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Abstract
The object of the present paper was to introduce the notion of hyper generalized
ϕ-recurrent Sasakian manifold and quasi generalized ϕ-recurrent Sasakian manifold
and study its various geometric properties. The existence of hyper generalized
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proved by giving a proper example.
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Introduction
The notion of contact geometry has evolved from themathematical formalism of classical
mechanics [1]. Two important classes of contact manifolds are K-contact manifolds and
Sasakian manifolds [2]. An odd dimensional analog of Kaehler geometry is the Sasakian
geometry. Sasakian manifolds were firstly studied by the famous geometer Sasaki [3] in
1960 and for long time focused on this. Sasakian manifolds have been extensively studied
under several points of view in [4–8] and references therein.
The notion of local symmetry of a Riemannian manifold has been weakened by several

authors in many ways to a different extent. As a mild version of local symmetry, Takahashi
[9] introduced the notion of local ϕ-symmetry on a Sasakian manifold. Generalizing the
idea of ϕ-symmetry, De et al. [10] introduced the concept of ϕ-recurrent Sasakian man-
ifold. The notion of generalized recurrent manifolds was initiated by Dubey [11] and in
[12] Shaikh et al. introduced the notion of generalized ϕ-recurrent Sasakian manifolds.
Extending the notion of generalized ϕ-recurrent, Shaikh andHui [13] introduced the con-
cept of extended generalized ϕ-recurrent manifolds. In [14], Shashikala and Venkatesha
studied generalized projective ϕ-recurrent Sasakian manifold. The extended generalized
ϕ-recurrent property in Sasakian manifold was considered by Prakasha [15] and gave
some important results.
A Riemannian manifold is called generalized recurrent if its curvature tensor R satisfies

the condition

∇R = A ⊗ R + B ⊗ P, (1)
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where A and B are two non-vanishing 1-forms defined by A(·) = g(·, γ1), B(·) = g(·, γ2)
and the tensor P is defined by

P(X,Y )Z = g(Y ,Z)X − g(X,Z)Y , (2)

for all X,Y ,Z ∈ TM and ∇ denotes the covariant differentiation with respect to the
metric g. Here, γ1 and γ2 are vector fields associated with 1-forms A and B respectively.
Especially, if the 1- form B vanishes, then (1) turns into the notion of recurrent manifold
introduced byWalker [16]. A Riemannian manifold is called generalized ϕ-recurrent if its
curvature tensor R satisfies the condition

ϕ2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z + B(W )P(X,Y )Z, (3)

for all X,Y ,Z ∈ TM, where P defined as in (2). Suppose the vector fields X, Y and Z
are orthogonal to ξ , then the relation (3) reduces to the notion of locally generalized ϕ-
recurrent manifolds.
A Riemannian manifold is called a generalized Ricci-recurrent manifold [17] if its Ricci

tensor S of type (0,2) is not identically zero and satisfies the condition

∇S = A ⊗ S + B ⊗ g, (4)

where A and B are non-vanishing 1-forms defined in (1). In particular, if B = 0, then (4)
reduces to the notion of Ricci-recurrent manifold introduced by Patterson [18].
A Riemannian manifold is called a super generalized Ricci-recurrent manifold if its

Ricci tensor S of type (0,2) satisfies the condition

∇S = π ⊗ S + ρ ⊗ g + υ ⊗ η ⊗ η, (5)

where π , ρ, and υ are non-vanishing unique 1-forms. In particular, if ρ = υ, then (5)
reduces to the notion of quasi-generalized Ricci-recurrent manifold introduced by Shaikh
and Roy [19].
Recently, Shaikh and Patra [20] introduce a generalized class of recurrent manifolds

