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In this paper, we study the new class of an asymptotic proximal pointwise weaker Meir—
Keeler-type y-contraction and prove the existence of solutions for the minimization problem in a
uniformly convex Banach space. Also, we give some an example for support our main result.
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1. Introduction and preliminaries

The best proximity theorem furnishes sufficient conditions for
the existence of an optimal approximate solution x, known as
the best proximity point of the non-self mapping 7, satisfying
the condition that d(x, Tx) = dist(A4, B). Interestingly, the best
proximity theorems also serve as a natural generalization of
fixed point theorems. Indeed, the best proximity point becomes
a fixed point if the mapping under consideration is a self-map-
ping. On the other hand, though the best proximity theorems
ensure the existence of approximate solutions, such results
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need not yield optimal solutions. But, best proximity point the-
orems furnish sufficient conditions that assure the existence of
approximate solutions which are optimal as well.

The classical and well-known Banach’s contraction princi-
ple states that if a self-mapping 7" of a complete metric space
X is a contraction mapping (i.e., d(Tx, Ty) < ad(x,y) for all
x,y € X, where a € [0, 1)), then 7 has a unique fixed point. This
principle has been extended in several ways such as [1-6]. In
2003, Kirk, Srinivasan, and Veeramani [7] extended the Ba-
nach’s contraction principle to case of cyclic mappings. Let
(X,d) be a metric space and let 4, B, be a non-empty subset
of X. A mapping T: AU B— AU B is called a cyclic mapping
if T(A) c Band T(B) c A. A point x € A is called a best prox-
imity point of T in A if d(x, Tx) = dist(4, B), where dist(4,-
B) = inf{d(x,y): xe€A,yeB}. A cyclic mapping T:
AUB— AUB is said to be a relatively non-expansive if
|Tx — Ty|| < ||x — y|| for all x € 4 and y € B (notice that a rela-
tively non-expansive mapping need not be a continuous in gen-
eral). In 2005, Eldred, Kirk and Veeramani [8] proved the
existence of a best proximity point for relatively non-expansive
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mappings by using the notion of proximal normal structure. In
2006, Eldred and Veeramani [9] introduced the notion called
cyclic contraction and gave sufficient condition for the existence
of a best proximity point for a cyclic contraction mapping 7 on
a uniformly convex Banach space. In 2009, Suzuki et al. [10]
introduced the notion of the property UC as follow :

Definition 1.1 10. Let A and B be non-empty subsets of a
metric space (X,d). Then (4,B) is said to be satisfy the
property UC, if the following holds: If {x,} and {x,} are
sequences in 4 and {y,} is a sequence in B such that

limd(x,,y,) = dist(4, B) and limd(%,,y,) = dist(4, B),

n—oQ
then lim,_d(x,,X,) = 0.

Also, they extended the result in [9] to metric spaces with
the property UC. The following lemma plays an important role
in next sections;

Lemma 1.2 10. Let A and B be subsets of a metric space (X,d).
Assume that (A, B) has the property UC. Let {x,} and {y,} be
sequences in A and B, respectively, such that either of the
following holds:

lim sup,.,,d(xy,y,) = dist(4, B) or lim,_osup,,~ ,d(x,,,y,) = dist(A, B).

Then {x,} is Cauchy.

On the other hand, in 2003, Kirk [11], introduced the no-
tion of an asymptotic contraction mapping as follows:

Definition 1.3 11. Let (X,d) be a metric space. A mapping T:
X — X is said to be an asymptotic contraction if

d(T"(x), T"(y)) < ,(d(x,y))
where ¢,,: [0,00) — [0,00) and ¢,, = ¢ uniformly on the range
of d in which ¢: [0, 00) — [0, 00) is continuous and ¢(s) < s for
all s > 0.

for all x,y € X,

In 2007, Kirk [12], introduced the notion of an asymptotic
pointwise contraction mapping as follows:

Definition 1.4 12. Let (X,d) be a metric space. A mapping T:
X — Xis said to be an asymptotic pointwise contraction if
there exists a sequence of functions o, : X — R™ such that
o, — o pointwise on X and for each integer n > 1,

d(T"(x), T"(y)) < o (x)(d(x, ))

In 2008, Kirk and Xu [13], introduced the notion of a point-
wise asymptotically non-expansive mapping as follows:

for all x,y € X.

