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1. Introduction

The notion of an n-ary group was introduced by Dornte [1], as
a natural generalization of group. One can find the basic re-
sults on n-ary groups in Post [2]. The notion of n-ary hyper-
group was first introduced by Davvaz and Vougiouklis [3] as
a generalization of n-ary group, and studied mainly by many
authors, for example see [4,5]. Let H be a non-empty set and
h be a mapping h: Hx H— go*(H), where gJ*(H) is the set of
all non-empty subsets of H. Then, & is called a binary hyperop-
eration on H. We denote by H" the cartesian product
Hx---x H, where H appears n times and an element of H"
will be denoted by (xy, ..., x,), where x; € H for any i with
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1 <i < n In general, a mapping h: H" — p'(H) is called an
n-ary hyperoperation and n is called the arity of the hyperoper-
ation. Let h be an n-ary hyperoperation on H and A4, ..., A, be
non-empty subsets of H. We define h(Ay, ..., 4,) = U {h(x,
e x,,)| X, € A, i = 1,...,n}. We shall use the following abbre-
viated notation: the sequence x;, x; 1, . . ., X; will be denoted by

x]. Also, for every a € H, we write h(a, ... ,a) = h(én)) and

for j < i, x{ is the empty set. In this convention, A(xy, ..., X;
Vitls «oo Vi Xja1s .o X,) Will be written h(x’i,yffﬂ,xﬁ,). If

h is an n-ary groupoid and ¢t = I(n — 1) + 1, then the t-ary
hyperoperation A, given by

(3770 = (B )2, 2

is denoted by /. A non-empty set /{ with an n-ary hyperop-
eration i: H" — P"(H) is called an n-ary hypergroupoid and is
denoted by (H, h). An n-ary hypergroupoid (H, h) is an n-
ary semihypergroup if the following associative axiom holds:
lz(x’i_l,h(xf”_l) x2n—l) _ h(x’fl,h(x'.mﬂ) x2n—l>

Vi ] 7 n+j

for every i, j€ {1, 2, ..., n} and xq, X5, ..., X2,_1 € H.
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An n-ary hypergroupoid (H, h) is called commutative, if for
every g € S,, we have h(x]) = h( a(])) An n-ary semihyper-

group (H, h), in which the equation b € h(a}™',x;,a!,,) has
the solution x; € H for every ay, ..., di_y, dj+1, --- dy, bEH
and 1 <i<n, is called an n- ary hypergroup. Furthermore,
(m, n)-rings have been introduced by Crombez [6] and then
investigated by Crombez and Timm [7], Dudek [8], Iancu [9].
Recently, the notion of (i, n)-hyperrings has been defined by
Mirvakili and Davvaz [10] obtaining (m, n)-rings from
(m, n)-hyperrings by fundamental relations. Also, the
principal notions of hyperstructure theory can be found in
[11,12].

Definition 1.1. Let R be a non-empty set, f be an m-ary
hyperoperation on R and g be an n-ary hyperoperation on R.
An (m, n)-hyperring is an algebraic hyperstructure (R, f, g),
which satisfies the following axioms:

(1) (R, f) is an m-ary hypergroup,
(2) (R, g) is an n-ary semihypergroup,
(3) the n-ary hyperoperation g is distributive with respect to
the m-ary hyperoperation f, i.e.,
i—1

g(all ]Lf(x’1")7a:'l+1) :.f(g(a[r%xha:;])?"'7g(a’1
xPeR, 1<i<n

n
axmaa,ur]))?

i—1 n
for every ay',a}, |, x

(R, f, g) is called a commutative (m, n)-hyperring if (R, f)
and (R, g) are commutative. A construction of an (m, n)-hyp-
erring (R, f, g) of a hyperring (R, +, ) was presented by Mir-
vakili and Davvaz [10] as follows:

Example 1. Let (R, +, -) be a hyperring. Let / be an m-ary
hyperoperation and g be an n-ary operation (clearly, any n-ary
operation is an n-ary hyperoperation) on R as follows:

m Z)C” Vx',” € R

= Hx[, Vx| € R.
i=1
Then, (R, f, g) is an (m, n)-hyperring and denoted by (R, f,
g) = der(m, Il)(R7 + s )

2. (m, n)-hypermodules

In [13], Anvariyeh et al. introduced the class of (m, n)-hyper-
modules over (m, n)-hyperrings. They defined the fundamental
relation € on (m, n)-hypermodules. In [14], Anvariyeh and
Mirvakili considered a special kind of (m, n)-hypermodules,
called canonical (m, n)-hypermodule, and a special kind of
(m, n)-hyperrings, called Krasner (m, n)-hyperring [10]. Then,
in [15], Belali et al. defined the class of free and cyclic canonical
(m, n)-hypermodules over Krasner (m, n)-hyperrings. In this
section, we recall the definition of (m, n)-hypermodules [13].