called hyper generalized recurrent manifolds. In [19], Shaikh and Roy introduce a gen-
eralized class of recurrent manifolds called quasi generalized recurrent manifolds. The
present paper deals with the study of both hyper generalized ϕ-recurrent and quasi gen-
eralized ϕ-recurrent property in Sasakian manifolds. The paper is organized as follows:
The “Preliminaries” section is concerned with some preliminaries about Sasakian man-
ifolds. In the “Hyper generalized ϕ-recurrent manifold,” we introduce an extended form
of hyper generalized recurrent manifolds called hyper generalized ϕ-recurrent manifolds.
We study some geometric properties of this in Sasakian manifold and obtained some
interesting results. We construct a proper example of a hyper generalized ϕ-recurrent
Sasakian manifold which is neither ϕ-symmetric nor ϕ-recurrent in the “Example of
hyper generalized ϕ-recurrent Sasakian manifold” section. In the “Quasi generalized ϕ-
recurrent manifold” section, we introduce a generalized class of ϕ-recurrent manifold
called quasi generalized ϕ-recurrent manifold and we study this property in Sasakian
manifold and obtained some interesting results. Also, the existence of quasi generalized
ϕ-recurrent Sasakian manifold is ensured by a proper example in the last section.
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Preliminaries
In this section, we provide some general definition and basic formulas on contact metric
manifolds and Sasakian manifolds which we will use in further sections. We may refer to
[21–23] and references therein formore details and information about Sasakian geometry.
A (2n+1)-dimensional smooth connected manifoldM is called almost contact manifold

if it admits a triple (ϕ, ξ , η), where ϕ is tensor field of type (1, 1), ξ is a global vector field
and η is a 1-form, such that

ϕ2X = −X + η(X)ξ , η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, (6)

for all X,Y ∈ TM. If an almost contact manifold M admits a (ϕ, ξ , η, g), g being a
Riemannian metric such that

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ), (7)

then M is called an almost contact metric manifold. An almost contact metric manifold
M(ϕ, ξ , η, g) with dη(X,Y ) = 	(X,Y ), 	 being the fundamental 2-form of M(ϕ, ξ , η, g)
and is defined by	(X,Y ) = g(X,ϕY ), is a contact metric manifold and g is the associated
metric. If, in addition ξ is a Killing vector field (equivalentely, h = 1

2Lξ ϕ = 0, where
L denotes Lie differentiation), then the manifold is called K-contact manifold. It is well
known that [2], if the contact metric structure (ϕ, ξ , η, g) is normal, that is, [ϕ,ϕ]+2dη ⊗
ξ = 0 holds, then (ϕ, ξ , η, g) is Sasakian. An almost contact metric manifold is Sasakian if
and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X, (8)

for all vector fields X and Y on M, where ∇ is Levi-Civita connection of g. A Sasakian
manifold is always a K-contact manifold. The converse also holds when the dimension is
three, but which may not be true in higher dimensions [24]. On any Sasakian manifold,
the following relations are well known;

∇Xξ = −ϕX, (∇Xη)(Y ) = g(X,ϕY ), (9)

R(X,Y )ξ = η(Y )X − η(X)Y , (10)

R(ξ ,X)Y = g(X,Y )ξ − η(Y )X, (11)

η(R(X,Y )Z) = g(Y ,Z)η(X) − g(X,Z)η(Y ), (12)

S(X, ξ) = 2nη(X) (or Qξ = 2nξ), (13)

S(ϕX,ϕY ) = S(X,Y ) − 2nη(X)η(Y ), (14)

for all X,Y ∈ TM, where R, S, and Q denotes the curvature tensor, Ricci tensor and Ricci
operator respectively.

Definition 1 A (2n+1)-dimensional Sasakian manifold M is said to be η-Einstein if its
Ricci tensor S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

for any vector fields X and Y, where a and b are constants. If b = 0, then the manifold M is
an Einstein manifold.
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Hyper generalized ϕ-recurrent Sasakianmanifold
Recently, the authors [20] studied hyper generalized recurrent manifolds and obtained
several interesting results. By observing this work, we extend the notion called hyper gen-
eralized ϕ-recurrent manifolds. In this section, we study hyper generalized ϕ-recurrent
Sasakian manifolds.

Definition 2 A Sasakian manifold M is said to be a hyper generalized ϕ-recurrent
Sasakian manifold if its curvature tensor R satisfies the condition

ϕ2 ((∇WR)(X,Y )Z) = A(W )R(X,Y )Z + B(W )H(X,Y )Z, (15)

for all X,Y ,Z ∈ TM, where A and B are two non-vanishing 1-forms such that A(X) =
g(X, ρ1), B(X) = g(X, ρ2) and the tensor H is defined by

H(X,Y )Z = S(Y ,Z)X − S(X,Z)Y + g(Y ,Z)QX − g(X,Z)QY , (16)

for all X,Y ,Z ∈ TM. Here, ρ1 and ρ2 are vector fields associated with 1-forms A and
B respectively. Especially, if the 1-form B vanishes, then (15) turns into the notion of ϕ-
recurrent manifold.

