

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE

Commutative fundamental (m, n)-modules

S.M. Anvariyeh ^a, S. Mirvakili ^b, B. Davvaz ^{a,*}

Received 13 November 2012; revised 2 June 2013; accepted 13 June 2013 Available online 1 August 2013

KEYWORDS

(*m*, *n*)-Hyperring; (*m*, *n*)-Hypermodule; Fundamental relation; Commutative fundamental (*m*, *n*)-module **Abstract** In this paper, we introduce the concept of fundamental relation θ^* on an (m, n)-hypermodule M as the smallest equivalence relation such that M/θ^* is a commutative (m, n)-module, and then some related properties are investigated.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 16Y99; 20N20

© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

Open access under CC BY-NC-ND license.

1. Introduction

The notion of an n-ary group was introduced by Dörnte [1], as a natural generalization of group. One can find the basic results on n-ary groups in Post [2]. The notion of n-ary hypergroup was first introduced by Davvaz and Vougiouklis [3] as a generalization of n-ary group, and studied mainly by many authors, for example see [4,5]. Let H be a non-empty set and h be a mapping $h: H \times H \to \wp^*(H)$, where $\wp^*(H)$ is the set of all non-empty subsets of H. Then, h is called a *binary hyperoperation* on H. We denote by H^n the cartesian product $H \times \cdots \times H$, where H appears n times and an element of H^n will be denoted by (x_1, \ldots, x_n) , where $x_i \in H$ for any i with

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

 $1 \le i \le n$. In general, a mapping $h: H^n \to \wp^*(H)$ is called an n-ary hyperoperation and n is called the arity of the hyperoperation. Let h be an n-ary hyperoperation on H and A_1, \ldots, A_n be non-empty subsets of H. We define $h(A_1, \ldots, A_n) = \bigcup \{h(x_1, \ldots, x_n) | x_i \in A_i, i = 1, \ldots, n\}$. We shall use the following abbreviated notation: the sequence $x_i, x_{i+1}, \ldots, x_j$ will be denoted by x_i^j . Also, for every $a \in H$, we write $h(a, \ldots, a) = h\binom{n}{a}$ and for $j < i, x_i^j$ is the empty set. In this convention, $h(x_1, \ldots, x_i, y_{i+1}, \ldots, y_j, x_{j+1}, \ldots, x_n)$ will be written $h\binom{i}{n}$ and i is an i-ary groupoid and i is i-ary i-

$$h_{(l)}\left(x_1^{l(n-1)+1}\right) = h\left(h\left(\dots, h\left(h\left(x_1^n\right), x_{n+1}^{2n-1}\right), \dots\right), x_{(l-1)(n-1)+2}^{l(n-1)+1}\right)$$

is denoted by $h_{(l)}$. A non-empty set H with an n-ary hyperoperation $h: H^n \to P^*(H)$ is called an n-ary hypergroupoid and is denoted by (H, h). An n-ary hypergroupoid (H, h) is an n-ary semihypergroup if the following associative axiom holds:

$$h\big(x_1^{i-1}, h\big(x_i^{n+i-1}\big), x_{n+i}^{2n-1}\big) = h\Big(x_1^{j-1}, h(x_j^{n+j-1}), x_{n+j}^{2n-1}\Big)$$

for every $i, j \in \{1, 2, ..., n\}$ and $x_1, x_2, ..., x_{2n-1} \in H$.

^a Department of Mathematics, Yazd University, Yazd, Iran

b Department of Mathematics, Payame Noor University, PO Box 19395-3697, Tehran, Iran

^{*} Corresponding author. Tel.: +98 3518122711. E-mail addresses: anvariyeh@yazd.ac.ir (S.M. Anvariyeh), saeed_mirvakili@pnu.ac.ir (S. Mirvakili), davvaz@yazd.ac.ir (B. Davvaz).

S.M. Anvariyeh et al.

An n-ary hypergroupoid (H,h) is called commutative, if for every $\sigma \in \mathbb{S}_n$, we have $h(x_1^n) = h\left(x_{\sigma(1)}^{\sigma(n)}\right)$. An n-ary semihypergroup (H,h), in which the equation $b \in h(a_1^{i-1},x_i,a_{i+1}^n)$ has the solution $x_i \in H$ for every $a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n,b \in H$ and $1 \le i \le n$, is called an n- ary hypergroup. Furthermore, (m,n)-rings have been introduced by Crombez [6] and then investigated by Crombez and Timm [7], Dudek [8], Iancu [9]. Recently, the notion of (m,n)-hyperrings has been defined by Mirvakili and Davvaz [10] obtaining (m,n)-rings from (m,n)-hyperrings by fundamental relations. Also, the principal notions of hyperstructure theory can be found in [11,12].

Definition 1.1. Let R be a non-empty set, f be an m-ary hyperoperation on R and g be an n-ary hyperoperation on R. An (m, n)-hyperring is an algebraic hyperstructure (R, f, g), which satisfies the following axioms:

- (1) (R, f) is an m-ary hypergroup,
- (2) (R, g) is an *n*-ary semihypergroup,
- (3) the *n*-ary hyperoperation *g* is distributive with respect to the *m*-ary hyperoperation *f*, i.e.,

$$g(a_1^{i-1}, f(x_1^m), a_{i+1}^n) = f(g(a_1^{i-1}, x_1, a_{i+1}^n), \dots, g(a_1^{i-1}, x_m, a_{i+1}^n)),$$

for every $a_1^{i-1}, a_{i+1}^n, x_1^m \in R, \ 1 \le i \le n.$

(R, f, g) is called a *commutative* (m, n)-hyperring if (R, f) and (R, g) are commutative. A construction of an (m, n)-hyperring (R, f, g) of a hyperring $(R, +, \cdot)$ was presented by Mirvakili and Davvaz [10] as follows:

Example 1. Let $(R, +, \cdot)$ be a hyperring. Let f be an m-ary hyperoperation and g be an n-ary operation (clearly, any n-ary operation is an n-ary hyperoperation) on R as follows:

$$f(x_1^m) = \sum_{i=1}^m x_i, \quad \forall x_1^m \in R,$$
$$g(x_1^n) = \prod_{i=1}^n x_i, \quad \forall x_1^n \in R.$$

Then, (R, f, g) is an (m, n)-hyperring and denoted by $(R, f, g) = der_{(m, n)}(R, +, \cdot)$.

