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1. Introduction

The study of initial value problems of nonlinear quadratic
functional differential and integral equations is initiated in
the works of Dhage [1] and Dhage and O’Regan [2]. The the-
ory of quadratic integral equations is also intensively studied
and finds numerous applications in describing real world prob-
lems (see [3-21] for instance). Many authors studied the exis-
tence of solutions for several classes of nonlinear quadratic
integral equations with nonsingular kernels (see e.g. [4-8]
and the references therein). The quadratic integral equation
can be very often encountered in many applications (see [11-16]
and the references therein).
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Many papers studied the existence of integrable solutions
(see [13,15,21]) by applying the technique of measure of
noncompactnes.

In this paper, we deal with the quadratic integro differential
equation

x(1) = /Orfl (s, x’(s))ds/otfz(s,x’(s))ds ae., t€ (0,1 (1)
with  x(0) = xo (2)

We prove the existence of at least one solution x € AC(0,1]
(absolutely continuous on (0, 1]) of the quadratic integro dif-
ferential Eq. (1) with the initial condition (2) where the func-
tions fi(t,x(¢)), i = 1, 2 are L;-Carathéodory functions. Our
proof depends on the measure of noncompactness. In fact,
our result in this paper is motivated by the extension of the
work of El-Sayed and Hashem [13].

2. Definitions and auxiliary facts

In this section, we collect some definitions and results needed
in our further investigations.
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Let L, = Li(1), I = [0,1] be denoted the space of lebesgue
integrable functions on 7 and the norm in L(/) is defined by

\mmzﬂumm

Assume that the function f: Ix R — R satisfies Carathéodory
condition i.e., it is measurable in ¢ for any x and continuous
in x for almost all ¢. Then to every function x(¢) being measur-
able on the interval 7 we may assign the function

(Fx)(1) = f(1, x(1)),

The operator F defined in such a way is called the superposi-
tion operator. This operator is one of the simplest and most
important operators investigated in nonlinear functional anal-
ysis. For this operator we have the following theorem due to
Krasnosel’skii [22].

rel

Theorem 1. The superposition operator F maps L; into itself if

and only if

(e, )| < () + k|x| for all 1€ 1

and x € R, where ¢(t) is a function from L; and k is a nonneg-
ative constant.

Now let E be a Banach space with zero element 0 and let X
be a nonempty bounded subset of E. Moreover denote by
B, = B(6,r) the closed ball in E centered at 6 and with radius
r. In the sequel we shall need some criteria for compactness in
measure; the complete description of compactness in measure
was given by Fre’chet [22], but the following sufficient condi-
tion will be more convenient for our purposes (see [22]).

Theorem 2. Let X be a bounded subset of L;. Assume that there
is a family of subsets (Q.)<c<p—q 0f the interval (a,b) such that
meas Q.= c for every c€ [0,b—a], and for every x € X,
x(t;) <x(t2), (t; € Q,, tr¢ Q.), then the set X is compact in
measure.

The measure of weak noncompactness defined by De Blasi
[3,20] is given by,

B(X) =inf(r>0
: there exists a weakly compact subset Y of E such that X

CY+K,)

The function B(X) possesses several useful properties which
may be found in [20]. The convenient formula for the function
B(X) in L; was given by Appel and De Pascale (see [3])

0=t (sup,cx (s [ 50l D€ fabl.meas D <] )
o)

where the symbol measD stands for Lebesgue measure of the
set D.

Next, we shall also use the notion of the Hausdorff measure
of noncompactness y (see [22]) defined by

2(X) = inf(r > 0
: there exists a finite subset Y of E such that X
CY+K,)

In the case when the set X is compact in measure, the Haus-
dorff and De Blasi measures of noncompactness will be iden-
tical. Namely we have (see [3,20])

Theorem 3. Let X be an arbitrary nonempty bounded subset of
L;. If X is compact in measure then f(X) = y(X).

Finally, we will recall the fixed point theorem due to Darbo

[7].

