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Abstract In this paper, we study the new class of an asymptotic proximal pointwise weaker Meir–

Keeler-type w-contraction and prove the existence of solutions for the minimization problem in a

uniformly convex Banach space. Also, we give some an example for support our main result.
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1. Introduction and preliminaries

The best proximity theorem furnishes sufficient conditions for
the existence of an optimal approximate solution x, known as

the best proximity point of the non-self mapping T, satisfying
the condition that d(x,Tx) = dist(A,B). Interestingly, the best
proximity theorems also serve as a natural generalization of

fixed point theorems. Indeed, the best proximity point becomes
a fixed point if the mapping under consideration is a self-map-
ping. On the other hand, though the best proximity theorems
ensure the existence of approximate solutions, such results
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need not yield optimal solutions. But, best proximity point the-
orems furnish sufficient conditions that assure the existence of
approximate solutions which are optimal as well.

The classical and well-known Banach’s contraction princi-

ple states that if a self-mapping T of a complete metric space
X is a contraction mapping (i.e., d(Tx,Ty) 6 ad(x,y) for all
x,y 2 X, where a 2 [0,1)), then T has a unique fixed point. This

principle has been extended in several ways such as [1–6]. In
2003, Kirk, Srinivasan, and Veeramani [7] extended the Ba-
nach’s contraction principle to case of cyclic mappings. Let

(X,d) be a metric space and let A, B, be a non-empty subset
of X. A mapping T: A [ B fi A [ B is called a cyclic mapping
if T(A) � B and T(B) � A. A point x 2 A is called a best prox-

imity point of T in A if d(x,Tx) = dist(A,B), where dist(A, -
B) = inf{d(x,y): x 2 A,y 2 B}. A cyclic mapping T:
A [ B fi A [ B is said to be a relatively non-expansive if
iTx � Tyi 6 ix � yi for all x 2 A and y 2 B (notice that a rela-

tively non-expansive mapping need not be a continuous in gen-
eral). In 2005, Eldred, Kirk and Veeramani [8] proved the
existence of a best proximity point for relatively non-expansive
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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mappings by using the notion of proximal normal structure. In
2006, Eldred and Veeramani [9] introduced the notion called
cyclic contraction and gave sufficient condition for the existence

of a best proximity point for a cyclic contraction mapping T on
a uniformly convex Banach space. In 2009, Suzuki et al. [10]
introduced the notion of the property UC as follow :

Definition 1.1 10. Let A and B be non-empty subsets of a
metric space (X,d). Then (A,B) is said to be satisfy the
property UC, if the following holds: If {xn} and f�xng are
sequences in A and {yn} is a sequence in B such that

lim
n!1

dðxn; ynÞ ¼ distðA;BÞ and lim
n!1

dð�xn; ynÞ ¼ distðA;BÞ;

then limn!1dðxn; �xnÞ ¼ 0.

Also, they extended the result in [9] to metric spaces with

the property UC. The following lemma plays an important role
in next sections;

Lemma 1.2 10. Let A and B be subsets of a metric space (X,d).
Assume that (A,B) has the property UC. Let {xn} and {yn} be

sequences in A and B, respectively, such that either of the
following holds:

lim
m!1

supnPmdðxm;ynÞ¼ distðA;BÞ or limn!1supmPndðxm;ynÞ¼ distðA;BÞ:

Then {xn} is Cauchy.

On the other hand, in 2003, Kirk [11], introduced the no-

tion of an asymptotic contraction mapping as follows:

Definition 1.3 11. Let (X,d) be a metric space. A mapping T:
X fi X is said to be an asymptotic contraction if

dðTnðxÞ;TnðyÞÞ 6 /nðdðx; yÞÞ for all x; y 2 X;

where /n: [0,1) fi [0,1) and /n fi / uniformly on the range
of d in which /: [0,1) fi [0,1) is continuous and /(s) < s for

all s > 0.

