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Abstract In this paper we introduce a new distribution called the beta Pareto—geometric. We pro-
vide a comprehensive treatment of the mathematical properties of the proposed distribution and
derive expressions for its moment generating function and the rth generalized moment. We discuss
estimation of the parameters by maximum likelihood and obtain the information matrix that is eas-
ily numerically determined. We also demonstrate its usefulness on a real data set.
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1. Introduction

The family of the Pareto distribution is well known in the lit-
erature for its capability in modeling the heavy-tailed distribu-
tions that are mostly common in data on income distribution
[1], city population size [2,3], and size of firms [4]. Newman
[5] also provided many other quantities measured in the phys-
ical, biological, technological and social systems of various
kinds, where the Pareto law has been found to be an appropri-
ate fit. Different methods may be used to introduce a shape
parameter to an exponential model and they may result in a
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variety of weighted exponential (WE) distributions. For exam-
ple, the gamma distribution and the generalized exponential
distribution are different weighted versions of the exponential
distribution.

Starting from a parent cumulative distribution function
(Cdf) F(x), Eugene et al. [6] defined a class of generalized dis-
tributions by

1 o b1
G(x) = Bla.b) /0 w1 —w)"" dw (1)
with extra parameters a, b > 0 and
_I'(a)r(b)
Blab) = Faxh)

is the beta function. This class of generalized distributions has
been receiving considerable attention over the last years, in
particular after the works of Eugene et al. [6] and Jones [7].
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A new generalization of the Pareto—geometric distribution

The probability density function (pdf) corresponding to (1) can
be written as

g(x) = ﬁ FI [T — FOo)™ ),

where f(x) = dg:) is the parent density function.

Recently, attempts — by Nadarajah and Gupta [8], Nadara-
jah and Kotz [9,10], Kong et al. [11], Akinsete et al. [12], Pes-
cim et al. [13], Souza et al. [14], Nassar and Nada [15] and
others — have been made to extend families of probability dis-
tributions following the work proposed by Eugene et al. [6]
and Jones [7]. Using the same idea of Eugene et al. [6], we gen-
eralize the Pareto—Geometric (PG) distribution — introduced
by De Morais [16] — by considering the following probability
density function (pdf).

g(x) = % {1 _ (;)/f} (a=1)

(z)/}bﬂ

X,

|:1 _0(%)/;]11#77
x>a 0€(0,1), a,b,p>0. (2)

As distributions in this class have interesting applications to
lifetime data due to the variety of the shapes of the hazard
function-the Pareto distribution being a limiting special case
of the PG distribution — in this paper, based on the importance
of the Beta family in many areas in statistics, we introduce the
five — parameter Beta Pareto Geometric (BPG) class of distri-
butions which is obtained by compounding Pareto and geo-
metric distributions and generalizing this compounded
distribution using the logit of the beta random variable. A ran-
dom variable X with the pdf given by (2) is said to follow the
Beta Pareto—Geometric (BPG) distribution. This five-parame-
ter beta-Pareto—geometric distribution is mostly common in
data on income distribution, city population size and many
other topics in physics, biology, hydrology and engineering,
such as earthquakes, forest fire areas, fault lengths on Earth
and Venus, oil and gas field sizes property.

In Section 2, we give the cumulative distribution function
(Cdf) of the BPG distribution. Approximate forms for the
median, mode and the failure rate function are derived in Sec-
tion 3. Expressions for the moment generating function, and
hence the mean and variance, are discussed in Section 4. The
mean deviation about the mean and the median are calculated
in Section 5. Moreover, we discuss, in Section 6, estimation by
the maximum likelihood method. Section 7 is devoted to deriv-
ing Shannon’s entropy. Explicit expressions for order statistics
of the BPG distribution are obtained in Section 8. Finally, in
Section 9, an application using a real data set is presented, fol-
lowed by the concluding remarks.

2. Distribution function

The PG distribution is a special case of the BPG pdf given in
(2) when a = 1, b = 1. Moreover, the GPG distribution is ob-
tained from (2) when b = 1. Plots of the BPG pdf are given in
Fig. 1.

Forlz < 1and b > 0 real non-integer, we have
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Figure 1  Plots of the BPG pdf for different values of parameters

(a, b, 0,0, p).