Definition 2.1. Let M be a non-empty set. Then, M = (M, h,
k) is an (m, n)-hypermodule over an (m, n)-hyperring R, if (M,
h) is an m-ary hypergroup and the map

k:Rx...Xx RxM — o' (M)

n—1

satisfies the following conditions:

1) k(r?*l,h( ’”)) h(k( I xl) k(r']’ ',xm)),
(2) k( l_lvf(sl)vr#l? )_h(k( Sl7r7+ll’x)7"'

Sms I X)),
-1 k( n+m—2 X))

t+1 ’

3) k(i () 2 ) = k(7]

If k is a scalar n-ary hyperoperation, Sy, ..., S,_
empty subsets of R and M, c M, we set k(Sy, ..., S,_1,
M) = Uk, ..., Fu1, x)| rneS,i=1,..,n—1,x€ M}.
An (m, n)-hypermodule M is an R-hypermodule, if m = n = 2.

| are non-

Example 2. Let M = {0,1,2} and (R,f,g) =der;zx(Z,+,-)
(see Example 1). We define the commutative hyperoperation
h and hyperoperation k as follows:

5h(0,0,0) = h(0,0,2) = h(0,2,2) = h(2,2,2) = {0,2},
h(0,0,1) = h(0,2,1) = h(2,2,1) = {1},
h(0,1,1) = h(2,1,1) = {0,2},

h(1,1,1) = {1},
and k2 Rx M — o' (M),
{0,2} ifr€2Z or x € {0,2},
k(r,x) = .
{1} otherwise.
Then, (M, h, k) is an (3, 2)-ary hypermodule over (3, 2)-ary
hyperring (R, 1, g).

Example 3. Let R be a hyperring and M be an R-hypermodule.
Then, R with m-ary hyperoperation /(") = " r;, and n-ary
hyperoperation g(r%) = [[._,r;, is an (m, n)-hyperring. Also, M
with hyperoperation & with h(x}") = Y7 x;, where x; € M, is
an m-hypergroup. Now, we define the scalar n-ary hyperoper-
ation k by

k(ri, ... F1,X) = (Hr,-) - X
i=1

Then, M is an (m, n)-hypermodule over (m, n)-hyperring R.

Example 4. Let (R, +, ) be a hyperring and (M, +) be an R-
hypermodule. If N is a subhypermodule of M, then set:
h(xy) = xi+ N, Vxj'e M,

i=1
m

’” Zr,, Vil € R,
= Hr,-, Vr] € R,

k(' x) = (Zn) X+ N, Vil'eR VxeM.

Then, (M, h, k) is an (m, n)-hypermodule over (m, n)-hyperring
(R, 1. &)
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Example 5. Let (H, -) be a commutative almost group (i.e., a
semigroup H = H" U {0}, where (H", -) is a group and 0 a
two side absorbing element). Now, if g(x}) = [].x;, then
(H, g) is an n-ary group. For every x} € H*, we define an m-
ary hyperoperation f on H as follows:

0 k=0,
k

Ut |U| K,

i=1

k
H—{x} k=2, |UX[=17
i=1

k
H k=3, |\ Jxl <k
i=1

f1s a commutative hyperoperation and 0 is a scalar identity
and f ( (()m)) = 0. Then, the hyperstructure (H, f, g) is an (m,

n)-hyperring and therefore (H, f, g) is an (m, n)-hypermodule
over the (m, n)-hyperring (H, f, g).