Now we prove the following;

Theorem 1 Let M be a hyper generalized ϕ-recurrent Sasakian manifold.

(i) If the scalar curvature is zero everywhere on M, then M is Ricci recurrent.
(ii) If the scalar curvature is non-zero everywhere on M, then M is generalized Ricci

recurrent.

Proof Let us consider hyper generalized ϕ-recurrent Sasakian manifold. In view of (6),
Eq. (15) gives

−(∇WR)(X,Y )Z + η ((∇WR)(X,Y )Z) ξ

= A(W )R(X,Y )Z + B(W )H(X,Y )Z, (17)

this can be written as

−g ((∇WR)(X,Y )Z,U) + η ((∇WR)(X,Y )Z) η(U)

= A(W )R(X,Y ,Z,U) + B(W )g(H(X,Y )Z,U). (18)

Let {ei}2n+1
i=1 be an orthonormal basis of the manifold. Plugging X = U = ei in (18) and

taking summation over i, 1 ≤ i ≤ 2n + 1, and then using (16), we get

−(∇WS)(Y ,Z) +
2n+1∑

i=1
η ((∇WR)(ei,Y )Z) η(ei) = (A(W ) + (2n − 1)B(W ))

S(Y ,Z) + rB(W )g(Y ,Z). (19)

The second term of left hand side in (19) reduces to
2n+1∑

i=1
η ((∇WR)(ei,Y )Z) = g ((∇WR)(ξ ,Y )Z, ξ) . (20)

Using (9), (10) and the relation g ((∇WR)(X,Y )Z,U) = −g ((∇WR)(X,Y )U ,Z), we get

g ((∇WR)(ξ ,Y )Z, ξ) = 0. (21)
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By virtue of (20) and (21), it follows from (19) that

(∇WS)(Y ,Z) = T(W )S(Y ,Z) + 
(W )g(Y ,Z), (22)

where T(W ) = − (A(W ) + (2n − 1)B(W )) and 
(W ) = −rB(W ). In the above
equation, we have hyper generalized ϕ-recurrent Sasakian manifold is Ricci recurrent
(respectively generalized Ricci recurrent) if the scalar curvature is zero (respectively
non-zero) everywhere onM. This completes the proof.

Theorem 2 A hyper generalized ϕ-recurrent Sasakian manifold M with non vanishing
scalar curvature is an Einstein manifold and moreover the associated vector fields ρ1 and
ρ2 of the 1-forms A and B respectively are co-directional.

Proof Taking Z = ξ in (22) and then using first term of (13), we obtain

(∇WS)(Y , ξ) = − {2nA(W ) + (r + 2n(2n − 1))B(W )} η(Y ). (23)

At this point, we note that

(∇WS)(Y , ξ) = ∇WS(Y , ξ) + S(∇WY , ξ) + S(Y ,∇W ξ). (24)

In view of (9) and first term of (13) in (24), it follows that

(∇WS)(Y , ξ) = 2ng(Y ,ϕW ) − S(Y ,ϕW ). (25)

Comparing (23) and (25), we get

2ng(Y ,ϕW ) − S(Y ,ϕW ) = − {2nA(W ) + (r + 2n(2n − 1))B(W )} η(Y ). (26)

Again taking ϕY instead of Y in (26) and using (6), (7) and (14), we have

S(Y ,W ) = 2ng(Y ,W ). (27)

Substituting Y by ξ in (26), we get

A(W ) = −
[
r + 2n(2n − 1)

2n

]
B(W ). (28)

Contracting (27) over Y andW, we get

r = 2n(2n + 1). (29)

In view of (28) and (29), we have

A(W ) = −4nB(W ). (30)

From (27) and (30), the theorem follows.

It is well known that a Sasakian manifold is Ricci-semisymmetric if and only if it is an
Einstein manifold. In fact, by Theorem 2, we have the following;

Corollary 2.1 A hyper generalized ϕ-recurrent Sasakian manifold with non vanishing
scalar curvature is Ricci-semisymmetric.