If b > 0 is an integer, the sum in (2) stops at b — 1. Then the
cumulative distribution function (Cdf) of the BPG distribution
is given by

1o (1-"Y
Bla,b) la a+1 -0’ +

b(bil)(bik+1) at+k
kl(a+ k) (=1

AB at+k
) ‘e
Y, g
1-0()

3. Median, mode and hazard rate function

G(x) =

x> o 4)

Theorem 1. The median of the BPG distribution is at the
following approximate point

—0(¢ B(a 1) VP

m= o |:1 a
1 — ($B(a,b))

Proof. Deriving the median m from the well-known fact
G(m) =1 and the Cdf (4), we obtain
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L1 (1-® “+
B(a,b) la a+1 ]_g(%)/’

po—1)..(b—k+1) e (1=@"\T 1
+ ( 1) (1_0(£)ﬁ> + 2

K(a+k)

m

N
Since the sum on the LHS is convergent for (17(m) ) <1,
taking as a first approximation
BN\ ¢
1 (2
4)/% ~ < B(a, b).
1-0G)") 2

Thus an approximate value for the median will be the value gi-
ven by (5). O

For the BPG distribution, we now investigate the unimo-
dality property by the following theorem.

Theorem 2. The BPG distribution is unimodal at the following
approximate point

w((a— DB+00 ~ap) 1>1/ﬁ.

bp+1 ©)

Proof. The derivative of Eq. (2) is calculated and setting

g(a
(@+56)0®" (@—1@®" 2
( 1+—0(%(>'“ ) 1—1@()"2 “(+5) (?)> 7

This leads to

1Y\ son\28 1 1 o\ F 1
01— ) (= b—1+=+0(=— —-) — [ b+=|=0.
( /f) ) +(“+ 5t <ﬁ “))(x) (+/f)
Solving the second order equation for (f)ﬂ, we can then deduce

the approximate mode in (6). [

The hazard (failure rate) function — an important quantity
characterizing life phenomena — can, thus, be obtained from

3
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Figure 2 Plots of hazard rate function of BPG for different

values of parameters (a, b, 0, «, f3).

h(x) = 25 Plots of the hazard rate function are given in

-G
Fig. 2 for different values of the parameters.

The derivative of Eq. (7) is

o _B[@ DR @rmol)™ 1, 1y ey
e N e

For0 < a < 1, we obtain #'(x) < 0,Vx . Hence, using Glaser’s
theorem [17], the hazard rate function /(x) is decreasing. How-
ever, for a > 1, for both cases 0 < % and 0 > %, the hazard
rate function /A(x) is decreasing.

4. Moment generating function

The rth moment of a random variable X following the BPG
distribution is given by:

o (1-0) r r r
=——>B(b—- F b,b—— b——.,0]).
B(a,b) ﬂaa 247 a+ ) ﬂ7a+ ﬁ7

(8)
For the special case ¢ = b = 1, the rth moment derived in
(8) reduces to the case given by the following

0 nenfl

EX")=pa"(1-10 .

() = po (1= 03 g

Simply, the mean of a random variable X following the
BPG distribution can be written as:

a(1—0) 1 1 1
E(X)=——2B(b—-,a),F — —
( ) B([l,b) b B,a 26 a+b,b ﬁ,(l‘f'b ﬁ,(‘)
The moment generating function is then given as follows:

M (f)*il—rMB b—Lia)oF (atbb—Lavb-L 0
X - g I‘! B([l,b) ﬁa 247 5 'B, [)), .
9)

E(X7)

where the hypergeometric function is defined as

2 (%ﬂ,y,z):iMz’

r=0 ("/), ﬁ’

(o), =o(a+1)...(a+r—1),(a);=1.

5. Mean deviation of the BPG

In case of symmetric distributions (the deviation from the
mean) or in case of skewed distributions (deviation from the
median), the deviations from the mean or the median can be
used as a measure of spread in a population. Let X be a beta
Pareto geometric random variable with mean p = E(X) and
median M.

The mean deviation from the mean can be defined as

D() =E(IX — ul)
- / I — ulg(x)dx = 2uG(g) — 2 / xg(x)dx

_ /;G(x)dx:B(ifb)g(i) (a—+1);
© ra+k atk [ 1— (H>[f(1+l)71
X,/Z)( J )( ! )6 BG+1) -1 (10)
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The mean deviation from the median is, also, defined by:

D(m):E(IX—m\):/ v — mlg(x)dx = i —m

+2/me(x)dx:H_m+Wojb)
i@(;l)"i(jk)(tk)o(m) (i

6. Maximum likelihood estimation

We consider estimation by the method of maximum likeli-
hood. The log-likelihood for a random sample X;, X,, ..., X, is

InL=nlnf—nlna—nlnB(a,b) +nbln(1 — 06)

+ (Bb+ l)gln (g) + (a— I)Zm <1 _ (:)ﬂ)
_ (a+b)iz:l:ln <1 - 0(%)ﬂ> (12)

Differentiating (12) with respect to the parameters
(a, b, a, B, 0), we obtain

B
1. alnai(x) "~ (a- 1)52": )

2. OlnL(x) n

o5 :E-Q-blz;:ln (%) —(a— 1)21: W

20 -0 2\, 1)’3 (13)
dlnL B
4 nﬁa( 9) _ n[¥(a+b) — +Zln {1—(—_)]
- iln {1 —0( )
dln L(x)
5. gy = nl¥(a+b) = P(b)] +nin(1 - 0)

e (2) (o))

dln( I'(p)

where ¥(p) = is the digamma function.

