibnb}]

=AB7".
(4.1)

It is worth observing that this main equality (4.3) can be ob-
tained by using Taylor expansions for matrix functions
(cf.[1]) as follows: For

F(X) =Y A,(z—z)", and G(X) = B,(z—z)",

n=1 n=1
with
AO = B() = F(Xo) = G(X()) = 0, and

a’
~F(X)}_,, ~G(X)}._.; n=12,

Thus

dF dX dGdX
A =2 g =422l

: {dX dz}z__o’ ! {dX dz}__zo

Therefore
_lil:l; g<};)):}}ir_r)}nF(X)G"(X) :Xli;rA;OG*‘(X)F(X)

-1
_hm{A B'+ By 'ZA,, —z0)" 1}{1+B;‘ZB,,(2—20)”"}

n=2 n=2

~1
{A B'+ B, hmZA,, z0)" 1}{1+B hszn(A—AU)” '}

112 n=2
dF d dGdx\™" . F(X) 4
— —1 _ - = - = — = —
=B *{(dx'dﬁ(d)(df) } i T® B
—

which ensures our main result. Therefore, we have proved the
theorem.

5. Examples

This section presents some application examples to show the
usability of our approach.
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Example 5.1. Consider

e —T . sinX sinh X
My = im = im ey =
where
e —1 3sinz Ssinhz  coshz—1
Y 3sinz e —1 coshz —1 Ssinhz
Ssinhz  coshz —1 e —1 3sinz
coshz — 1 Ssinhz 3sinz e —1
Xy = [xij(o)] =0,
e 3cosz  Scoshz sinhz
dX 3cosz e sinhz 5Scoshz
dz | 5coshz sinh:z e 3cosz
sinhz Scoshz 3cosz e

Example 5.2. Consider

1 n

H — n—1,
fm = A

where

cosz  sinz
X = . , A= |
—sinz cosz — =

Example 5.3. Consider

X'—A" n
li — = gnm.
Xg}} Xm _ Am m )

It is clear that the above examples give a direct generaliza-
tion to the standard complex case of L’Hospital rule. There-
fore our result of the previous sections can be exploited to
establish further consequences regarding other several prob-
lems in this area.

Remark 5.1. The case both limits limy_.y, % = limy_y, g,(();)
diverge to + oo, should be manipulated separately. It is still an
open question to be answered in a forthcoming work.
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