Next, in a Sasakian manifold it can be easily verify that

(∇WR)(X,Y )ξ = g(W ,ϕY )X − g(W ,ϕX)Y + R(X,Y )ϕW . (31)



Venkatesha et al. Journal of the EgyptianMathematical Society           (2019) 27:19 Page 6 of 14

By virtue of (12), it follows from (31) that

η ((∇WR)(X,Y )ξ) = 0. (32)

It is well known that in a Sasakian manifold the following relation holds [8];

R(X,Y )ϕZ = g(ϕX,Z)Y − g(Y ,Z)ϕX − g(ϕY ,Z)X

+ g(X,Z)ϕY + ϕR(X,Y )Z, (33)

for any X,Y ,Z ∈ TM. In view of (31) and (33), it follows that

(∇WR)(X,Y )ξ = g(X,W )ϕY − g(Y ,W )ϕX + ϕR(X,Y )W . (34)

In view of (32) and (34), we obtain from (17) that

− A(W )R(X,Y )ξ − B(W ) {2nη(Y )X − 2nη(X)Y + η(Y )QX − η(X)QY }
= g(X,W )ϕY − g(Y ,W )ϕX + ϕR(X,Y )W . (35)

In view of (10), (27) and (30), the above equation becomes

ϕR(X,Y )W = g(Y ,W )ϕX − g(X,W )ϕY . (36)

Operating ϕ on both sides of (36) and using (6), we get

R(X,Y )W = g(Y ,W )X − g(X,W )Y . (37)

Hence, we can state the following;

Theorem 3 A hyper generalized ϕ-recurrent Sasakian manifold of non vanising scalar
curvature is a space of constant curvature +1.

Example of a hyper generalized ϕ-recurrent Sasakianmanifold
In this section we give an example of a hyper generalized ϕ-recurrent Sasakian manifold.
We consider three-dimensional manifold M = {

(x, y, z) ∈ R3, (x, y, z) �= (0, 0, 0)
}
, where

(x, y, z) are the standard coordinate in R3. Let E1,E2,E3 be three linearly independent
vector fields in R3 which satisfies

[E1,E2] = E3, [E1,E3] = −E2, [E2,E3] = 2E1.

Let g be the Riemannian metric defined by

g(E1,E1) = g(E2,E2) = g(E3,E3) = 1,

g(E1,E2) = g(E1,E3) = g(E2,E3) = 0.

Let η be the 1-form defined by η(W ) = g(W ,E1) for any W ∈ TM. Let ϕ be the (1,1)
tensor field defined by

ϕE1 = 0, ϕE2 = E3, ϕE3 = −E2.

Then using the linearity of η and g we have

η(E1) = 1, ϕ2W = −W + η(W )E1,

g(ϕW ,ϕU) = g(W ,U) − η(W )η(U),

for any U ,W ∈ TM. Now for E1 = ξ , the structure (ϕ, ξ , η, g) defines an almost contact
metric structure on M. Using the Koszula formula for the Riemannian metric g, we can
straightforwardly calculate
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∇E1E1 = 0, ∇E1E2 = 0, ∇E1E3 = 0,

∇E2E1 = −E3, ∇E2E2 = 0, ∇E2E3 = E1,

∇E3E1 = E2, ∇E3E2 = −E1, ∇E3E3 = 0.

From the above, it follows that the manifold under consideration is a Sasakian manifold
of dimension 3. Using the above relations, we can straightforwardly calculate the non-
vanishing components of the curvature tensor R as follows:

R(E1,E2)E1 = −E2, R(E1,E2)E2 = E1, R(E1,E3)E1 = −E3,

R(E1,E3)E3 = E1, R(E2,E3)E2 = E3, R(E2,E3)E3 = −E2

and the components which can be obtained from these by the symmetry properties. From
the above, we can simply calculate the non-vanishing components of the Ricci tensor S
and Ricci operator Q as follows:

S(E1,E1) = 2, S(E2,E2) = S(E3,E3) = 0,

QE1 = 2E1, QE2 = QE3 = 0.

Since {E1,E2,E3} forms a basis of the three-dimensional Sasakian manifold, any vector
field X,Y ,Z ∈ TM can be written as

X = a1E1 + b1E2 + c1E3,

Y = a2E1 + b2E2 + c2E3,

Z = a3E1 + b3E2 + c3E3,

where ai, bi, ci ∈ R+ (the set of all positive real numbers), i = 1, 2, 3. Now

R(X,Y )Z = [b3(a1b2 − b1a2) + c3(a1c2 − c1a2)]E1+[ a3(b1a2 − a1b2) (38)

+ c3(c1b2 − b1c2)]E2 + [a3(c1a2 − a1c2) + b3(b1c2 − c1b2)]E3,

and

H(X,Y )Z = [2(a1b2 − b1a2)b3 + 2(a1c2 − c1a2)c3]E1 + [2(a2b1 − b2a1)a3]E2
(39)

+ [2(a2c1 − c2a1)a3]E3.