Leoreanu-Fotea and Corsini proved the following theorem
in [16].
Theorem 2.2. Let (H, f) be an n-ary semihypergroup (n-ary
hypergroup) and e be a scalar neutral element of H. For all x,
y € H, we define: x xy :zf(x,y, ((;n B 1)) Then, (H, *) is a
semihypergroup (hypergroup).
Theorem 2.3. Let (M, h, k) over R be an (m, n)-hypermodule

such that h and f have zero scalar elements Og and 0y, also 1g be
identity of g, such that:

1 o
h G ),x,(m 9 =x, VxeM
0y 0

‘f((i_]),r, (m—i)) =r, VréeR
OR OR

g<(i 1),1', (ni)) =r, VreR

lR lR

k(inl),x> =x, VxeM.

Now, suppose that

(m—-2)
x+y:=h{x,y, , Vx,yeM
O

, (m-2)
r+s:=f[r,s, , Vr,seR
0r

(n-2)
rs=g r,s71 , Vr,seR
R

(n-2)

rox:=k ) 1, x|, YréR andxe M.
R

Then, (M, +, o) is a hypermodule with zero element 0, over the

hyperring (R, +, ) with zero scalar Og and identity scalar 1g.

Also,

der(m.n) (Ma +7 O) = (Maf; k) and der(m,n) (R7 +7 ) = (vaa g)

Proof. By Theorem 2.2, it is not difficult to see that (M, +) is
a hypergroup, (R, +, ) is a hyperring and M is a hypermodule
over the hyperring R. O

Lemma 2.4. Let (M, h, k) be an (m, n)-hypermodule over an
(m, n)-hyperring R. Then, N is an (m, n)-subhypermodule M
over the (m, n)-hyperring R if and only if the following condi-
tions hold:

(1) The equation b € h(a’i’l,x,-,a;i]) is solvable at the place
i=1 and i = m or at least one place 1 < i < m, for

every dy, ..., Qi_j, Ajx 1, -+, Gy, b € N.
(2) Foranyr;, rs, ..., 1,1 € Randy € N imply that k(r;, rs,
e g, y) ;N

Proof. N is an m-ary hypergroup by Theorem 2.3 of [3]. Since
k is a closed scalar n-ary hyperoperation on N, then N is an (m,
n)-subhypermodule on (m, n)-hyperring R. [

Definition 2.5. Let (M, hy, k) and (M>, hy, k,) be two (m, n)-
hypermodules over an (m, n)-hyperring R. A homomorphism
from M, to M, is a mapping ¢: M| — M, such that

1) ¢(h(a, ..
) dk(rys ..oy 1yt @) = k(ry, -

> am)) = /’lz(ﬁb(ﬂ]), L] (,b(a,,.,)),
o Fn—1, ¢(a))>

forall a} € My, a€ M and ¥~' € R.

Lemma 2.6. Let (M, h;, k;) and (M>, h,, k) be two (m, n)-
hypermodule over an (m, n)-hyperring R and ¢: M; — M, a
homomorphism. Then,

(1) If S is an (m, n)-subhypermodule of M; over an (m, n)-
hyperring R, then ¢(S) is an (m, n)-subhypermodule of
M.

(2) If K is an (m, n)-subhypermodule of M5 over an (m, n)-
hyperring R, such that ¢~'(K) #0, then ¢~'(K) is an
(m, n)-subhypermodule of M.

Proof.

(1) We know ¢(S) is an m-ary subhypergroup of M,. Let r,
I, . Iye1 € R and y € ¢(S). Then, there exists x € S
such that ¢(x) = y. Hence, k(ry, ..., 11, ) = k(ry,
oo Tty P(X)) = D1, - a1y X) € P(S).

(2) The proof of this part is similar to (1). O

Let (M, h, k) be an (m, n)-hypermodule over an (m, n)-hyp-
erring R. An equivalence relation p on M is called compatible if
aypby, ..., a,pb,, then for all a € h(ay, ..., a,,) there exists
b e h(by, ..., b,) such that apb, and if ry, ..., r,_; € R, and
xpy, then for all a € k(rq, ..., r,—1, X) there exists b € k(rq,
... Fa_1, y) such that apb.

Let (M, h, k) be an (m, n)-hypermodule over an (m, n)-hyp-
erring R and p be an equivalence relation on M. Then, p is a
strongly compatible relation if a;pb; for all 1<i<m, then
h(ay,...ay) ph(by,...,by,), and for every ry, ..., r,_1 € R and
xpy, then k(ry, ... rp_1,x) p k(ri,...,rao1,y). Now, we recall
the following theorem from [3].
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Theorem 2.7. Let (H, f) be an m-ary hypergroup and let p be an
equivalence relation on H. Then, the relation p is strongly
compatible if and only if the quotient (H/p, flp) is an m-ary
group.