2. (m, n)-hypermodules

In [13], Anvariyeh et al. introduced the class of (m, n)-hypermodules over (m, n)-hyperrings. They defined the fundamental relation ϵ^* on (m, n)-hypermodules. In [14], Anvariyeh and Mirvakili considered a special kind of (m, n)-hypermodules, called canonical (m, n)-hypermodule, and a special kind of (m, n)-hyperrings, called Krasner (m, n)-hyperring [10]. Then, in [15], Belali et al. defined the class of free and cyclic canonical (m, n)-hypermodules over Krasner (m, n)-hyperrings. In this section, we recall the definition of (m, n)-hypermodules [13].

Definition 2.1. Let M be a non-empty set. Then, M = (M, h, k) is an (m, n)-hypermodule over an (m, n)-hyperring R, if (M, h) is an m-ary hypergroup and the map

$$k: \underbrace{R \times \ldots \times R}_{n-1} \times M \to \wp^*(M)$$

satisfies the following conditions:

(1)
$$k(r_1^{n-1}, h(x_1^m)) = h(k(r_1^{n-1}, x_1), \dots, k(r_1^{n-1}, x_m)),$$

(2) $k(r_1^{i-1}, f(s_1^m), r_{i+1}^{n-1}, x) = h(k(r_1^{i-1}, s_1, r_{i+1}^{n-1}, x), \dots, k(r_1^{i-1}, s_m, r_{i+1}^{n-1}, x)),$
(3) $k(r_1^{i-1}, g(r_i^{i+n-1}), r_{i+m}^{n+m-2}, x) = k(r_1^{n-1}, k(r_m^{n+m-2}, x)).$

If k is a scalar n-ary hyperoperation, S_1, \ldots, S_{n-1} are nonempty subsets of R and $M_1 \subseteq M$, we set $k(S_1, \ldots, S_{n-1}, M_1) = \bigcup \{k(r_1, \ldots, r_{n-1}, x) | r_i \in S_i, i = 1, \ldots, n-1, x \in M_1\}$. An (m, n)-hypermodule M is an R-hypermodule, if m = n = 2.

Example 2. Let $M = \{0,1,2\}$ and $(R,f,g) = der_{(3,2)}(\mathbb{Z},+,\cdot)$ (see Example 1). We define the commutative hyperoperation h and hyperoperation k as follows:

$$h(0,0,0) = h(0,0,2) = h(0,2,2) = h(2,2,2) = \{0,2\},\$$

$$h(0,0,1) = h(0,2,1) = h(2,2,1) = \{1\},\$$

$$h(0,1,1) = h(2,1,1) = \{0,2\},\$$

$$h(1,1,1) = \{1\},\$$

and $k: R \times M \to \wp^*(M)$,

$$k(r,x) = \begin{cases} \{0,2\} & \text{if } r \in 2\mathbb{Z} \text{ or } x \in \{0,2\}, \\ \{1\} & \text{otherwise.} \end{cases}$$

Then, (M, h, k) is an (3, 2)-ary hypermodule over (3, 2)-ary hyperring (R, f, g).

Example 3. Let R be a hyperring and M be an R-hypermodule. Then, R with m-ary hyperoperation $f(r_1^m) = \sum_{i=1}^m r_i$, and n-ary hyperoperation $g(r_1^n) = \prod_{i=1}^n r_i$, is an (m, n)-hyperring. Also, M with hyperoperation h with $h(x_1^m) = \sum_{i=1}^m x_i$, where $x_i \in M$, is an m-hypergroup. Now, we define the scalar n-ary hyperoperation k by

$$k(r_1,\ldots,r_{n-1},x):=\left(\prod_{i=1}^n r_i\right)\cdot x.$$

Then, M is an (m, n)-hypermodule over (m, n)-hyperring R.

Example 4. Let $(R, +, \cdot)$ be a hyperring and (M, +) be an R-hypermodule. If N is a subhypermodule of M, then set:

$$\begin{split} h\big(x_1^m\big) &= \sum_{i=1}^m x_i + N, \quad \forall x_1^m \in M, \\ f\big(r_1^m\big) &= \sum_{i=1}^m r_i, \quad \forall r_1^m \in R, \\ g\big(x_1^n\big) &= \prod_{i=1}^n r_i, \quad \forall r_1^n \in R, \\ k\big(r_1^{n-1}, x\big) &= \left(\sum_{i=1}^{n-1} r_i\right) \cdot x + N, \quad \forall r_1^{n-1} \in R, \quad \forall x \in M. \end{split}$$

Then, (M, h, k) is an (m, n)-hypermodule over (m, n)-hyperring (R, f, g).

Example 5. Let (H, \cdot) be a commutative almost group (i.e., a semigroup $H = H^* \cup \{0\}$, where (H^*, \cdot) is a group and 0 a two side absorbing element). Now, if $g(x_1^n) = \prod_{i=1}^n x_i$, then (H, g) is an n-ary group. For every $x_1^k \in H^*$, we define an m-ary hyperoperation f on H as follows:

$$f\left(x_{1}^{k}, \frac{(m-k)}{0}\right) = \begin{cases} 0 & k = 0, \\ \bigcup_{i=1}^{k} \{x_{i}\} & \bigcup_{i=1}^{k} x_{i}| = k, \\ H - \{x_{1}\} & k = 2, & |\bigcup_{i=1}^{k} x_{i}| = 1, \\ H & k \geqslant 3, & |\bigcup_{i=1}^{k} x_{i}| < k, \end{cases}$$

f is a commutative hyperoperation and θ is a scalar identity and $f\binom{(m)}{0} = 0$. Then, the hyperstructure (H, f, g) is an (m, n)-hyperring and therefore (H, f, g) is an (m, n)-hypermodule over the (m, n)-hyperring (H, f, g).

