
Journal of the Egyptian
Mathematical Society

Aouf et al. Journal of the EgyptianMathematical Society           (2019) 27:11 
https://doi.org/10.1186/s42787-019-0012-2

ORIGINAL RESEARCH Open Access

Bi-univalent properties for certain class
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Abstract

In this paper, we obtain bi-univalent properties for certain class of Bazilevič functions
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Introduction
LetA denote the class of analytic functions of the form:

f (z) = z +
∞∑

n=2
anzn (z ∈ U : U = {z ∈ C : |z| < 1}). (1)

For h(z) ∈ A, given by h(z) = z +
∞∑
n=2

hnzn, the Hadamard product (or convolution) of

f (z) and h(z) is defined by:

(f ∗ h)(z) = z +
∞∑

n=2
anhnzn = (h × f )(z). (2)

Definition 1 ([1, 2], and [3] with p = 1) . Let Pλ
k (ρ) (0 ≤ ρ < 1, k ≥ 2 and

|λ| < π
2
)
denote the class of functions p(z) = 1 +

∞∑
n=1

cnzn, which are analytic in U and

satisfy the conditions:

(i) p(0) = 1,

(ii)
2π∫

0

∣∣∣∣∣
� {

eiλp(z)
} − ρ cos λ

1 − ρ

∣∣∣∣∣ ≤ kπ cos λ
(
r < 1, z = reiθ ∈ U

)
. (3)

We note that:
(i) Pλ

k (0) = Pλ
k ( k ≥ 2 and |λ| < π

2 ) is the class of functions introduced by Robertson
(see [4]), and he derived a variational formula for functions in this class.
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(ii) P0
k (ρ) = Pk(ρ) (0 ≤ ρ < 1, k ≥ 2) is the class of functions introduced by

Padmanabhan and Parvatham [5] (see also Umarani and Aouf [6]).
(iii) P0

k (0) = Pk(k ≥ 2) is the class of functions having their real parts bounded in the
mean on U, introduced by Robertson [4] and studied by Pinchuk [7].
(iv) P0

2 (ρ) = P (ρ) (0 ≤ ρ < 1) is the class of functions with positive real part of order
ρ, 0 ≤ ρ < 1.
(v) P0

2 (0) = P is the class of functions having positive real part for z ∈ U.

By the Koebe one-quarter theorem [8], we know that the image ofU under every univa-
lent function f ∈ A contains the disk with center in the origin and radius 1/4. Therefore,
every univalent function f has an inverse f −1 satisfies:

f −1(f (z)) = z (z ∈ U) and f (f −1(w)) = w (|w| < r0(f ), r0(f ) ≥ 1/4). (4)

It is easy to see that the inverse function has the form:

f −1(w) = w − a2w2 + (
2a22 − a3

)
w3 − (

5a32 − 5a2a3 + a4
)
w4 + .... . (5)

A function f ∈ A is said to be bi-univalent in U if both f and its inverse map g = f −1are
univalent in U.

Let
∑

denote the class of bi-univalent functions in U in the form (1). For interesting
examples about the class

∑
, see [9].

The object of this paper is to introduce new subclass of Bazilevič functions [10] for the
class

∑
with bounded boundary rotation and defined by using convolution as follows:

Definition 2 Let f , h ∈ ∑
, α ∈ C

∗, β ≥ 0, 0 ≤ ρ < 1, k ≥ 2 and |λ| < π
2 , then

(f ∗h)(z) ∈ ∑
is said to be in the classMα,λ,ρ,k,β(f ∗h) if it satisfies the following conditions:

{
(1 − α)

(
(f ∗ h)(z)

z

)β

+ α
z(f ∗ h)′(z)
(f ∗ h)(z)

(
(f ∗ h)(z)

z

)β
}

∈ Pλ
k (ρ) (z ∈ U) (6)

and
{

(1 − α)

(
(f ∗ h)−1(w)

w

)β

+α
w((f ∗ h)−1(w))′

(f ∗ h)−1(w)

(
(f ∗ h)−1(w)

w

)β
}

∈ Pλ
k (ρ) (w ∈ U).