Now, we introduce the strong compatible relation I" on an
(m, n)-hyperring R.

Definition 2.8. Let (R, f, g) be an (m, n)-hyperring. For every
keN and f €N, when s = k(m —1) + 1, we define the
relation Iy, as follows: x Iy y if and only if there exist
¥l € R, where ; = [{n— 1) + 1, i =1, ..., s such that {x,
¥} S, - - -, ug), where for every i = 1,..., 5, u; = g (x)-

Now, set I'y = Upend ke and I' = JyenTk. Then, the
. . . —h ! . & -
relation I' is reflexive and symmetric. Let I be the transitive
closure of the relation I'.

Definition 2.9. Let (R, f, g) be an (m, n)-hyperring. For every
ke Nand /] € N, when s = k(m — 1) + 1, we define the rela-
tion oyp, as follows: x ogp p if and only if there exist

X"eR, €S, and 6, €S,, where t; = (n—1) + 1, i =1,

... s such that x € fuy(ur, .., u) and y € fo ()5 - - U)o
where forevery i = 1, ..., s, u; = g, (xi) and u, = g(,l)(x;Z;E'l’;).

Now, sgt U = Ul‘]’eNakil} and. o = Ugen 0. Then, 't.he
relation « is reflexive and symmetric. Let o be the transitive
closure of relation o.

Theorem 2.10. [10]. The relation T'" is a strongly compatible
relation on both m-ary hypergroup (R, f) and n-ary semihyper-
group (R, g) and the quotient (R/T”, fiT", g/T"*) is an (m, n)-
ring.

Similar to the proof of Theorem 2.10, we have:

Theorem 2.11. The relation o is a strongly compatible relation
on both m-ary hypergroup (R, f) and n-ary semihypergroup (R,
g) and the quotient (Rlo", flo", g/a”) is a commutative (m, n)-
ring.

Theorem 2.12. [13] Let (M, h, k) be an (m, n)-hypermodule
over an (m, n)-hyperring R and p be an equivalence relation
on M. The following conditions are equivalent.

(1) The relation p is strongly compatible.

@ Ifry, ..., a1 €R x},a,b € M and apb, then for every
(i=1,....m), we have h(x;"',a,x2 ) p h(x{", b,x,)
and k(ry,...,ro1,a) p k(ri,...,rn_1,b).

(3) The quotient (M|p, hip, k/p) is an (m, n)-module over
an (m, n)-hyperring R. In other words, M is an
m-ary group and the scalar n-ary hyperoperation k is
singleton.

Theorem 2.13 [13]. Let (M, h, k) be an (m, n)-hypermodule
over (m, n)-hyperring (R, f, g) and 6 be a strongly compatible
relation on fand g. Let p be a strongly compatible relation on h
such that p(k(ri=',x;)) = k(5(r1),...,0(ra1), p(x;)).  Then,
(M]p, hlp, klp) is an (m, n)-module on (m, n)-ring (R/J, f]
9, 8/0).

3. Fundamental and commutative fundamental (2, n)-modules

Fundamental relations have an important role in the multial-
gebra [17]. In [13], Anvariyeh et al. defined the fundamental
relation € on an (m, n)-hypermodule (M, h, k) such that (M/
€', hje", kje") is the smallest (m, n)-module over the (m, n)-ring
(R ST, g/T7). .

In this section, we define the fundamental relation 0 on an
(m, n)-hypermodule (M, h, k) such that (M/e", hje", k/€") is the
smallest commutative (m, n)-module over the (m, n)-ring (R/I"",
ST, g/r™).

Let R be a hyperring and M be a hypermodule over R. We
recall the definition of relation € on M as follows [20]:

n ni kij
Xey < X,y € E my;  m;=m; orm,= E Hx[,k zi,

i=1 j=1 \k=1

m,GM, X,‘/‘keR, Z;GM.