Leoreanu-Fotea and Corsini proved the following theorem in [16].

Theorem 2.2. Let (H, f) be an n-ary semihypergroup (n-ary hypergroup) and e be a scalar neutral element of H. For all x, $y \in H$, we define: $x * y := f\left(x, y, \binom{m-1}{e}\right)$. Then, (H, *) is a semihypergroup (hypergroup).

Theorem 2.3. Let (M, h, k) over R be an (m, n)-hypermodule such that h and f have zero scalar elements 0_R and 0_M , also 1_R be identity of g, such that:

$$\begin{split} h\begin{pmatrix} (i-1) \\ 0_M \end{pmatrix}, x, \begin{pmatrix} (m-i) \\ 0_M \end{pmatrix} &= x, & \forall x \in M \\ f\begin{pmatrix} (i-1) \\ 0_R \end{pmatrix}, r, \begin{pmatrix} (m-i) \\ 0_R \end{pmatrix} &= r, & \forall r \in R \\ g\begin{pmatrix} (i-1) \\ 1_R \end{pmatrix}, r, \begin{pmatrix} (n-i) \\ 1_R \end{pmatrix} &= r, & \forall r \in R \\ k\begin{pmatrix} (n-1) \\ 1 \end{pmatrix}, x\end{pmatrix} &= x, & \forall x \in M. \end{split}$$

Now, suppose that

$$\begin{split} x+y &:= h\bigg(x,y, \binom{m-2}{0_M}\bigg), \ \, \forall x,y \in M \\ r+s &:= f\bigg(r,s, \binom{m-2}{0_R}\bigg), \ \, \forall r,s \in R \\ r &: s = g\bigg(r,s, \binom{n-2}{1_R}\bigg), \ \, \forall r,s \in R \\ r &\circ x := k\bigg(\frac{(n-2)}{1_R}, r,x\bigg), \ \, \forall r \in R \ \, \text{and} \, \, x \in M. \end{split}$$

Then, $(M, +, \circ)$ is a hypermodule with zero element 0_M over the hyperring $(R, +, \cdot)$ with zero scalar 0_R and identity scalar 1_R . Also.

$$der_{(m,n)}(M,+,\circ) = (M,f,k)$$
 and $der_{(m,n)}(R,+,\cdot) = (R,f,g)$.

Proof. By Theorem 2.2, it is not difficult to see that (M, +) is a hypergroup, $(R, +, \cdot)$ is a hyperring and M is a hypermodule over the hyperring R. \square

Lemma 2.4. Let (M, h, k) be an (m, n)-hypermodule over an (m, n)-hyperring R. Then, N is an (m, n)-subhypermodule M over the (m, n)-hyperring R if and only if the following conditions hold:

- (1) The equation $b \in h(a_1^{i-1}, x_i, a_{i+1}^m)$ is solvable at the place i = 1 and i = m or at least one place 1 < i < m, for every $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_m, b \in N$.
- (2) For any $r_1, r_2, ..., r_{n-1} \in R$ and $y \in N$ imply that $k(r_1, r_2, ..., r_{n-1}, y) \subseteq N$.

Proof. *N* is an *m*-ary hypergroup by Theorem 2.3 of [3]. Since k is a closed scalar *n*-ary hyperoperation on *N*, then *N* is an (m, n)-subhypermodule on (m, n)-hyperring R. \square

Definition 2.5. Let (M_1, h_1, k_1) and (M_2, h_2, k_2) be two (m, n)-hypermodules over an (m, n)-hyperring R. A homomorphism from M_1 to M_2 is a mapping $\phi: M_1 \to M_2$ such that

- (1) $\phi(h_1(a_1, ..., a_m)) = h_2(\phi(a_1), ..., \phi(a_m)),$
- (2) $\phi(k(r_1, ..., r_{n-1}, a)) = k(r_1, ..., r_{n-1}, \phi(a)),$

for all $a_1^m \in M_1$, $a \in M$ and $r_1^{n-1} \in R$.

Lemma 2.6. Let (M_I, h_I, k_I) and (M_2, h_2, k_2) be two (m, n)-hypermodule over an (m, n)-hyperring R and $\phi: M_I \rightarrow M_2$ a homomorphism. Then,

- If S is an (m, n)-subhypermodule of M₁ over an (m, n)-hyperring R, then φ(S) is an (m, n)-subhypermodule of M₂.
- (2) If K is an (m, n)-subhypermodule of M_2 over an (m, n)-hyperring R, such that $\phi^{-1}(K) \neq \emptyset$, then $\phi^{-1}(K)$ is an (m, n)-subhypermodule of M_1 .

Proof.

- (1) We know $\phi(S)$ is an m-ary subhypergroup of M_2 . Let r_1 , r_2 , ..., $r_{n-1} \in R$ and $y \in \phi(S)$. Then, there exists $x \in S$ such that $\phi(x) = y$. Hence, $k(r_1, \ldots, r_{n-1}, y) = k(r_1, \ldots, r_{n-1}, \phi(x)) = \phi(r_1, \ldots, r_{n-1}, x) \in \phi(S)$.
- (2) The proof of this part is similar to (1). \Box

Let (M, h, k) be an (m, n)-hypermodule over an (m, n)-hyperring R. An equivalence relation ρ on M is called *compatible* if $a_1 \rho b_1, \ldots, a_m \rho b_m$, then for all $a \in h(a_1, \ldots, a_m)$ there exists $b \in h(b_1, \ldots, b_m)$ such that $a\rho b$, and if $r_1, \ldots, r_{n-1} \in R$, and $x\rho y$, then for all $a \in k(r_1, \ldots, r_{n-1}, x)$ there exists $b \in k(r_1, \ldots, r_{n-1}, y)$ such that $a\rho b$.