(7)

We note that by putting different values for h, α, β , k, λ, and ρ, in the above definition, we
have:

(1) M1,0,ρ,k,β
(
f × z

1−z

)
= R∑(ρ, k,β) (f ∈ ∑

, β ≥ 0, 0 ≤ ρ < 1, k ≥ 2) (see [11],
with γ = 1);
(2)Mα,0,ρ,k,1(f ∗ h) = Lα,ρ,k(f ∗ h)

(
f , h ∈ ∑

, α ∈ C
∗, 0 ≤ ρ < 1, k ≥ 2

)
(see [12]);

(3)Mη,0,ρ,2,1(f ∗ h) = Lη,ρ(f ∗ h)
(
f , h ∈ ∑

, η ≥ 0, 0 ≤ ρ < 1
)
(see [13] and [14]);

(4)Mη,0,ρ,2,1
(
f × z

1−z

)
= Lη,ρ(f )(z)

(
f ∈ ∑

, η ≥ 0, 0 ≤ ρ < 1
)
(see [15]);

(5)M1,0,ρ,2,β
(
f × z

1−z

)
= Lρ,β(f )(z)

(
f ∈ ∑

, β ≥ 0, 0 ≤ ρ < 1
)
(see [16]);

(6)M1,0,ρ,2,1
(
f × z

1−z

)
= Lρ(f )(z)

(
f ∈ ∑

, 0 ≤ ρ < 1
)
(see [9]);
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(7) Mα,0,ρ,2,β
(
f × z

1−z

)
= NPβ ,α∑ (0, ρ)

(
f ∈ ∑

, β ,α ≥ 0, 0 ≤ ρ < 1
)
(see [[17], with

β = 0]);
(8)M1,0,ρ,2,β

(
f × z

1−z

)
= R∑(β , ρ)

(
f ∈ ∑

, β ≥ 0, 0 ≤ ρ < 1
)
(see [18]).

Also, we can obtain the following subclasses:
(i)Mα,λ,ρ,k,β

(
f × z

1−z

)
= �α,λ,ρ,k,β(f )

=
{
f ∈

∑
: (1 − α)

(
f (z)
z

)β

+ α
zf ′(z)
f (z)

(
f (z)
z

)β

∈ Pλ
k (ρ)

and (1 − α)

(
f −1(w)

w

)β

+ α
w

(
(f −1(w)

)′

f −1(w)

(
f −1(w)

w

)β

∈ Pλ
k (ρ)

}
;

(ii)Mα,0,ρ,k,β(f ∗ h) = Fα,ρ,k,β(f ∗ h)

=
{
f , h ∈

∑
: (1 − α)

(
(f ∗ h)(z)

z

)β

+ α
z(f ∗ h)′(z)
(f ∗ h)(z)

(
(f ∗ h)(z)

z

)β

∈ Pk(ρ)

and (1 − α)

(
(f ∗ h)−1(w)

w

)β

+ α
w((f ∗ h)−1(w))′

(f ∗ h)−1(w)

(
(f ∗ h)−1(w)

w

)β

∈ Pk(ρ)

}
;

(iii)Mα,0,ρ,2,β(f ∗ h) = Fα,ρ,β(f ∗ h)

=
{
f , h ∈

∑
: �

[
(1 − α)

(
(f ∗ h)(z)

z

)β

+ α
z(f ∗ h)′(z)
(f ∗ h)(z)

(
(f ∗ h)(z)

z

)β
]

> ρ

and �
[
(1 − α)

(
(f ∗ h)−1(w)

w

)β

+α
w

(
(f ∗ h)−1(w)

)′

(f ∗ h)−1(w)

(
(f ∗ h)−1(w)

w

)β
]

> ρ

}
;

(iv)Mα,λ,0,k,β(f ∗ h) = Mα,λ,k,β(f ∗ h)

=
{
f , h ∈

∑
: (1 − α)

(
(f ∗ h)(z)

z

)β

+ α
z(f ∗ h)′(z)
(f ∗ h)(z)

(
(f ∗ h)(z)

z

)β

∈ Pλ
k

and (1 − α)

(
(f ∗ h)−1(w)

w

)β

+ α
w

(
(f ∗ h)−1(w)

)′

(f ∗ h)−1(w)

(
(f ∗ h)−1(w)

w

)β

∈ Pλ
k

}
;

(v)Mα,0,0,k,β(f ∗ h) = Mα,k,β(f ∗ h)

=
{
f , h ∈

∑
: (1 − α)

(
(f ∗ h)(z)

z

)β

+ α
z(f ∗ h)′(z)
(f ∗ h)(z)

(
(f ∗ h)(z)

z

)β

∈ Pk

and (1 − α)