The equivalence relation € (the transitive closure of €) was
first introduced by Vougiouklis on hyperrings and studied
mainly by many authors concerning hypermodules. Now, we
recall the definition of relation 0 on M as follows [18]:
X0y <= 3ImeN, Im, ... m)eM", ki ky,... k)
eN", I6€S,, Ixa,xn,...,xx) € RY, Io; € S,,, Jo; € Siy»
such that

n n; kij
x € E mi,  m;=m; orm,= E Hx,-,-,( m;
=1

= k=l
and y € "7 m/y;), where

/ _ 1 /!
My = Me(i) if m; =m;,

nj ki/
M, = Boymgu if m; = Z <Hx,~jk) m;,

J=1 \k=1
with

ki

B; = Z]:niAia,(l)v Aj = /1_[1xi/a,-,-(k)~
j= =

The relation 0 is reflexive and symmetric. We denote 0" the
transitive closure of 6.

Remark 1. If M is a hypermodule over a hyperring R, the
fundamental relation € on M, defined as the smallest
equivalence relation such that the quotient M/e* is a module
over the corresponding fundamental ring such that M/e" as a
group, is not abelian [18-20]. But the quotient M/0" is a
module over the corresponding fundamental ring such that M/
0" is an abelian group.

Let M be an (m, n)-hypermodule over an (m, n)-hyperring
R. We define relations eand 0 on M.

Definition 3.1. Let M be an (m, n)-hypermodule over an (m, n)-
hyperring R. Let x, y € M. Then, x 0 y if and only if there exist
a, biﬁ Cijk € N*, X, €M and Xijki € R, o€ Sr, 0, €S,1,
6;€S;; and o €Sy, where 1<i<r=am—1)+1,
1<j<n—1, 1 <k<sy=bym—1)+ 1 and 1 <I< 1y =
cje(n — 1) + 1 such that

X € h@(uy,...,u,) and ye h(a)(u’a(l), .. .,u;(,,))7
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where u; = m; or k(Alj™!, x;), with

) s, ijkt;
Ay = fio(Byy') and By = g, (x"j'“/k)
and

, m; lf Uu; = m;
“= k(A;Zi((ln)il)vxi) if u; = k(4] x0),

where

f(b”)( /W”(A”)) with B,

l/kd,/k(t,,k)
ijoi(1 ik — g((l// l/ka,,/( ) .
We say that x e y if in Definition 3.1, ¢ = ids,, 0; = ids, |,
o; =ids_ and oy = ids,, . Relations 0 and € are reflexive
if ijk

and symmetric. Let 0° and € be their transitive closure,
respectively.

Theorem 3.2. The relation 0" is a strongly compatible relation
on M, as (m, n)-hypermodule, on both m-ary hyperoperation h
and scalar n-ary hyperoperation k.

Proof. Let a; 0" by, ..., a,, 0 b,,. Then, 0°(a;) = 0°(by),
0"(a,) = 0"(b,,). For every a € h(ay, ..., a,,) and b € h(by, ...,
b,,), we have

0 (a) = 0" (hay, ..., an)) = h/0°(0°(ar),..., 0 (ay))
= h)O7 (07 (B1), ..., 07 (b)) = 0" (h(by, ..., b)) = 0°(b).

Now, let ry, ..., r,_1 € R, aj, by € M and @,0"h,. Then, for

every a € k(ry, ..., 1,1, a;) and b € k(ry, ..., r,_1, by), we have

0 (a) = 0" (k(ri,....,rn1,a1)) =k/0"(r1,y ..y 101, 07 (ar))
=k/0k(r,...,rp1,0°(by)) = 0°(b). a

Theorem 3.3. Let (M, h, k) be an (m, n)-hypermodule over the
(m, n)-hyperring R. Then, the quotient (M]0", h/0", k/0") is an
(m, n)-hypermodule over an (m, n)-hyperring R, where

h 0 (0" (ar),...,0%(an)) =4{0"(a)|a € h(ay,...,a,)}
= 0" (h(a}"))
and
k1O (riy. .. re1,0%(a) = {07 (x)|x € k(ry,...,r1,0)}

=0 k(" ", a)).

Moreover, (M]0, hj0") is an abelian group and for every ry, . . .,
r—1€R, xeM and 1€ S,_1 we have k/()*(rI, cees Tuel
0 (a)) = kj0 (re1), - s Fene1), 0 (a)).

Proof. 0'is a strongly compatible relation on M by Theorem
3.2. Now, by Theorem 2.12 and definition of relation 0, the
proof is completed. [

Example 6. Let (R, f, g) be a non-commutative (m, n)-ring.
Then, (R, f, g) is an (m, n)-module over the (m, n)-ring (R, f,
g). Iteasy tosee thate” = I'" = {(x, )l x e R} # 0" = o".