Theorem 4. Let Q be a nonempty, bounded, closed and convex
subset of E and let H: Q — Q be a continuous transformation
which is a contraction with respect to the Hausdorff measure of
noncompactness y, i.e., there exists a constant o € [0,1) such
that y(HX) < ay(X) for any nonempty subset X of Q. Then H
has at least one fixed point in the set Q.

3. Existence of solutions

Firstly, we study the existence of solutions of the quadratic
integral equation

xm:ﬁmwmlﬁwumm+ﬁ@um
thuwmﬁ 4)

Let the integral operator H; be defined as

(Hx) (1) = /0 six(s)ds, i=1,2.

Then Eq. (4) may be written in operator form as:
(Ax)(1) = (F1x)(1) - (H2x)(2) + (F2x)(2) - (H1x)(2)

where (Fix)(¢) = f{t,x(2)), i = 1, 2.
Consider the assumptions:

(1) fr IxR, — R, satisfy Carathéodory condition (i.e.
measurable in ¢ for all x € Ry and continuous in x for
all £ €[0,1]) and there exist two functions a;, a, € L,
and constants b, b, > 0 such that

fi(t,x) < ai(t) + bilx| V(t,x) € Ix R,.

Moreover, fi(t,x), i =1, 2 are a.e. nondecreasing in both
variables;

(ii) Let d > /16 bibs|a)| - [|as][,where d = 1 — 2by]lay|| —
2boal-
Now let r be a positive root of the equation
2bibyr? = (1 = 2b1||aa|| = 2bal|a ) 7 + 2]l | - flaal| = O.
Define the set
B, ={xelL x| <r}.
For the existence of at least one L;-positive solution of the

quadratic integral Eq. (4) we have the following theorem.

Theorem 5. Let the assumptions (i) and (ii) be satisfied. If
2rb;b; < 1, then the quadratic integral Eq. (4) has at least one
solution x € L; which is positive and a.e. nondecreasing on 1.

Proof. Take an arbitrary x € L, then, we get
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A0 < (@0 + b0 [ (aa(s) + balx(s)]) ds + (ax(0)
(o) [ (n(s) + bulx(s))) ds

which implies that

() ||7/\ X)(1)| e
g/ al(t)/az()dsdt—i-bz/ a(t /|x s)| dsdt
0 0 0
1
+b1/ |X(l)|/ az(S)del+b1b2
0 0
1 t 1 t
></ |x(t)|/ \x(s)\dsdl+/ az(t)/ a; (s) dsdt
0 0 0 0
1 ‘
+b1/ az(t)/ (x(s)| dsdt + b
0 0
1 ‘
></ |x(t)|/ ay(s) dsdi + bybs
/|x |/ |x(s)| dsdt
</ az(s)/ al()dtds—i—bz/ |x(s |/ a (t)dtds
0 s
1
+b1/ az(S)/ ‘X([)'dtd.?+2b1b2
0 K
1 1 1 1
></ |x(s)|/ |x(z)\dtds+/ al(s)/ a (1) di ds
1 5
+b1/ |X | az dtdS+b2/ al(s)
0
/|x )| dtds
<l [ @) ds ol [ (sl

/az()dv+2b b2||x|\/ |x(s)|ds

+||a2|\/ a ds+b\|a2|\/ Ix(s)| ds

+b2\|x||/ ay(s)ds
0
< 2l [llaall + 26y [|x[Hlaz ] + 252 e ]| x]

+ 2b, by || x|)?
<r.

+ by

X

From this estimate we show that the operator 4 maps the ball
B, into itself with

d—\[d — 16bbala] - o]l
2b1b,

=

From assumption (ii) we have
0 < d —16b,bs)|ay| - ||aa]| < &,
which implies that

0< /& —16bibsl|ay]l - aal] < d.

Then d is positive which implies that r is a positive constant.
Now, let O, denote the subset of B, € L; consisting of all
functions which are a.e. nondecreasing on 1.

The set Q, is nonempty, bounded, convex and closed (see
Banas [22, pp. 780]). Moreover this set is compact in measure
(see Lemma 2 in [23, pp. 63]).

From assumption (i) we deduce that the operator 4 maps
0, into itself. Since the operator (Fix)(¢) = fi(¢,x(#)) is contin-
uous (Theorem 1 in Section 2), then the operator H,; is
continuous and hence the product F;H; is continuous. Thus
the operator 4 is continuous on Q,.