In view of (39), we have the following;

(∇E1R)(X,Y )Z =0, (40)

(∇E2R)(X,Y )Z = [2(c2b1 − b2c1)b3]E1+[ 2(a1b2 − b1a2)c3
+ 2(c1b2 − b1c2)a3]E2 + [2(a2b1 − b2a1)b3]E3, (41)

(∇E3R)(X,Y )Z = [2(b1c2 − b2c1)c3]E1 + [2(a1c2 − c1a2)c3]E2
+ [2(a2c1 − c2a1)b3 + 2(c1b2 − b1c2)a3]E3. (42)

From (41) to (42), we have

ϕ2 (
(∇EiR)(X,Y )Z

) = piE2 + qiE3 for i = 1, 2, 3, (43)
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where

p1 =0, q1 = 0,

p2 =2 [(b1a2 − a1b2)c3 + (b1c2 − c1b2)a3] , q2=2(b2a1 − a2b1)b3= p2(v3u1 − v1u3)
v2u1 − v1u2

,

p3 =2(c1a2 − a1c2)c3, q3 = 2 [(c2a1 − a2c1)b3 + (b1c2 − c1b2)a3] = p3(v3u1 − v1u3)
v2u1 − v1u2

,

and

u1 = [b3(a1b2 − b1a2) + c3(a1c2 − c1a2)] , u2 = [a3(b1a2 − a1b2) + c3(c1b2 − b1c2)] ,

u3 = [a3(c1a2 − a1c2)+b3(b1c2 − c1b2)] , v1 = [2(a1b2 − b1a2)b3+2(a1c2 − c1a2)c3] ,

v2 = [2(a2b1 − b2a1)a3] , v3 = [2(a2c1 − c2a1)a3] .

Let us now consider the components of the 1-forms as

A(E1) =0, B(E1) = 0,

A(E2) = − p2v1
v2u1 − v1u2

, B(E2) = p2u1
v2u1 − v1u2

, (44)

A(E3) = − p3v1
v2u1 − v1u2

, B(E3) = p3u1
v2u1 − v1u2

,

where v2u1 − v1u2 �= 0. From (15), we have

ϕ2 (
(∇EiR)(X,Y )Z

) = A(Ei)R(X,Y )Z + B(Ei)H(X,Y )Z, (45)

for i = 1, 2, 3. In view of (39), (40), (43) and (44), it can be easily shown that the manifold
satisfies the relation (45). Hence the manifold under consideration is a hyper generalized
ϕ-recurrent Sasakian manifold, which is not ϕ-recurrent. This leads to the following;

Theorem 4 There exists a three-dimensional hyper generalized ϕ-recurrent Sasakian
manifold, which is neither ϕ-symmetric nor ϕ-recurrent.

Quasi generalized ϕ-recurrent Sasakianmanifold
In the paper [19], the authors studied quasi generalized recurrent manifolds and obtain
some interesting results. Motivated by this work, we extend the notion called quasi gen-
eralized ϕ-recurrent manifolds. In this section, we study quasi generalized ϕ-recurrent
Sasakian manifolds.

Definition 3 A Sasakian manifold M is said to be quasi generalized ϕ-recurrent
manifold if its curvature tensor R satisfies the condition

ϕ2 ((∇WR)(X,Y )Z) = C(W )R(X,Y )Z + D(W )F(X,Y )Z, (46)

for all X,Y ,Z ∈ TM, where C and D are two non-vanishing 1-forms such that C(X) =
g(X,μ1), D(X) = g(X,μ2) and the tensor F is defined by

F(X,Y )Z =g(Y ,Z)X − g(X,Z)Y + η(Y )η(Z)X − η(X)η(Z)Y

+ g(Y ,Z)η(X)ξ − g(X,Z)η(Y )ξ , (47)

for all X,Y ,Z ∈ TM. Here μ1 and μ2 are vector fields associated with 1-forms C and
D respectively. Especially, if the 1-form D vanishes, then (46) turns into the notion of ϕ-
recurrent manifold.
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Note: In view of (46) and (47), we say that locally quasi generalized ϕ-recurrent Sasakian
manifold is a locally generalized ϕ-recurrent manifold.
We begin this section with the following:

Theorem 5 A quasi generalized ϕ-recurrent Sasakian manifold M is an Einstein man-
ifold and moreover the associated vector fields μ1 and μ2 of the 1-forms C and D
respectively are co-directional.