Example 7. Let (G, f) be a non-commutative m-ary group and
a € G. Let H be a non-empty set such that HN G = (). Let f
be an m-ary hyperoperation define on G U H as follows:

for all X' € GUH,
{a}UH iff()y) = !
where y;=x; if x;,€G and y;=a if x;€ H. Then,
(R = GUH, fg) is an m-ary hypergroup. Now, we define an
n-ary hyperoperation g as follows:

gu(x)) ={a} UH,
It is not difficult to see that (R, f, gg) is an (m, n)-hyperring.
Let M = R, h = fg and k = gy, then (M, h, k) is an (m, n)-
hypermodule over the (m, n)-hyperring R and

{(x,x)|x € M}#e =T"#0" = o".

fu(¥y) = {f(y’{’) if £ #a

for all x| € R.

We consider the natural map m: M — M/6", where

n(x) = 0°(x).

Theorem 3.4. [13]Let (M, h;, k;) and (M>, hy, k>) be two (m,
n)-hypermodules over an (m, n)-hyperring R, and let ¢:
M; — M, be a homomorphism. Then, there exists a compatible
relation p on M ; and a homomorphism \y: M ;/p — M, such that

Yo = ¢.

Theorem 3.5. [13]Let p and ¥ be compatible relations on (m, n)-
hypermodule (M, h, k) over an (m, n)-hyperring R, such that
p V. Then, there exists a compatible relation 1 on (M/p, h/
p, klp) such that (M/p)/u is isomorphic to M/9, as (m, n)-
hypermodules.

Let (M, hy, ki) and (M>, hy, k) be two (m, n)-hypermod-
ules over an (m, n)-hyperring R. Define the direct hyperprod-
uct (M| X My, hy X hy, ki X k,) to be the (m, n)-hypermodule
whose universe is the set M;x M, and such that for
aeEM;, deM, 1<i<m

(> o) ((ar, ), (am: )

={(a,d)|acha,...,a,),d € h(d,,....d,)},
and

(ki X k) (r1y ooy tuet, (%, X)) = {(a,d)|a € ki (r1, ..., 11, X),

a/ (S kQ(V],.. .,V,,,l,x/)}.

The mapping n;; My X My, — M;, i = 1, 2, defined by n,((a;,
@) = a,, is called the projection map on the ith coordinate of
M, x M,, also the mapping n; M| X M, — M; is an onto
homomorphism. R

If (M, h, k) is an (m, n)-hypermodule, then 6 denoted the
transitive closure of the relation 0 = U ,>0,, where 0, is the
diagonal, ie., 0y = {(x, x) x € M} and for every integer
p =1, 0, is the relation defined as follows:

x0,y yE h@)(”:,(l)atr>)> with

r=him—1)+1,

if and only if x € h, (u}),

where u; and u, are defined in Definition 3.1. If x0py (ie.,
x = y) then, we write {x, y} C u). We define 0" as the smallest
equivalence relation such that the quotient (M/6", h/0", k/0") is
an (m, n)-module over an (m, n)-hyperring R, where M/0" is the
set of all equivalence classes. The 0" is called the commutative
fundamental equivalence relation.

Lemma 3.6. Let (M, h, k) be an (m, n)-hypermodule over an
(m, n)-hyperring R. Then, for every p € N*, we have 0, C 0, + ;.



172

S.M. Anvariyeh et al.

Proof. Let x0,y. Then, there exists p € N, and uy, .. ., u,, where
r=p(m—1) + 1, such that x € h,)(u}) and y € hip) (1 0)-
By reproducibility of A, there exist vy, ..., v,, such that
u < h(vy, ..., vy). If a(¢) = 1, then

X € hiy(u) = hy(ur ... u,) Chgy(h(vy, ...
=l (1), 1)),

7Vm)7u2a B 'ur)

V€ hy (u;“),,(,.)) =h,) (u;m e Uy Uy Uy “;(r)>

g h(!’)(u;(l) e u;(1—1)> h(v17 EERE Vm):
u:;(Hl)’ s 7”:7()‘)) = h([’+1)(u:7(1) EEER) ”Z(Hp
Vig e Vs U1y e oy Uogy))-

This means that x0,.,y. O

Corollary 3.7. Let (M, h, k) be an (m, n)-hypermodule over an
(m, n)-hyperring R. Then, for every p € N, we have 0, C 0, ,,.
Theorem 3.8. The fundamental relation 0" is the transitive clo-
sure of the relation 0, i.e., (0" = 0).