Let (M, h, k) be an (m, n)-hypermodule over an (m, n)-hyperring R and ρ be an equivalence relation on M. Then, ρ is a strongly compatible relation if $a_i\rho b_i$ for all $1 \le i \le m$, then $h(a_1, \ldots, a_m)$ $\bar{\rho}h(b_1, \ldots, b_m)$, and for every $r_1, \ldots, r_{n-1} \in R$ and $x\rho y$, then $k(r_1, \ldots, r_{n-1}, x)$ $\bar{\rho}$ $k(r_1, \ldots, r_{n-1}, y)$. Now, we recall the following theorem from [3].

S.M. Anvariyeh et al.

Theorem 2.7. Let (H, f) be an m-ary hypergroup and let ρ be an equivalence relation on H. Then, the relation ρ is strongly compatible if and only if the quotient $(H/\rho, f/\rho)$ is an m-ary group.

Now, we introduce the strong compatible relation Γ on an (m, n)-hyperring R.

Definition 2.8. Let (R, f, g) be an (m, n)-hyperring. For every $k \in \mathbb{N}$ and $l_1^s \in \mathbb{N}$, when s = k(m-1)+1, we define the relation $\Gamma_{k;l_1^s}$, as follows: $x \Gamma_{k;l_1^s} y$ if and only if there exist $x_{i1}^{ll_i} \in R$, where $t_i = l_i(n-1)+1$, $i=1,\ldots,s$ such that $\{x,y\} \subseteq f_{(k)}(u_1,\ldots,u_s)$, where for every $i=1,\ldots,s$, $u_i=g_{(l_i)}(x_{i1}^{il_i})$.

Now, set $\Gamma_k = \bigcup_{I_1^k \in \mathbb{N}} \Gamma_{k;I_1^k}$ and $\Gamma = \bigcup_{k \in \mathbb{N}^*} \Gamma_k$. Then, the relation Γ is reflexive and symmetric. Let Γ be the transitive closure of the relation Γ .

Definition 2.9. Let (R, f, g) be an (m, n)-hyperring. For every $k \in \mathbb{N}$ and $l_1^s \in \mathbb{N}$, when s = k(m-1)+1, we define the relation $\alpha_{k;l_1^s}$, as follows: $x \alpha_{k;l_1^s} y$ if and only if there exist $x_{i1}^{il_i} \in R$, $\sigma \in \mathbb{S}_n$ and $\sigma_i \in \mathbb{S}_{l_i}$, where $t_i = l_i(n-1)+1$, $i=1,\ldots,s$ such that $x \in f_{(k)}(u_1,\ldots,u_s)$ and $y \in f_{(k)}(u'_{\sigma(1)},\ldots,u'_{\sigma(s)})$, where for every $i=1,\ldots,s,u_i=g_{(l_i)}(x_{i1}^{il})$ and $u'_i=g_{(l_i)}(x_{i\sigma(1)}^{i\sigma(l_i)})$.

Now, set $\alpha_k = \bigcup_{l_1^* \in \mathbb{N}} \alpha_{k; l_1^*}$ and $\alpha = \bigcup_{k \subseteq \mathbb{N}^*} \alpha_k$. Then, the relation α is reflexive and symmetric. Let α be the transitive closure of relation α .

Theorem 2.10. [10]. The relation Γ^* is a strongly compatible relation on both m-ary hypergroup (R, f) and n-ary semihypergroup (R, g) and the quotient $(R/\Gamma^*, f/\Gamma^*, g/\Gamma^*)$ is an (m, n)-ring.

Similar to the proof of Theorem 2.10, we have:

Theorem 2.11. The relation α^* is a strongly compatible relation on both m-ary hypergroup (R, f) and n-ary semihypergroup (R, g) and the quotient $(R/\alpha^*, f/\alpha^*, g/\alpha^*)$ is a commutative (m, n)-ring.

Theorem 2.12. [13] Let (M, h, k) be an (m, n)-hypermodule over an (m, n)-hyperring R and ρ be an equivalence relation on M. The following conditions are equivalent.

- (1) The relation ρ is strongly compatible.
- (2) If $r_1, \ldots, r_{n-1} \in R$, $x_1^m, a, b \in M$ and $a\rho b$, then for every $(i = 1, \ldots, m)$, we have $h(x_1^{i-1}, a, x_{i+1}^m) \bar{\rho} h(x_1^{i-1}, b, x_{i+1}^m)$ and $k(r_1, \ldots, r_{n-1}, a) \bar{\rho} k(r_1, \ldots, r_{n-1}, b)$.
- (3) The quotient $(M/\rho, h/\rho, k/\rho)$ is an (m, n)-module over an (m, n)-hyperring R. In other words, M is an m-ary group and the scalar n-ary hyperoperation k is singleton.

Theorem 2.13 [13]. Let (M, h, k) be an (m, n)-hypermodule over (m, n)-hyperring (R, f, g) and δ be a strongly compatible relation on f and g. Let ρ be a strongly compatible relation on h such that $\rho(k(r_1^{n-1}, x_i)) = k(\delta(r_1), \ldots, \delta(r_{n-1}), \rho(x_i))$. Then, $(M/\rho, h/\rho, k/\rho)$ is an (m, n)-module on (m, n)-ring $(R/\delta, f/\delta, g/\delta)$.

3. Fundamental and commutative fundamental (m, n)-modules

Fundamental relations have an important role in the multial-gebra [17]. In [13], Anvariyeh et al. defined the fundamental relation ϵ^* on an (m, n)-hypermodule (M, h, k) such that $(M/\epsilon^*, h/\epsilon^*, k/\epsilon^*)$ is the smallest (m, n)-module over the (m, n)-ring $(R/\Gamma^*, f/\Gamma^*, g/\Gamma^*)$.

In this section, we define the fundamental relation θ^* on an (m, n)-hypermodule (M, h, k) such that $(M/\epsilon^*, h/\epsilon^*, k/\epsilon^*)$ is the smallest *commutative* (m, n)-module over the (m, n)-ring $(R/\Gamma^*, f/\Gamma^*, g/\Gamma^*)$.