Proof Using the same steps as in the proof of Theorem 1, we get the relation

−(∇WS)(Y ,Z) = C(W )S(Y ,Z) + D(W )(2n + 1)g(Y ,Z)

+ D(W )(2n − 1)η(Y )η(Z). (48)

Again using the same steps as in the Theorem 2, we get the equations

S(Y ,W ) = 2ng(Y ,W ), and (49)

C(W ) = 1 − 4n2

2n
D(W ), (50)

for all Y ,W . This completes the proof of the theorem.

Equation (48) leads to the following:

Theorem 6 A quasi generalized ϕ-recurrent Sasakian manifold is a super generalized
Ricci-recurrent manifold.

From (48), it follows that

−dr(W ) = rC(W ) + 2n(2n + 3)D(W ). (51)

This leads to the following:

Theorem 7 In a quasi generalized ϕ-recurrent Sasakian manifold, the 1-forms C and D
are related by the Eq. (51).

Corollary 7.1 In a quasi generalized ϕ-recurrent Sasakian manifold with non-zero
constant scalar curvature, the associated 1-forms C and D are related by

rC(W ) + 2n(2n + 3)D(W ) = 0.

Now suppose that quasi generalized ϕ-recurrent Sasakian manifold is quasi generalized
Ricci-recurrent [19]. Then from (48) we have 2n + 1 = 2n − 1, which is not possible.
Therefore we can state the following;

Theorem 8 A quasi generalized ϕ-recurrent Sasakian manifold can not be a quasi
generalized Ricci-recurrent manifold.

In view of (46) and (6), we obtain

(∇WR)(X,Y )Z = η((∇WR)(X,Y )Z)ξ − C(W )R(X,Y )Z − D(W )F(X,Y )Z. (52)
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From (52) and second Bianchi identity we get

C(W )R(X,Y ,Z,U) + D(W )F(X,Y ,Z,U) + C(X)R(Y ,W ,Z,U)

+ D(X)F(Y ,W ,Z,U) + C(Y )R(W ,X,Z,U) + D(Y )F(W ,X,Z,U) = 0. (53)

Contracting the above relation over Y and Z and using (47), we get

C(W )S(X,U) + D(W )
{
(2n + 1)g(X,U) + (2n − 1)η(X)η(U)

}
(54)

− C(X)S(W ,U) − D(X)
{
(2n + 1)g(W ,U) + (2n − 1)η(W )η(U)

}

− C(R(W ,X)U) + D(X)
{
g(W ,U) + η(W )η(U)

} − D(W ){g(X,U)

+ η(X)η(U)} + D(ξ)
{
η(X)g(W ,U) − η(W )g(X,U)

} = 0.

Again contracting (54) over X and U and using (50) , we get

S(W ,μ2) = βg(W ,μ2) + γ η(W )η(μ2), (55)

where β = r
2 + 2n(2n2−1)

1−4n2 and γ = 2n(1−4n)

1−4n2 . Hence we can state the following;

Theorem 9 In a quasi generalized ϕ-recurrent Sasakianmanifold, the Ricci tensor S and
vector field μ2 are related by the Eq. (55).

Definition 4 [25] Let M be an almost contact metric manifold with Ricci tensor S. The
∗-Ricci tensor and ∗-scalar curvature of M are defined repectively by

S∗(X,Y ) =
2n+1∑

i=1
R(X, ei,ϕei,ϕY ), and r∗ =

2n+1∑

i=1
S∗(ei, ei). (56)

Definition 5 [26] An almost contact metric manifoldM is said to be weakly ϕ-Einstein if

Sϕ(X,Y ) = βgϕ(X,Y ), X,Y ∈ TM,

for some function β . Here Sϕ denotes the symmetric part of S∗, that is,

Sϕ(X,Y ) = 1
2

{
S∗(X,Y ) + S∗(Y ,X)

}
, X,Y ∈ TM,

we call Sϕ , the ϕ-Ricci tensor on M and the symmetric tensor gϕ is defined by gϕ(X,Y ) =
g(ϕX,ϕY ). When β is constant, M is said to be ϕ-Einstein.