Definition 1.5 13. Let K be a non-empty subset of Banach
space X. A mapping 7: K— K is said to be a pointwise
asymptotically non-expansive, if for each integer n > 1,

17"(x) = T" )| < 2(¥)llx = ¥

where o,, — 1 pointwise on K.

for all x,y € K,

In 2009, Anuradha and Veeramani in [14] introduced a new
class of mappings; they called each mapping of this class a
proximal pointwise contraction:

Definition 1.6 14. Let A and B be non-empty subsets of a
metric space (X,d). Let T: A U B— A U B be a cyclic mapping.
The mapping T is said to be a proximal pointwise contraction
if for each (x,y) € A x Bthereexist 0 < a(x) < 1,0 < ay) < 1
such that

d(T(x), T(y)) < max{a(x)d(x,y),dist(4,B)} forall y € B,
d(T(x), T(y)) < max{a(y)d(x,y),dist(A,B)} for all x € 4.

Recently, Abkar and Gabeleh [15] introduced a new notion
of an asymptotic proximal pointwise contraction mapping as
follows:

Definition 1.7 15. Let (4, B) be a non-empty pair in a Banach
space X. A mapping T: AUB—> AUB is said to be an
asymptotic proximal pointwise contraction if 7 is cyclic and
there exists a function a: 4 U B—[0,1) such that for any
integer n > 1 and (x,y) € A X B,

HTan _ T2ny|
|72 — 7773

max{o,(x)||x — y||, dist(4,B)} for all y € B,
max{o, (y)||x — |, dist(A,B)} for all x € 4,

NN

where o, — o pointwise on 4 U B.

Just recently, Chen [16] defined the following new notion of
the weaker Meir—Keeler-type function and an asymptotic
pointwise weaker Meir—Keeler-type contraction, R, denoted
the set of all non-negative numbers.

Definition 1.8 16. The function y: R, — R, is called a
weaker Meir—Keeler-type function, if for each n > 0, there
exists & > n such that for r € Ry with n <t < J, there exists
ng € N such that ™ (1) < n.

Definition 1.9 16. Let X be a Banach space, and  : R, — R,
be a weaker Meir—Keeler-type function. A mapping 7 X — X
is said to be an asymptotic pointwise weaker Meir—Keeler-type
Y-contraction, if for each n € N,

17"x = T"y| < ¥'(

)Ix—y| forall x,ye X.

X

For example of a weaker Meir—Keeler-type mapping and a
weaker Meir—Keeler-type mapping which is not a Meir—Kee-
ler-type mapping, we can see in [17]. Best proximity point the-
orems for several types of contractions, for examples see in
[18-23].

In this paper, we give the notion of new class of an asymp-
totic proximal pointwise weaker Meir—Keeler-type y-contrac-
tion and prove the existence of a best proximity point
theorem for this mapping. Also, we give some an example
for support our main Theorem.

2. Asymptotic proximal pointwise weaker Meir—Keeler-type -
contraction

In this section, we prove the existence of a best proximity point
for an asymptotic proximal pointwise weaker Meir—Keeler-
type y-contraction in a uniformly convex Banach space. First,
we introduce below notion of an asymptotic proximal point-
wise weaker Meir—Keeler-type y-contraction mapping.
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Definition 2.1. Let (4, B) be a non-empty pair in Banach space
X, and let  : Ry — R be a weaker Meir-Keeler-type func-
tion. A mapping 7: 4 U B— A U B s said to be an asymptotic
proximal pointwise weaker Meir—Keeler-type y/-contraction, if
for each n € N and (x,y) € A X B,

17%"x — T2yl < max{y"(|[xI)]lx — yl|, dist(4, B)}
for all y € B,

172 = 7] < max{y" (I |x — vl dist(4, B)}
for all x € 4.

Before stating the main result, we recall definition and fact
of asymptotic centers. Let X be a Banach space, C subset of X
and {x,} is a bounded sequence in X. The asymptotic centers
of {x,} relative to C denoted by A(x,) is the set of minimizers
in A (if any) of the function f given by

S(x) =limsup, . [lx, — x]|.
That is,
Ac(xy) ={x € C: flx) = inf,ccf(u)},

and we can see that, if X is uniformly convex and C is closed
and convex, then 4(x,) consists of exactly one point.

Theorem 2.2. Let (A, B) be a non-empty bounded closed convex
pair in a uniformly convex Banach space X and T:
AUB— AUB be an asymptotic proximal pointwise weaker
Meir—Keeler-type y-contraction. If T is a relatively non-
expansive mapping, then there exists a unique pair
(vo,up) € A X B such that

lo — Tuol| = ||vo — Twl| = dist(A, B).

Moreover, if xg€ A and x,,+; = Tx,, then {x,,} converges in
norm to vy and {x,+ ;} converges in norm to u.

Proof. Fix an x, € 4 and define a function f: B — [0,00) by

Sfu) =limsup,_ || T*"(xo) — ul| for u € B.