Let R be a hyperring and M be a hypermodule over R. We recall the definition of relation ϵ on M as follows [20]:

$$x \in y \iff x, y \in \sum_{i=1}^{n} m'_{i}; \quad m'_{i} = m_{i} \quad \text{or } m'_{i} = \sum_{j=1}^{n_{i}} \left(\prod_{k=1}^{k_{ij}} x_{ijk}\right) z_{i},$$

$$m_{i} \in M, \quad x_{ijk} \in R, \quad z_{i} \in M.$$

The equivalence relation ϵ^* (the transitive closure of ϵ) was first introduced by Vougiouklis on hyperrings and studied mainly by many authors concerning hypermodules. Now, we recall the definition of relation θ on M as follows [18]: $x\theta y \iff \exists n \in \mathbb{N}, \ \exists (m_1, \ldots, m_n) \in M^n, \ \exists (k_1, k_2, \ldots, k_n) \in \mathbb{N}^n, \ \exists \sigma \in \mathbb{S}_n, \ \exists (x_{i1}, x_{i2}, \ldots, x_{ik}) \in R^{k_i}, \ \exists \sigma_i \in S_{n_i}, \ \exists \sigma_{ij} \in \mathbb{S}_{k_{ij}},$ such that

$$x \in \sum_{i=1}^{n} m'_{i}, \quad m'_{i} = m_{i} \quad \text{or } m'_{i} = \sum_{i=1}^{n_{i}} \left(\prod_{k=1}^{k_{ij}} x_{ijk}\right) m_{i}$$

and $y \in \sum_{i=1}^{n} m t_{\sigma(i)}$, where

$$m'_{\sigma(i)} = m_{\sigma(i)}$$
 if $m'_i = m_i$,

$$m'_{\sigma(i)} = B_{\sigma(i)} m_{\sigma(i)}$$
 if $m'_i = \sum_{j=1}^{n_i} \left(\prod_{k=1}^{k_{ij}} x_{ijk} \right) m_i$,

with

$$B_i = \sum_{i=1} n_i A_{i\sigma_i(j)}, \quad A_{ij} = \prod_{k=1}^{k_{ij}} x_{ij\sigma_{ij}(k)}.$$

The relation θ is reflexive and symmetric. We denote θ^* the transitive closure of θ .

Remark 1. If M is a hypermodule over a hyperring R, the fundamental relation ϵ^* on M, defined as the smallest equivalence relation such that the quotient M/ϵ^* is a module over the corresponding fundamental ring such that M/ϵ^* as a group, is not abelian [18–20]. But the quotient M/θ^* is a module over the corresponding fundamental ring such that M/θ^* is an abelian group.

Let M be an (m, n)-hypermodule over an (m, n)-hyperring R. We define relations ϵ and θ on M.

Definition 3.1. Let M be an (m, n)-hypermodule over an (m, n)-hyperring R. Let $x, y \in M$. Then, $x \theta y$ if and only if there exist $a, b_{ij}, c_{ijk} \in \mathbb{N}^*$, $x_i \in M$ and $x_{ijkl} \in R$, $\sigma \in \mathbb{S}_r$, $\sigma_i \in \mathbb{S}_{n-1}$, $\sigma_{ij} \in \mathbb{S}_{s_{ij}}$ and $\sigma_{ijk} \in \mathbb{S}_{l_{ijk}}$ where $1 \le i \le r = a(m-1) + 1$, $1 \le j \le n-1$, $1 \le k \le s_{ij} = b_{ij}(m-1) + 1$ and $1 \le l \le t_{ijk} = c_{ijk}(n-1) + 1$ such that

$$x \in h_{(a)}(u_1, \dots, u_r)$$
 and $y \in h_{(a)}(u'_{\sigma(1)}, \dots, u'_{\sigma(r)}),$

where $u_i = m_i$ or $k(A_{i1}^{in-1}, x_i)$, with

$$A_{ij} = f_{(b_{ij})}(B_{ij1}^{ijs_{ij}})$$
 and $B_{ijk} = g_{(c_{ijk})}(x_{ijk1}^{ijkt_{ijk}})$

and

$$u_i' = \begin{cases} m_i & \text{if } u_i = m_i \\ k(A_{i\sigma_i(1)}^{i\sigma_i(n-1)}, x_i) & \text{if } u_i = k(A_{i1}^{in-1}, x_i), \end{cases}$$

where

$$A'_{ij} = f_{(bij)}(B'^{ij\sigma_{ij}(s_{ij})}_{ij\sigma_{ij}(1)}) \text{ with } B'_{ijk} = g_{(c_{ijk})} \Big(x_{ijk\sigma_{ijk}(t_{ijk})}^{ijk\sigma_{ijk}(t_{ijk})} \Big).$$

We say that $x \in y$ if in Definition 3.1, $\sigma = id_{S_r}$, $\sigma_i = id_{S_{n-1}}$, $\sigma_{ij} = id_{S_{s_{ij}}}$ and $\sigma_{ijk} = id_{S_{t_{jk}}}$. Relations θ and ϵ are reflexive and symmetric. Let θ^* and ϵ^* be their transitive closure, respectively.

Theorem 3.2. The relation θ^* is a strongly compatible relation on M, as (m, n)-hypermodule, on both m-ary hyperoperation h and scalar n-ary hyperoperation k.