In a Sasakian manifold we know the following relation

(∇WR)(X,Y )ξ = g(W ,ϕY )X − g(W ,ϕX)Y + R(X,Y )ϕW . (57)

Using (57) and the relation g ((∇WR)(X,Y )Z, ξ) = −g ((∇WR)(X,Y )ξ ,Z) in (52), we
have

(∇WR)(X,Y )Z =g(W ,ϕX)g(Y ,Z)ξ − g(W ,ϕY )g(X,Z)ξ − g(R(X,Y )ϕW ,Z)ξ

− C(W )R(X,Y )Z − D(W )F(X,Y )Z, (58)

from which it follows that

g((∇WR)(X,Y )Z,U) = g(W ,ϕX)g(Y ,Z)η(U) − g(W ,ϕY )g(X,Z)η(U)

+ g(R(X,Y )Z,ϕW )η(U) − C(W )g(R(X,Y )Z,U)

− D(W )g(F(X,Y )Z,U). (59)
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Replacing Z by ϕZ in the foregoing equation, we obtain

g((∇WR)(X,Y )ϕZ,U) = g(W ,ϕX)g(Y ,ϕZ)η(U) − g(W ,ϕY )g(X,ϕZ)η(U)

+ g(R(X,Y )ϕZ,ϕW )η(U) − C(W )g(R(X,Y )ϕZ,U)

− D(W )g(F(X,Y )ϕZ,U). (60)

Since g(R(X,Y )ϕW ,U) = g(R(X,Y )W ,ϕU) and g((∇WR)(X,Y )ϕZ,U) =
g((∇WR)(X,Y )Z,ϕU), using these equation in (60), we get

g((∇WR)(X,Y )Z,ϕU) = g(W ,ϕX)g(Y ,ϕZ)η(U) − g(W ,ϕY )g(X,ϕZ)η(U)

+ g(R(X,Y )ϕZ,ϕW )η(U) − C(W )g(R(X,Y )Z,ϕU)

− D(W )g(F(X,Y )ϕZ,U). (61)

Contracting (61) over Y and Z and using (47), we get

(∇WS)(X,ϕU) = − g(ϕX,ϕW )η(U) + S∗(X,W )η(U)

− C(W )S(X,ϕU) + D(W )g(X,ϕU). (62)

In view of (48), we have

S∗(X,W ) = g(ϕX,ϕW ) − (2n + 2)D(W )

η(U)
g(X,ϕU). (63)

Substituting U = ξ in (63), we get

S∗(X,W ) = g(ϕX,ϕW ). (64)

From (64) and Definition 5, we conclude that it is ϕ-Einstein. Hence we can state the
following;

Theorem 10 A quasi generalized ϕ-recurrent Sasakian manifold is an ϕ-Einstein
manifold.

In view of (7) and (64), we have the following;

Theorem 11 A quasi generalized ϕ-recurrent Sasakian manifold is an ∗-η-Einstein
manifold.

Example of a quasi generalized ϕ-recurrent Sasakianmanifold
In this section, we give an example of a quasi generalized ϕ-recurrent Sasakian manifold.
We take the three-dimensional manifold M = {

(x, y, z) ∈ R3 : z > 0
}
, where (x, y, z) are

the standard coordinates in R3 . Let E1,E2,E3 be linearly independent global frame onM
given by

E1 = ∂

∂y
, E2 = ∂

∂y
− 2y

∂

∂z
, E3 = ∂

∂z
.

Let g be the Riemannian metric defined by

g(E1,E1) = g(E2,E2) = g(E3,E3) = 1,

g(E1,E2) = g(E1,E3) = g(E2,E3) = 0.

Let η be the 1-form defined by η(W ) = g(W ,E3) for any W ∈ TM. Let ϕ be the (1,1)
tensor field defined by

ϕE1 = −E2, ϕE2 = E1, ϕE3 = 0.
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Then using the linearity of η and g we have

η(E3) = 1, ϕ2W = −W + η(W )E3,

g(ϕW ,ϕU) = g(W ,U) − η(W )η(U),

for any U ,W ∈ TM. Then for E3 = ξ , the structure (ϕ, ξ , η, g) defines an almost contact
metric structure on M. Let ∇ be the Levi-Civita connection with respect to the metric g.
Then we have

[E1,E2] = −2E3, [E1,E3] = 0, [E2,E3] = 0.