In 2007, Kirk [12], introduced the notion of an asymptotic

pointwise contraction mapping as follows:

Definition 1.4 12. Let (X,d) be a metric space. A mapping T:
X fi Xis said to be an asymptotic pointwise contraction if
there exists a sequence of functions an : X! Rþ such that

an fi a pointwise on X and for each integer n P 1,

dðTnðxÞ;TnðyÞÞ 6 anðxÞðdðx; yÞÞ for all x; y 2 X:

In 2008, Kirk and Xu [13], introduced the notion of a point-

wise asymptotically non-expansive mapping as follows:

Definition 1.5 13. Let K be a non-empty subset of Banach
space X. A mapping T: K fi K is said to be a pointwise

asymptotically non-expansive, if for each integer n P 1,

kTnðxÞ � TnðyÞk 6 anðxÞkx� yk for all x; y 2 K;

where an fi 1 pointwise on K.

In 2009, Anuradha and Veeramani in [14] introduced a new
class of mappings; they called each mapping of this class a

proximal pointwise contraction:
Definition 1.6 14. Let A and B be non-empty subsets of a

metric space (X,d). Let T: A [ B fi A [ B be a cyclic mapping.
The mapping T is said to be a proximal pointwise contraction
if for each (x,y) 2 A · B there exist 0 6 a(x) < 1, 0 6 a(y) < 1

such that

dðTðxÞ;TðyÞÞ 6 maxfaðxÞdðx; yÞ; distðA;BÞg for all y 2 B;

dðTðxÞ;TðyÞÞ 6 maxfaðyÞdðx; yÞ; distðA;BÞg for all x 2 A:

Recently, Abkar and Gabeleh [15] introduced a new notion

of an asymptotic proximal pointwise contraction mapping as
follows:

Definition 1.7 15. Let (A,B) be a non-empty pair in a Banach
space X. A mapping T: A [ B fi A [ B is said to be an

asymptotic proximal pointwise contraction if T is cyclic and
there exists a function a: A [ B fi [0,1) such that for any
integer n P 1 and (x,y) 2 A · B,

kT2nx� T2nyk 6 maxfanðxÞkx� yk; distðA;BÞg for all y 2 B;

kT2nx� T2nyk 6 maxfanðyÞkx� yk; distðA;BÞg for all x 2 A;

where an fi a pointwise on A [ B.

Just recently, Chen [16] defined the following new notion of
the weaker Meir–Keeler-type function and an asymptotic

pointwise weaker Meir–Keeler-type contraction, Rþ denoted
the set of all non-negative numbers.

Definition 1.8 16. The function w : Rþ ! Rþ is called a
weaker Meir–Keeler-type function, if for each g > 0, there

exists d > g such that for t 2 Rþ with g 6 t< d, there exists
n0 2 N such that wn0ðtÞ < g.

Definition 1.9 16. Let X be a Banach space, and w : Rþ ! Rþ
be a weaker Meir–Keeler-type function. A mapping T: X fi X

is said to be an asymptotic pointwise weaker Meir–Keeler-type
w-contraction, if for each n 2 N,
kTnx� Tnyk 6 wnðkxkÞkx� yk for all x; y 2 X:
For example of a weaker Meir–Keeler-type mapping and a

weaker Meir–Keeler-type mapping which is not a Meir–Kee-
ler-type mapping, we can see in [17]. Best proximity point the-
orems for several types of contractions, for examples see in

[18–23].

In this paper, we give the notion of new class of an asymp-

totic proximal pointwise weaker Meir–Keeler-type w-contrac-
tion and prove the existence of a best proximity point
theorem for this mapping. Also, we give some an example

for support our main Theorem.