Since X is uniformly convex and B is bounded closed and con-
vex, it follow that f has unique minimizer over B; that is, we
have a unique point uy € B satisfying

Suo) = infienf(u).
Indeed, for all m > 1 and u € B, we have
AT () = Timsup, || 7% (xo) — T°"ul|
= limsup,_ || 7> (xo) — T*"u||
= limsup,_ || 7*"(T*" (x0)) — T*"u||
< limsup, ., max{y" (||u||)|| T (xo)
— ul|,dist(4, B)}
= max{y/" (||ul|)/(u), dist(4, B)}. (2.1)

Since ug € B is the minimum of f, for all m > 1, we have
Suo) < AT™up) < max{y™ (||uo]|)f(uo), dist(4, B)}.

We now claim that f(uy) = dist(4, B). Since for each u € B,
{"(ul)} is non-increasing, it must converges to some 1 = 0.

(2.2)

Suppose that 7 > 0, by definition of weaker Meir—Keeler-type
function, there exists 6 > 5 such that for u€ B with
n <l < 6, there exists ny € N such that " (||u||) < 5. Since
lim,,oo/™(lul) = n there exists my €N such that
<Y "(lul) < 6, for all m = my. Thus we conclude that
Y (|lul]) < 5, thus we get the contradiction. So
lim " ([[u][) = 0.

m—oo

(2.3)

Taking m — oo in the inequality (2.2),we get
Sfluy) = dist(4, B).

On the other hand, by the relatively non-expansive of T, we
have

f(TPuo) = limsup, . [ (T*(x0)) — T*uo||
< dimsup, o [|(7%"(x0)) — uol| = fluo),

which implies that T%uy = u,, by the uniqueness of minimum
of f, then uq is a fixed point of 7% in B. Hence,

lim sup, .., | (77" (x0)) — T*"uo|| = lim || (T*"(x0)) — uo|
= flup) = dist(4, B).

By the property UC of (A4, B), it follows from Lemma 1.2 that
{T?"(x,)} is a Cauchy sequence, so there exists x' € 4 such that
T*"xo — X' as n — co. By the similar argument as above, if
yp€B and g A—[0,00) is given by g(v) = lim-
SUP, ool | T2 (7o) — v|| for v e A, we get vy is a fixed point of
T2, where v is a minimum in exactly one point in 4, and also
T*'yo — y' € B. Hence, we obtain

uy = T"uy — ' and vy = vy — X

This show that (vo,up) = (¥,1/), and T?"xg — vy, T>"yo = up.
Moreover,
g = voll = | 7" (uo) — T*"wo|

< max{y” ([l 1o — wll dist(4, B)}. 4)

Taking n — oo in the inequality (2.4), by (2.3) and definition of
dist(4, B), we get

|ltto — vo|| = dist(A4, B).

Since T is relatively non-expansive mapping, we have
dist(A4, B) < || Tug — Two|| < ||uo — vol| = dist(4, B).
Therefore Tug = vy and Tvy = ug. This implies that
| Tuy — uol| = ||vo — Tvo|| = dist(4,B). O

Now, we shall give a validate example of Theorem 2.2.

Example 2.3. Consider X=R> with the metric
d((x1,31), (x2,2)) = max{|x; — xa|, [y} — [} for all
(x17y1)7 (x27y2) € R+- Let

A={(l,a):a = 0} and B={(-1,b): b = 0},

then 4 and B be a non-empty closed and convex subset of X
and dist(A,B) = 2. Define A U B— A U B, by

7(1,a) = (-1,%) and T(—1,b) = (1%) for all a,b > 0.

Then T is a cyclic mapping, relatively non-expansive and for
each (1,a) € 4 and (—1,b) € B, we have
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7% (1,a) = (;,;—Z,,) and T%(—1,b) = <—17%>. Next, we
will show that T is an asymptotic proximal pointwise weaker
Meir-Keeler-type -contraction with weaker Meir—Keeler-

type function y : R, — R, defined by

t
v(t) = 3 for all 1 > 0.
Since,

2n 2n _ i _ i
d(T (lva),T (_lvb))*d((hzzn)v( 1’22;;))

a—b
:max{2,|?|}
§max{2,|u|}

< max{2,y"(d((0,0), (1,a))la — b[}
< max{y"(d((0,0), (1, a))d((1,a), (—1,b)), dist(4, B)}.

Similarly, we can conclude that

d(T*"(1,a), T""(—1,b)) < max{y"(d((0,0),
(_17b))d((17a)7 (_l’b)))7di5[(A7B)}7

and hence T is an asymptotic proximal pointwise
weaker Meir—Keeler-type Y-contraction. Moreover
((1,0),(—1,0)) € A x B is a pair of best proximity point of 7,
because

d((1,0),7(1,0)) = d((—1,0), T(-1,0)) = 2 = dist(A, B).
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