Using the Koszula formula for the Riemannian metric g, we can easily calculate

∇E1E1 = 0, ∇E1E2 = −E3, ∇E1E3 = E2,

∇E2E1 = E3, ∇E2E2 = 0, ∇E2E3 = −E1,

∇E3E1 = E2, ∇E3E2 = −E1, ∇E3E3 = 0.

From the above, it follows that the manifold under consideration is a Sasakian mani-
fold of 3-dimension. Using the above relations, we can easily calculate the non-vanishing
components of the curvature tensor R as follows:

R(E1,E2)E1 = 3E2, R(E1,E3)E1 = −E3, R(E1,E2)E2 = −3E1,

R(E1,E3)E3 = E1, R(E2,E3)E2 = −E3, R(E2,E3)E3 = E2

and the components which can be obtained from these by the symmetry properties. Since
{E1,E2,E3} forms a basis of the three-dimensional Sasakian manifold, any vector field
X,Y ,Z ∈ TM can be written as

X = a1E1 + b1E2 + c1E3,

Y = a2E1 + b2E2 + c2E3,

Z = a3E1 + b3E2 + c3E3,

where ai, bi, ci ∈ R+ (the set of all positive real numbers), i = 1, 2, 3. Now

R(X,Y )Z = [(a1c2 − c1a2)c3 + 3(b1a2 − a1b2)b3]E1+[ (b1c2 − c1b2)c3
+ 3(a1b2 − b1a2)a3]E2 − [(c2a1 − a2c1)a3 + (c2b1 − b2c1)b3]E3,

(65)

and

F(X,Y )Z = [(a1b2 − a2b1)b3 + 2(a1c2 − a2c1)c3]E1+[ (b1a2 − b2a1)a3
+ 2(b1c2 − b2c1)c3]E2 + 2 [(c1a2 − c2a1)a3 + (c1b2 − c2b1)b3]E3.

(66)

In view of (65), we have the following:

(∇E1R)(X,Y )Z = 4 [(a1b2 − b1a2)(a3E3 − c3E1) + (a1c2 − c1a2)(a3E2 − b3E1)] , (67)

(∇E2R)(X,Y )Z = 4 [(a1b2 − b1a2)(b3E3 − c3E2) − (b1c2 − c1b2)(a3E2 + b3E1)] , (68)

(∇E3R)(X,Y )Z = 0. (69)

From (67)-(69), we have

ϕ2((∇EiR)(X,Y )Z) = αiE1 + βiE2 for i = 1, 2, 3, (70)
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where

α1 = 4[ c3(a1b2−b1a2)+b3(a1c2 − c1a2)]= β1(v3u1 + u3v1)
v3u2 + u3v2

, β1=−4a3(a1c2 − c1a2),

α2 = 4b3(b1c2−c1b2)= β2(v3u1 + u3v1)
u3v2 + v3u2

, β2=4[ c3(a1b2 − b1a2) + a3(b1c2 − c1b2)] ,

α3 = 0, β3 = 0,

and

u1= [(a1c2 − c1a2)c3+3(b1a2 − a1b2)b3] , u2 = [(b1c2 − c1b2)c3+3(a1b2 − b1a2)a3] ,

u3= [(c2a1 − a2c1)a3+(c2b1 − b2c1)b3] , v1 = [(a1b2 − a2b1)b3+2(a1c2 − a2c1)c3] ,

v2= [(b1a2 − b2a1)a3+2(b1c2 − b2c1)c3] , v3 = 2 [(c1a2 − c2a1)a3+(c1b2 − c2b1)b3] .

Let us now consider the components of the 1-forms as

C(E1) = β1v3
v3u2 + u3v2

, D(E1) = β1u3
v3u2 + u3v2

,

C(E2) = β2v3
v3u2 + u3v2

, D(E2) = β2u3
v3u2 + u3v2

, (71)

C(E3) =0, D(E3) = 0,

where v3u2 + u3v2 �= 0. From (46), we have

ϕ2((∇EiR)(X,Y )Z) = C(Ei)R(X,Y )Z + D(Ei)F(X,Y )Z, (72)

for i = 1, 2, 3. In view of (65), (66), (70), and (71), it can be easily shown that the manifold
satisfies the relation (72). Hence, the manifold under consideration is a quasi generalized
ϕ-recurrent Sasakian manifold, which is not ϕ-recurrent. This leads to the following:

Theorem 12 There exists a three-dimensional quasi generalized ϕ-recurrent Sasakian
manifold, which is neither ϕ-symmetric nor ϕ-recurrent.
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