Proof. Let $a_1 \theta^* b_1, \ldots, a_m \theta^* b_m$. Then, $\theta^*(a_1) = \theta^*(b_1), \ldots, \theta^*(a_m) = \theta^*(b_m)$. For every $a \in h(a_1, \ldots, a_m)$ and $b \in h(b_1, \ldots, b_m)$, we have

$$\theta^*(a) = \theta^*(h(a_1, \dots, a_m)) = h/\theta^*(\theta^*(a_1), \dots, \theta^*(a_m))$$

= $h/\theta^*(\theta^*(b_1), \dots, \theta^*(b_m)) = \theta^*(h(b_1, \dots, b_m)) = \theta^*(b).$

Now, let $r_1, ..., r_{n-1} \in R$, $a_1, b_1 \in M$ and $a_1\theta^*b_1$. Then, for every $a \in k(r_1, ..., r_{n-1}, a_1)$ and $b \in k(r_1, ..., r_{n-1}, b_1)$, we have

$$\theta^*(a) = \theta^*(k(r_1, \dots, r_{n-1}, a_1)) = k/\theta^*(r_1, \dots, r_{n-1}, \theta^*(a_1))$$

= $k/\theta^*k(r_1, \dots, r_{n-1}, \theta^*(b_1)) = \theta^*(b).$

Theorem 3.3. Let (M, h, k) be an (m, n)-hypermodule over the (m, n)-hyperring R. Then, the quotient $(M/\theta^*, h/\theta^*, k/\theta^*)$ is an (m, n)-hypermodule over an (m, n)-hyperring R, where

$$h/\theta^*(\theta^*(a_1),\ldots,\theta^*(a_m)) := \{\theta^*(a)|a \in h(a_1,\ldots,a_m)\}$$

= $\theta^*(h(a_1^m))$

and

$$k/\theta^*(r_1,\ldots,r_{n-1},\theta^*(a)) := \{\theta^*(x)|x \in k(r_1,\ldots,r_{n-1},a)\}$$

= \theta^*(k(r_1^{n-1},a)).

Moreover, $(M/\theta^*, h/\theta^*)$ is an abelian group and for every $r_1, ..., r_{n-1} \in R$, $x \in M$ and $\tau \in \mathbb{S}_{n-1}$ we have $k/\theta^*(r_1, ..., r_{n-1}, \theta^*(a)) = k/\theta^*(r_{\tau(1)}, ..., r_{\tau(n-1)}, \theta^*(a))$.

Proof. θ^* is a strongly compatible relation on M by Theorem 3.2. Now, by Theorem 2.12 and definition of relation θ , the proof is completed. \square

Example 6. Let (R, f, g) be a non-commutative (m, n)-ring. Then, (R, f, g) is an (m, n)-module over the (m, n)-ring (R, f, g). It easy to see that $\epsilon^* = \Gamma^* = \{(x, x) | x \in R\} \neq \theta^* = \alpha^*$.

Example 7. Let (G, f) be a non-commutative m-ary group and $a \in G$. Let H be a non-empty set such that $H \cap G = \emptyset$. Let f_H be an m-ary hyperoperation define on $G \cup H$ as follows:

$$f_H(x_1^m) = \begin{cases} f(y_1^m) & \text{if } f(y_1^m) \neq a \\ \{a\} \cup H & \text{if } f(y_1^m) = a \end{cases} \text{ for all } x_1^m \in G \cup H,$$

where $y_i = x_i$ if $x_i \in G$ and $y_i = a$ if $x_i \in H$. Then, $(R = G \cup H, f_H)$ is an *m*-ary hypergroup. Now, we define an *n*-ary hyperoperation g_H as follows:

$$g_H(x_1^n) = \{a\} \cup H$$
, for all $x_1^n \in R$.

It is not difficult to see that (R, f_H, g_H) is an (m, n)-hyperring. Let M = R, $h = f_G$ and $k = g_H$, then (M, h, k) is an (m, n)-hypermodule over the (m, n)-hyperring R and

$$\{(x,x)|x\in M\}\neq \epsilon^*=\Gamma^*\neq \theta^*=\alpha^*.$$

We consider the natural map π : $M \to M/\theta^*$, where $\pi(x) = \theta^*(x)$.

Theorem 3.4. [13]Let (M_1, h_1, k_1) and (M_2, h_2, k_2) be two (m, n)-hypermodules over an (m, n)-hyperring R, and let ϕ : $M_1 \rightarrow M_2$ be a homomorphism. Then, there exists a compatible relation ρ on M_1 and a homomorphism ψ : $M_1/\rho \rightarrow M_2$ such that $\psi \circ \pi = \phi$.

Theorem 3.5. [13]Let ρ and ϑ be compatible relations on (m, n)-hypermodule (M, h, k) over an (m, n)-hyperring R, such that $\rho \subseteq \vartheta$. Then, there exists a compatible relation μ on $(M/\rho, h/\rho, k/\rho)$ such that $(M/\rho)/\mu$ is isomorphic to M/ϑ , as (m, n)-hypermodules.

Let (M_1, h_1, k_1) and (M_2, h_2, k_2) be two (m, n)-hypermodules over an (m, n)-hyperring R. Define the direct hyperproduct $(M_1 \times M_2, h_1 \times h_2, k_1 \times k_2)$ to be the (m, n)-hypermodule whose universe is the set $M_1 \times M_2$ and such that for $a_i \in M_i$, $a_i' \in M_2$, $1 \le i \le m$,

$$(h_1 \times h_2)((a_1, a'_1), \dots, (a_m, a'_m))$$

= $\{(a, a') | a \in h_1(a_1, \dots, a_m), a' \in h_2(a'_1, \dots, a'_m)\},$

and

$$(k_1 \times k_2)(r_1, \dots, r_{n-1}, (x, x')) = \{(a, a') | a \in k_1(r_1, \dots, r_{n-1}, x), a' \in k_2(r_1, \dots, r_{n-1}, x')\}.$$

The mapping π_i : $M_1 \times M_2 \to M_i$, i = 1, 2, defined by $\pi_i((a_1, a_2)) = a_i$, is called the *projection map* on the *i*th coordinate of $M_1 \times M_2$, also the mapping π_i : $M_1 \times M_2 \to M_i$ is an onto homomorphism.