2. Asymptotic proximal pointwise weaker Meir–Keeler-type w-

contraction

In this section, we prove the existence of a best proximity point
for an asymptotic proximal pointwise weaker Meir–Keeler-

type w-contraction in a uniformly convex Banach space. First,
we introduce below notion of an asymptotic proximal point-
wise weaker Meir–Keeler-type w-contraction mapping.
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Definition 2.1. Let (A,B) be a non-empty pair in Banach space

X, and let w : Rþ ! Rþbe a weaker Meir–Keeler-type func-
tion. A mapping T: A [ B fi A [ B is said to be an asymptotic
proximal pointwise weaker Meir–Keeler-type w-contraction, if
for each n 2 N and (x,y) 2 A · B,

kT2nx� T2nyk 6 maxfwnðkxkÞkx� yk; distðA;BÞg
for all y 2 B;

kT2nx� T2nyk 6 maxfwnðkykÞkx� yk; distðA;BÞg
for all x 2 A:

Before stating the main result, we recall definition and fact
of asymptotic centers. Let X be a Banach space, C subset of X
and {xn} is a bounded sequence in X. The asymptotic centers
of {xn} relative to C denoted by AC(xn) is the set of minimizers

in A (if any) of the function f given by

fðxÞ ¼ lim supn!1kxn � xk:

That is,

ACðxnÞ ¼ fx 2 C : fðxÞ ¼ infu2CfðuÞg;

and we can see that, if X is uniformly convex and C is closed
and convex, then AC(xn) consists of exactly one point.

Theorem 2.2. Let (A,B) be a non-empty bounded closed convex

pair in a uniformly convex Banach space X and T:
A [ B fi A [ B be an asymptotic proximal pointwise weaker
Meir–Keeler-type w-contraction. If T is a relatively non-

expansive mapping, then there exists a unique pair
(v0,u0) 2 A · B such that

ku0 � Tu0k ¼ kv0 � Tv0k ¼ distðA;BÞ:

Moreover, if x0 2 A and xn+1 = Txn, then {x2n} converges in
norm to v0 and {x2n+1} converges in norm to u0.

Proof. Fix an x0 2 A and define a function f: B fi [0,1) by

fðuÞ ¼ lim supn!1kT2nðx0Þ � uk for u 2 B:

Since X is uniformly convex and B is bounded closed and con-
vex, it follow that f has unique minimizer over B; that is, we
have a unique point u0 2 B satisfying

fðu0Þ ¼ infu2BfðuÞ:

Indeed, for all m P 1 and u 2 B, we have

fðT2mðuÞÞ ¼ lim supn!1kT2nðx0Þ � T2muk
¼ lim supn!1kT2nþ2mðx0Þ � T2muk
¼ lim supn!1kT2mðT2nðx0ÞÞ � T2muk
6 lim supn!1maxfwmðkukÞkT2nðx0Þ
� uk; distðA;BÞg

¼ maxfwmðkukÞfðuÞ; distðA;BÞg: ð2:1Þ

Since u0 2 B is the minimum of f, for all m P 1, we have

fðu0Þ 6 fðT2mu0Þ 6 maxfwmðku0kÞfðu0Þ; distðA;BÞg: ð2:2Þ

We now claim that f(u0) = dist(A,B). Since for each u 2 B,
{wm(iui)} is non-increasing, it must converges to some g P 0.
Suppose that g > 0, by definition of weaker Meir–Keeler-type

function, there exists d > g such that for u 2 B with
g 6 iui < d, there exists n0 2 N such that wn0ðkukÞ < g. Since
limmfi1wm(iui) = g there exists m0 2 N such that

g 6 wm(iui) < d, for all m P m0. Thus we conclude that
wm0þn0 ðkukÞ < g, thus we get the contradiction. So

lim
m!1

wmðkukÞ ¼ 0: ð2:3Þ

Taking m fi1 in the inequality (2.2),we get

fðu0Þ ¼ distðA;BÞ:

On the other hand, by the relatively non-expansive of T, we
have

fðT2u0Þ ¼ lim supn!1kðT2nðx0ÞÞ � T2u0k
6 lim supn!1kðT2n�2ðx0ÞÞ � u0k ¼ fðu0Þ;

which implies that T2u0 = u0, by the uniqueness of minimum

of f, then u0 is a fixed point of T2 in B. Hence,

lim
m!1

supnPmkðT2mðx0ÞÞ � T2nu0k ¼ lim
m!1
kðT2mðx0ÞÞ � u0k

¼ fðu0Þ ¼ distðA;BÞ:

By the property UC of (A,B), it follows from Lemma 1.2 that
{T2n(x0)} is a Cauchy sequence, so there exists x0 2 A such that
T2nx0 fi x0 as n fi1. By the similar argument as above, if

y0 2 B and g: A fi [0,1) is given by g(v) = lim-
supnfi1iT2n(y0) � vi for v 2 A, we get v0 is a fixed point of
T2, where v0 is a minimum in exactly one point in A, and also
T2ny0 fi y0 2 B. Hence, we obtain

u0 ¼ T2nu0 ! y0 and v0 ¼ T2nv0 ! x0:

This show that (v0,u0) = (x0,y0), and T2nx0 fi v0, T
2ny0 fi u0.

Moreover,

ku0 � v0k ¼ kT2nðu0Þ � T2nv0k
6 maxfwnðku0kÞku0 � v0k; distðA;BÞg: ð2:4Þ

Taking n fi1 in the inequality (2.4), by (2.3) and definition of

dist(A,B), we get

ku0 � v0k ¼ distðA;BÞ:

Since T is relatively non-expansive mapping, we have

distðA;BÞ 6 kTu0 � Tv0k 6 ku0 � v0k ¼ distðA;BÞ:

Therefore Tu0 = v0 and Tv0 = u0. This implies that

kTu0 � u0k ¼ kv0 � Tv0k ¼ distðA;BÞ: �

Now, we shall give a validate example of Theorem 2.2.

Example 2.3. Consider X ¼ R2 with the metric
dððx1; y1Þ; ðx2; y2ÞÞ ¼ maxfjx1 � x2j; jy1 � y2jg for all
ðx1; y1Þ; ðx2; y2Þ 2 Rþ. Let

A ¼ fð1; aÞ : a P 0g and B ¼ fð�1; bÞ : b P 0g;

then A and B be a non-empty closed and convex subset of X
and dist(A,B) = 2. Define T:A [ B fi A [ B, by

Tð1; aÞ ¼ �1; a
2

� �
and Tð�1; bÞ ¼ 1;

b

2

� �
for all a; b P 0:

Then T is a cyclic mapping, relatively non-expansive and for

each (1,a) 2 A and (�1,b) 2 B, we have
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T2nð1; aÞ ¼ 1; a
22n

� �
and T2nð�1; bÞ ¼ �1; b

22n

� �
. Next, we

will show that T is an asymptotic proximal pointwise weaker
Meir–Keeler-type w-contraction with weaker Meir–Keeler-
type function w : Rþ ! Rþdefined by

wðtÞ ¼ t

2
for all t � 0:

Since,

dðT2nð1; aÞ;T2nð�1; bÞÞ ¼ dðð1; a

22n
Þ; ð�1; b

22n
ÞÞ

¼ maxf2; j a� b

22n
jg

� maxf2; j a� b

2n
jg

� maxf2;wnðdðð0; 0Þ; ð1; aÞÞja� bjg
� maxfwnðdðð0; 0Þ; ð1; aÞÞdðð1; aÞ; ð�1; bÞÞ; distðA;BÞg:

Similarly, we can conclude that

dðT2nð1; aÞ;T2nð�1; bÞÞ 6 maxfwnðdðð0; 0Þ;
ð�1; bÞÞdðð1; aÞ; ð�1; bÞÞÞ; distðA;BÞg;

and hence T is an asymptotic proximal pointwise

weaker Meir–Keeler-type w-contraction. Moreover
((1,0), (�1,0)) 2 A · B is a pair of best proximity point of T,
because

dðð1; 0Þ;Tð1; 0ÞÞ ¼ dðð�1; 0Þ;Tð�1; 0ÞÞ ¼ 2 ¼ distðA;BÞ:
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