The maximum likelihood estimates of the parameters
(a, b, o, B, 0) are the solution of Eq. (13). For interval estima-
tion and hypothesis tests on the model parameters, we require
the information matrix. The Fisher information matrix
K = K(a, b, B, 0)7, is

Ku,a Ka,b Ka.() Ka,ﬁ Ka‘oc
Ky Ky Kpp Ky,
K= : - Koy Kop Kou |,
Ksp Kpo
: K,mc

whose elements are

2
Km:_”b_z(ﬁ) (”’*f‘l_z(wr a 02)
(1—0)" \« a—2 a+b+1

1_ o0
0 Z* (a+k—2,b+1)
ok

K,p=

n
~Zw@-1
O((a

X Fi(b+1,a+b,a

(;(*9)) Zk (a+kb+1)

X Fi(b+1,a+b+2,a+b+k+1,0)

1
Kaﬁ:nﬁ . <1 a0 )
o (1—0) a+b+1
B b (1 0
K“’”_ocl—() a—1 a+b

n 0 b
K«wh——ﬁ&(”mm)

noonla—1)(1-0" 1
Kip= =+
B.B ﬁz ﬁz B(a,b) P k]

X Fi(b+l,a+ba+b+k+j—1,0)

+b+k—1,0)

n

Bla+k+j—-2,b+1)

(a+b)02(1—9”
I3 B(a,

x Fi(b+1l,a+b+2,a+b+k+j+1,0)
n(l—f))bz“:lB(
ﬁB(avb) k=1 k

X Filb+1l,a+b+2,a+b+k+1,0)

Zk— (a+k—+j,b+1)

K/gﬁ(;:([l-ﬁ-b) a+k,b+l)

_n(1-0)" 0)’
Kpo = BB(a.b) (ﬁzk (a+k,b+1)

><2F1(b+1 at+b+1l,a+b+k0)

Z —1,b+1)

k=

><2F1(b+l7a+b7a+b+k—1,0)>
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> ]
Kpy= (ZEB(tﬁ—k,b)zFl(b,cH—b—i-1,a+b+k,9)>
1

Ko =y <a+b+1)
ilers)
i e5)

Koo =n[P'(a+b) — ¥'(a)]

KH,a = -

Q
+

Kop = —

K., =n¥'(a+b)
Kb,}, = n[‘l”(a + b) — 'P,(b)]
7. The entropy

The entropy of a random variable X is a measure of uncer-
tainty variation. Shannon’s entropy is defined by

hate) =~ [ " g(x) logg(x)dx =

o)

E(~logg).

Substituting the BPG distribution given in Eq. (2), the entropy
is given by

I(g) = log B(a, b) — 1og§ — blog(1 - 0)

—(a— I)E[log (1 - (;)ﬁ)]

+(a+ b)E[log (1 - 0(;)5)]

~ (8o + 1)E[log (%] (14)
where

=1
)Z§B(a+k,b)2F.(b,a+b,a+b+k,0)
k=1

£loe ()] = frs

(15)
E{log (1 _ (%)”)} __ (;(;Hb))bki/ch(” b+k)
x2F\(b+k,a+b,a+b+k,0) (16)
E{log (1 —0(§)ﬁﬂ - _(;(;,?) (jck Bla,b+k)

><2F1(b+k,a+b,a+b+k,9) (17)

Thus, we can finally write Shannon’s entropy as follows:

—logé(l -0

h.?h(g) = IOgB((l, b)
(ﬁb+ >
a+k,b)
o T
><2F1(b,a+b,a+b+k,9)
(1-0)"& ((a—l)—(a+b)9k)3(a bk

B(a,b) k
X Fi(b+k,a+b,a+b+k,0)

8. Order statistics

Order statistics play an important role in life testing, reliability
and replacement policy situations, where a practitioner needs
to predict the failure of future items based on items of a few
early failures. These predictors are often based on moments
of order statistics. Let X, X,, ..., X, be independent and iden-
tically distributed (i.i.d.) random variables with common Cdf
F(x) and pdf f(x), fix) > 0 for all x such that 0 < o < x.
Let X, <Xy <+ < X,, be the corresponding order
statistics.