If (M, h, k) is an (m, n)-hypermodule, then $\hat{\theta}$ denoted the transitive closure of the relation $\theta = \bigcup_{p \ge 0} \theta_p$, where θ_0 is the diagonal, i.e., $\theta_0 = \{(x, x) | x \in M\}$ and for every integer $p \ge 1$, θ_p is the relation defined as follows:

$$x\theta_p y$$
 if and only if $x \in h_{(p)}(u_1^r)$, $y \in h_{(p)}(u_{\sigma(1)^{\sigma(r)}})$, with $r = h(m-1) + 1$,

where u_i and u_i' are defined in Definition 3.1. If $x\theta_0 y$ (i.e., x = y) then, we write $\{x, y\} \subseteq u_{(0)}$. We define θ^* as the smallest equivalence relation such that the quotient $(M/\theta^*, h/\theta^*, k/\theta^*)$ is an (m, n)-module over an (m, n)-hyperring R, where M/θ^* is the set of all equivalence classes. The θ^* is called the *commutative fundamental equivalence relation*.

Lemma 3.6. Let (M, h, k) be an (m, n)-hypermodule over an (m, n)-hyperring R. Then, for every $p \in \mathbb{N}^*$, we have $\theta_p \subseteq \theta_{p+1}$.

S.M. Anvariyeh et al.

Proof. Let $x\theta_p y$. Then, there exists $p \in \mathbb{N}$, and u_1, \ldots, u_r , where r = p(m-1) + 1, such that $x \in h_{(p)}(u_1')$ and $y \in h_{(p)}(u_{\sigma(1)^{\sigma(r)}}')$. By reproducibility of h, there exist v_1, \ldots, v_m , such that $u_1 \subseteq h(v_1, \ldots, v_m)$. If $\sigma(t) = 1$, then

$$x \in h_{(p)}(u_1^r) = h_{(p)}(u_1, \dots, u_r) \subseteq h_{(p)}(h(v_1, \dots, v_m), u_2, \dots u_r)$$

= $h_{(p+1)}(v_1^p, u_2^r),$

$$y \in h_{(p)}\left(u'_{\sigma(1)^{\sigma(r)}}\right) = h_{(p)}\left(u'_{\sigma(1)}\dots,u'_{\sigma(t-1)},u'_{\sigma(t)},u'_{\sigma(t)},u'_{\sigma(t+1)},\dots,u'_{\sigma(r)}\right)$$

$$\subseteq h_{(p)}(u'_{\sigma(1)}\dots,u'_{\sigma(t-1)},h(v_{1},\dots,v_{m}),$$

$$u'_{\sigma(t+1)},\dots,u'_{\sigma(r)}) = h_{(p+1)}(u'_{\sigma(1)}\dots,u'_{\sigma(t-1)},$$

$$v_{1},\dots,v_{m},u'_{\sigma(t+1)},\dots,u'_{\sigma(r)}).$$

This means that $x\theta_{p+1}y$. \square

Corollary 3.7. Let (M, h, k) be an (m, n)-hypermodule over an (m, n)-hyperring R. Then, for every $p \in \mathbb{N}^*$, we have $\theta_p^* \subseteq \theta_{p+1}^*$.

Theorem 3.8. The fundamental relation θ^* is the transitive closure of the relation θ , i.e., $(\theta^* = \hat{\theta})$.

Proof. Similar to the proof of Theorem 2.10 of [3], we know that the quotient $M/\hat{\theta}$ is an *m*-ary group, where $h/\hat{\theta}$ is defined in the usual manner

$$h/\hat{\theta}(\hat{\theta}(x_1),\ldots,\hat{\theta}(x_m)) = \{\hat{\theta}(y)|y \in h(\hat{\theta}(x_1),\ldots,\hat{\theta}(x_m))\}$$

for all $x_1, ..., x_m \in M$.

Now, we prove that $M/\hat{\theta}$ is an (m, n)-module over an (m, n)-hyperring R. The scalar n-ary hyperoperation $k/\hat{\theta}$ in $M/\hat{\theta}$ is defined in the usual manner:

$$k/\hat{\theta}(r_1,\ldots,r_{n-1},\hat{\theta}(x)) = {\{\hat{\theta}(y)|y \in k(r_1,\ldots,r_{n-1},x)\}},$$

for all $r_1, \ldots, r_{n-1} \in H$ and $x \in M$. Suppose $a \in \hat{\theta}(x)$. Then, we have $a\hat{\theta}x$, if there exist x_1, \ldots, x_m with $x_1 = a, \ldots, x_m = x$ such that $\{x_i, x_{i+1}\} \subseteq h_{(i)}$. So every element $z \in k(r_1, \ldots, r_{n-1}, x_i)$ is equivalent to every element to $k(r_1, \ldots, r_{n-1}, x_{i+1})$. Therefore, $k/\theta^*(r_1, \ldots, r_{n-1}, \theta^*(x))$ is a singleton. So, we can write $k/\theta^*(r_1, \ldots, r_{n-1}, \theta^*(x)) = \theta^*(y)$ for all $y \in k(r_1, \ldots, r_{n-1}, \theta^*(x))$.

Moreover, since k has n-ary hypermodule scalar properties, consequently, $k/\hat{\theta}$ has (m, n)-hypermodule scalar properties.

Now, let θ be an equivalence relation on M such that M/θ is (m, n)-hypermodule over an (m, n)-hyperring R. Then, for all $x_1, \ldots, x_m \in M$, we have $h/\theta(\theta(x_1), \ldots, \theta(x_m)) = \theta(y)$ for all $y \in h(\theta(x_1), \ldots, \theta(x_m))$. Also $k/\theta(r_1, \ldots, r_{n-1}, \theta(x)) = \theta(z)$, for all $z \in k(r_1, \ldots, r_{n-1}, \theta(x))$. But also, for every $x_1, \ldots, x_m, x \in M, r_1, \ldots, r_{n-1} \in R, A_i \subseteq \theta(x_i), (i = 1, \ldots, m)$ and $A \subseteq \theta(x)$, we have

$$h/\theta(\theta(x_1),\ldots,\theta(x_m))=\theta(h(x_1,\ldots,x_m))=\theta(h(A_1,\ldots,A_m))$$

and

$$k/\theta(r_1, \dots, r_{n-1}, \theta(x)) = \theta(k(r_1, \dots, r_{n-1}, x))$$

= $\theta(k(r_1, \dots, r_{n-1}, A)).$

Therefore, $\theta(a) = \theta(u_{(i)})$ for all $i \ge 0$ and for all $a \in h_u$ or k. So for every $a \in M$, $x \in \theta(a)$ which implies $x \in \theta(a)$. But θ is transitively closed, so we obtain $x \in \theta^*(a)$ which implies $x \in \theta(a)$. Hence, the relation θ^* is the smallest equivalence relation on

M such that M/θ^* is an (m, n)-hypermodule over an (m, n)-hyperring R. \square

Theorem 3.9. Let (M, h, k) be an (m, n)-hypermodule over (m, n)-hyperring (R, f, g). Then, $(M/\theta^*, h/\theta^*, k/\theta^*)$ is a commutative (m, n)-module on a commutative (m, n)-ring $(R/\alpha^*, f/\alpha^*, g/\alpha^*)$.