Proof. Similar to the proof of Theorem 2.10 of [3], we know
that the quotient M/0 is an m-ary group, where /1/0 is defined
in the usual manner

h/0O(1), -, 00x)) = {00y € h(B(x1), .-

for all xy, ..., x,,, € M.

Now, we prove that M/Z) is an (m, n)-module over an (m,
n)-hyperring R. The scalar n-ary hyperoperation k/ 0in M / 0 is
defined in the usual manner:

kJO(r1, .. 11, 0(x)) = {00y € k(r1s - a1, X)),

forallry,...,r,_; € Hand x € M. Suppose a € 9(x) Then, we
have afx, if there exist X1, ... Xy With Xy = a, ..., X, = x such
that {x;, X;+ 1} S h(). So every element z € k(ry, ..., r,_1, X;) is
equivalent to every element to k(ry, ..., r,_1, X;+1). Therefore,
k/G*(rl, e Ful s 6*(x)) is a singleton. So, we can write k/é)*(r],
e Faes, 0°(X) = 0°(y) for all y € k(ry, ..., a1, 07(x)).
Moreover, since k has n-ary hypermodule scalar properties,
consequently, k/ 0 has (m, n)-hypermodule scalar properties.

- 0(xm))}

Now, let 0 be an equivalence relation on M such that M/0 is
(m, n)-hypermodule over an (m, n)-hyperring R. Then, for all
X1y« X € M, we have h/0(0(x,), ..., 0(x,,)) = 0(y) for all
v € h(0(xy), ..., 0(x,)). Also k/O(ry, ..., r,_1, 0(x)) = 0(z), for

all ze€k(ry, ..., r,—1, 0(x)). But also, for every x, ..., x,,
XEM,ry, ... 1€R, A, CcO(x),(i =1,...,m)and 4 C 0(x),
we have
h/0(0(x1),...,0(xn) = 0(h(x1,...,x,)) = 0(h(A4y,...,4.))
and
k/O(ry, ... ra,0(x) = 0(k(ry,...,r1,X))

= 0(/{(}"1, N 7}',,,1,/1)).

Therefore, 0(a) = 0(u;) for alli > 0 and for all @ € h, or k. So
for every a € M, x € 0(a) which implies x € 0(a). But 0 is tran-
sitively closed, so we obtain x € 6”(a) which implies x € 0(a).
Hence, the relation 6" is the smallest equivalence relation on

M such that M/0" is an (m, n)-hypermodule over an (m, n)-
hyperring R. [

Theorem 3.9. Let (M, h, k) be an (m, n)-hypermodule over (m,
n)-hyperring (R, f, g). Then, (M]0", /0", k/0") is a commuta-
tive (m, n)-module on a commutative (m, n)-ring (R/a", flo”, g/

oc*).

Proof. By Theorem 3.2, 0" is a strongly compatible relation on
M, and similar to the proof of Theorem 4.1 of [3], (M/60", h/0")
is an m-ary group. Also, by Theorem 2.11, R/«", (fjo", g/o") is a
commutative (m, n)-ring. Now, let ry, ..., r,_1 € R, x € M and
define ko (a*(r1), ..., 0" (1), 0°(x)) = k(o (r1), - .., o (ra1),s
0°(x)). If x € hy(uy, ..., u,) and r; € fi, (uy, ... ). Then,

k(o (r) ooy 0 (ree1), 0°(%) CThk(fiys -+ - oSy Ba(tts - oy 14y))

= ha(k(fiys - s Siys t1)s ooy Ky s - s Sy )
So, for every riofry,....r,_ja'r,_; and ye*x, we have
k(O(* (rll) ctt OC* (r/n—l)> 0*(}7)) g ha(k(}(kl 9 e 7ﬁ(,,4 ) M]), sy

k(f’ﬂ g e 7fk,,,| ) ul))

Since M is an (m, n)-hypermodule on (m, n)-hyperring R,
the properties of M as an (m, n)-hypermodule guarantee that
the m-ary group M/0" is an (m, n) — ary R/o -module. [
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