We now derive an explicit expression for the density func-
tion of the ith order statistic X;,,, say f;.,(x), in a random sam-
ple of size n from the BPG distribution. It can be easily
written

Sfin(x) = m;<n l— i) (_1)/[G(x)]i+171g(x).

Substituting with the Cdf given in Eq. (4), taking into account
that

[G(XHHI—I _ | Z

AP a(i+1—1)+k,
(=6 x>0
7
1-0()

Clkr, .. kisi)

where  C(ky,... ki) = ¢ X oo X €y ys ki =ki+---+
- r(b)(=1)"
ki+l—1» Ck, = Blab) T (b—kn)k (atkr)
We obtain the following density function
n—i
. (-1
: S > clk )
Jin¥) = ) =y 1y Kiio
= B(i,n—i+1) oo

a(i+1—1)+k,
1 (%)B
X : b (X).

This can be rewritten as a linear combination of the form

n—i o)

Jin(x) = Z Z Wit 8atitiy k. 5(X), (18)

=0 ky oo Keg

where g, ,(x) is the pdf of the BPG distribution given in (1)
and

n—i !
( ; )(_1) Clkyy. .. ki) Bla(i+ 1) + k., b)
Blin—i+1) B(a,b) .

Several mathematical properties of the BPG order statistics
such as the ordinary moments, moment generating function,
etc. can be then calculated. The first moment of the ith order
statistic is determined as follows:

Wi =

i B(a(i+l)+k*,bf%>

E(Xi:n) = Wi OC(] — 6)/) -
/Z(;k..__zk,‘:, . : B(a(i+ 1) + k., b)

><2F1 (b*

1 1
7,a+b,a+b77,9).
B B
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Table 1 Maximum likelihood estimates for the parameters.

B a b & p
p 0.361774 17.88
GP 1.69531 17.88 67.8204
BP 10.1926 36.7657 0.0412693 17.88
BGW 1.01962 8.85534 0.0208868 2 0.676527
BGP 1.10409 1.939 2.76615 17.88 17.931
BPG 1.87561 4.82583 0.267425 15.7246 0.385339
Table 2 The log-likelihood functions for the data sets.
Distribution P GP BP BGP BPG BGW

—129.80 —416.84 —156.99 —330.10 —89.7034 —255.3088
Table 3 AIC and BIC values for the given data set.

P GP BP BGP BPG BGW

AIC 267.6117 841.673 317.9774 666.199 187.40425 520.61751
BIC 265.0587 839.1199 316.7008 664.284 184.85116 517.42615

9. Application to real data

In this section we fit the BPG distribution to an example of an
uncensored data set from Caroni [18] consisting of 23 observa-
tions of ball bearing data:

17.88,28.92, 33.00,41.52,42.12, 45.60, 48.48, 51.84, 51.96,

54.12,55.56,67.80, 68.64, 68.64, 63.88,84.12,93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.40.

The maximum likelihood parameters using the Pareto (P),
Generalized Pareto (GP), Beta Pareto (BP). Beta Generalized
Weibull (BGW), Beta Generalized Pareto (BGP), and Beta
Pareto Geometric (BPG) distributions are given in Table 1.

The following table (Table 2) lists the values of the log-like-
lihood to all six models for this data set.

BPG BGW

In addition to the MLEs of the parameters and the log-
likelihood functions for the data set, the values of the Akaike
information criterion (AIC) and the Bayesian information
criterion (BIC) for the six distributions are deduced in
Table 3.

It is clear that the BPG yields the highest value of the log-
likelihood function for the data set, and hence we can conclude
that the BPG model is better than the other distributions to fit
this data set. Also, we can see from the numerical results in
Table 3, the AIC value for the BPG model is the smallest value
among those values, and hence our new model can be chosen
as the best model.

10. Concluding remarks

In this work we introduce the Beta Pareto Geometric (BPQG)
distribution because of the wide usage of the Pareto geometric
distribution and the fact that the current generalization pro-
vides means of its continuous extension to still more complex
situations. We have derived various properties of the beta Par-
eto geometric distributions, including the moment generating
function and the rth generalized moment. Discussion of the
estimation procedure by maximum likelihood has been intro-
duced followed by the Fisher information matrix. Finally, we
demonstrate an application to real data. In conclusion, the
beta Pareto geometric class of distributions provides a rather
general and flexible framework for statistical analysis. It unifies
several previously proposed families of distributions, therefore
yielding a general overview of these families for theoretical
studies, and it also provides a rather flexible mechanism for fit-
ting a wide spectrum of real world data sets. We hope that this
generalization may attract wider application in reliability and
biology.
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Appendix A. The elements of the information matrix are cal-
culated as follows:

2
Ky, — E(_@ lnL>
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