Proof. By Theorem 3.2, θ^* is a strongly compatible relation on M, and similar to the proof of Theorem 4.1 of [3], $(M/\theta^*, h/\theta^*)$ is an m-ary group. Also, by Theorem 2.11, R/α^* , $(f/\alpha^*, g/\alpha^*)$ is a commutative (m, n)-ring. Now, let $r_1, \ldots, r_{n-1} \in R$, $x \in M$ and define $k_{\theta^*}(\alpha^*(r_1), \ldots, \alpha^*(r_{n-1}), \theta^*(x)) := k(\alpha^*(r_1), \ldots, \alpha^*(r_{n-1}), \theta^*(x))$. If $x \in h_a(u_1, \ldots, u_r)$ and $r_i \in f_{k_i}(u'_1, \ldots, u'_s)$. Then,

$$k(\alpha^*(r_1)\ldots,\alpha^*(r_{n-1}),\theta^*(x))\subseteq k(f_{k_1},\ldots,f_{k_{n-1}},h_a(u_1,\ldots,u_r))$$

= $h_a(k(f_{k_1},\ldots,f_{k_{n-1}},u_1),\ldots,k(f_{k_1},\ldots,f_{k_{n-1}},u_r)).$

So, for every $r'_1 \alpha^* r_1, \dots, r'_{n-1} \alpha^* r_{n-1}$ and $y \theta^* x$, we have $k(\alpha^*(r'_1), \dots, \alpha^*(r'_{n-1}), \theta^*(y)) \subseteq h_a(k(f_{k_1}, \dots, f_{k_{n-1}}, u_1), \dots, k(f_{k_1}, \dots, f_{k_{n-1}}, u_r))$.

Since M is an (m, n)-hypermodule on (m, n)-hyperring R, the properties of M as an (m, n)-hypermodule guarantee that the m-ary group M/θ^* is an $(m, n) - ary R/\alpha^*$ -module. \square

Acknowledgement

The authors are highly grateful to the referees for their valuable comments and suggestions for improving the paper.

References

- [1] W. Dörnte, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928) 1–19.
- [2] E.L. Post, Polyadic groups, Trans. Am. Math. Soc. 48 (1940) 208–350.
- [3] B. Davvaz, T. Vougiouklis, N-ary hypergroups, Iran. J. Sci. Technol. Trans. A: Sci. 30 (A2) (2006) 165–174.
- [4] V. Leoreanu-Fotea, B. Davvaz, n-Hypergroups and binary relations, Eur. J. Combin. 29 (2008) 1207–1218.
- [5] V. Leoreanu-Fotea, B. Davvaz, Join n-spaces and lattices, J. Mult.-Valued Logic Soft Comput. 15 (5–6) (2009) 421–432.
- [6] G. Crombez, On (n,m)-rings, Abh. Math. Semin. Univ. Hamburg 37 (1972) 180–199.
- [7] G. Crombez, J. Timm, On (n,m)-quotient rings, Abh. Math. Semin. Univ. Hamburg 37 (1972) 200–203.
- [8] W.A. Dudek, On the divisibility theory in (m,n)-rings, Demonstratio Math. 14 (1981) 19–32.
- [9] L. Iancu, Free R-n-modules, Quasigr. Rel. Syst. 6 (1999) 13-
- [10] S. Mirvakili, B. Davvaz, Relations on Krasner (m,n)-hyperrings, Eur. J. Combin. 31 (2010) 790–802.
- [11] P. Corsini, Prolegomena of Hypergroup Theory, second edition, Aviani editor, 1993.
- [12] P. Corsini, V. Leoreanu, Applications of Hyperstructures Theory, Advanced in Mathematics, Kluwer Academic Publisher, 2003.
- [13] S.M. Anvariyeh, S. Mirvakili, B. Davvaz, Fundamental relation on (m,n)-ary hypermodules over (m,n)-ary hyperrings, Ars Combin. 94 (2010) 273–288.

- [14] S.M. Anvariyeh, S. Mirvakili, Canonical (m,n)-ary hypermodules over Krasner (m,n)-ary hyperrings, Iran. J. Math. Sci. Inform. 7 (2012) 17–34.
- [15] Z. Belali, S.M. Anvariyeh, S. Mirvakili, Free and cyclic canonical (m,n)-ary hypermodules, Tamkang J. Math. 42 (2011) 105–118.
- [16] V. Leoreanu-Fotea, P. Corsini, Isomorphisms of hypergroups and of n -hypergroups with applications, Soft Comput. 10 (2009) 985–994.
- [17] C. Pelea, On the fundamental relation of a multialgebra, Ital. J. Pure Appl. Math. 10 (2001) 141–146.
- [18] S.M. Anvariyeh, S. Mirvakili, B. Davvaz, θ^* -Relation on hypermodules and fundamental modules over commutative fundamental rings, Comm. Algebra 36 (2008) 622–631.
- [19] T. Vougiouklis, Hyperstructures and their Representations, vol. 115, Hadronic Press, Inc., Palm Harber, USA, 1994.
- [20] T. Vougiouklis, The fundamental relation in hyperrings: the general hyperfield, in: Proc. Fourth Int. Congress on Algebraic Hyperstructures and Applications (AHA 1990), World Scientific, 1991, pp. 203–211.