Let X be a nonempty subset of Q,. Fix e > 0 and take a
measurable subset D c 7 such that meas D < e. Then, for any
x € X, using the same reasoning as in [22,23], we get

x|, ) = / |(Ax) ()] di

g/Dal(t)/O az(s)dsdtJr/Daz(t)/olal(s)dsdt+bz
x /Dal(t) /0 |x(s)|dsdt+b1/[)az(t)
< /01|x(s)|dsdt+b1/D\x(t)\/o[az(s)dsdt—i—bz
y /D|x(z)|/0'al(s)dsdz+zblb2
< [ ol [ ol

< /D as(s) /D (1) deds + /D a1 (5 /D ax(t)dids + by
« /;|x(s)|/l;a1(t)dtds+b1A|x(s)|[)a2(t)dtds
b /D as(s) /D (1) deds + by /D a1 (s)
y /D|x(t)|dtds+2b1b2/D|x(s)|/D|x(t)|dtds

< Jlarll o / a(s)ds + aall, o) / a1 (s)ds + by
D D

x /Daz(s)/D|x(t)|dtds+b2/Da1(s)/D|x(t)|dtds

+ballaly, / ($)lds + billas ], o / Ix(s)] ds

+2b1b2/n\x(s)\/n\x(z)|dzds

<2l yllaall, ) + 261

X

LI(D)HQZHLI(D)

+ 2bollai|| oy l1XM1 1, oy + 2102 |%]1, () [1X]] 1, )
< 2| ”L,(D)”aZHLI(D) +rby HaZHLI(D) + rba||ay HLI(D)
+ 2rbi1bo| x|, (-

Since
lin&{sup{/ |a;(¢)|dt: D C I, meas D < e}} =0, i=1,2.
“ D

We obtain

B(Ax(1)) < 2rb1 by B(x(1)).
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This implies
B(AX) < 2rbi by B(X), ©)

where f is the De Blasi measure of weak noncompactness.
Keeping in mind Theorem 3 we can write (5) in the form

1(AX) < 2rbibyy(X),

where y is the Hausedorff measure of noncompactness.

Since 2r byb, < 1, from Theorem 4 follows that A is
contraction with respect to the measure of noncompactness .
Thus A4 has at least one fixed point in Q, which is a solution of
the quadratic integral Eq. (4). O

Definition 6. By a solution of the problem of quadratic inte-
gro-differential Eqgs. (1) and (2) we mean a function
x € AC(0,1] and this function satisfies (1) and (2).

Theorem 7. Let the assumption of Theorem 5 are satisfied, then
there exists at least one solution x € AC(0,1] of the quadratic

integro-differential Eqs. (1) and (2) which is positive and non-
decreasing on I.

Proof. Differentiation both sides of (1), we obtain

X0 =X 0) [ A6 O ds A0 0) [ fils ¥ 0)ds
0 0
put X'(f) = u(t) € Ly, then (1) will be similar to (4), and,
x(t) = x(0) + /[u(s) ds € AC(0,1],
0

and then from Theorem 5 there exist at least one positive and
nondecreasing solution of (1) and (2). [

4. Examples

In this section we provide some examples illustrating our result
obtained in Theorem 7.

Example 8. Consider the problem

{x([) = (fo Ss, x’(s)ds))z, aete (0,1
X(O) = Xo,

then this problem has at least one positive and nondecreasing
solution x € AC(0,1], by taking f(¢,x(¢)) = f>(t,x(¢)) in Eq.
(D).
Example 9. Consider the
problem

quadratic integro-differential

x(0) = [y (S+55X(5))ds [y (—iIn(l —s5) +5-X(5)) ds, ae. t€(0,1]
x(0) = X,

observe that the above problem is a special case of (1) and (2).
Indeed if we put

St3) =6+ 50, () = —gIn(l = 1)+ 51 y(0).

Then we can easy check that the assumptions of Theorem 7 are
satisfied, then the problem has at least one positive and nonde-
creasing positive solution x € AC(0, 1].
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