(
(f ∗ h)−1(w)

w

)β

+ α
w

(
(f ∗ h)−1(w)

)′

(f ∗ h)−1(w)

(
(f ∗ h)−1(w)

w

)β

∈ Pk

}
;

(vi)Mα,0,0,2,β(f ∗ h) = Mα,β(f ∗ h)

=
{
f , h ∈

∑
: (1 − α)

(
(f ∗ h)(z)

z

)β

+ α
z(f ∗ h)′(z)
(f ∗ h)(z)

(
(f ∗ h)(z)

z

)β

∈ P

and (1 − α)

(
(f ∗ h)−1(w)

w

)β

+ α
w((f ∗ h)−1(w))′

(f ∗ h)−1(w)

(
(f ∗ h)−1(w)

w

)β

∈ P
}
;
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(vii)M1,λ,ρ,k,β(f ∗ h) = Fλ,ρ,k,β(f ∗ h)

=
{
f , h ∈

∑
:
z(f ∗ h)′(z)
(f ∗ h)(z)

(
(f ∗ h)(z)

z

)β

∈ Pλ
k (ρ) and

w((f ∗ h)−1(w))′

(f ∗ h)−1(w)

(
(f ∗ h)−1(w)

w

)β

∈ Pλ
k (ρ)

}
;

or

=

⎧
⎪⎪⎨

⎪⎪⎩
f ∈

∑
:
eiλ

[
z(f ∗h)′(z)
(f ∗h)(z)

(
(f ∗h)(z)

z

)β
]

− ρ cos λ − i sin λ

(1 − ρ) cos λ
∈ Pk

and
eiλ

[
z(f ∗h)′(z)
(f ∗h)(z)

(
(f ∗h)(z)

z

)β
]

− ρ cos λ − i sin λ

(1 − ρ) cos λ
∈ Pk

⎫
⎪⎪⎬

⎪⎪⎭
;

(viii)M1,0,ρ,2,β(f ∗ h) = Fρ,β(f ∗ h)

=
{
f , h ∈

∑
: �

[
z(f ∗ h)′(z)
(f ∗ h)(z)

(
(f ∗ h)(z)

z

)β
]

> ρ

and �
[
w((f ∗ h)−1(w))′

(f ∗ h)−1(w)

(
(f ∗ h)−1(w)

w

)β
]

> ρ

}
.

In order to obtain our main results, we have to recall here the following lemma.

Lemma 1 ([3] with p = 1) . If p(z) = 1 +
∞∑
n=1

cnzn ∈ Pλ
k (ρ), then

|cn| ≤ (1 − ρ) k cos λ. (8)

The result is sharp. Equality is attained for the odd coefficients and even coefficients
respectively for the functions:

p1 (z) = 1 + (1 − ρ) cos λ e−iλ
[(

k + 2
4

) (
1 − z
1 + z

)
−

(
k − 2
4

) (
1 + z
1 − z

)
− 1

]
,

p2 (z) = 1 + (1 − ρ) cos λ e−iλ
[(

k + 2
4

) (
1 − z2

1 + z2

)
−

(
k − 2
4

) (
1 + z2

1 − z2

)
− 1

]
.

We note that for λ = 0 in Lemma 1, we obtain the result obtained by Goswami et al.
[19] [Lemma 2.1] for the class Pk(ρ).

In this paper, we will obtain the coefficients bounds |a2| and |a3| for the class
Mα,λ,ρ,k,β(f ∗ h), which defined in Definition 2.

Coefficient estimates for functions in the classMα,λ,ρ,k,β(f ∗ h)

Theorem 1 Let f , h ∈ ∑
, α ∈ C

∗\{−1, −1
2 }, β ≥ 0, 0 ≤ ρ < 1, k ≥ 2, |λ| < π

2 ,
f ∗ h given by (2) and h2, h3 	= 0. If f ∗ h belongs toMα,λ,ρ,k,β(f ∗ h), then:

|a2| ≤ min
{√

2k(1 − ρ) cos λ

|2α + β| (β + 1) |h2|2
;
k(1 − ρ) cos λ

|α + β| |h2|

}
(9)

and
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|a3| ≤ k(1 − ρ) cos λ

|2α + β| |h3| + [k(1 − ρ) cos λ]2

|α + β|2 |h3|
. (10)

The result is sharp.

Proof 1 If (f ∗ h) ∈ Mα,λ,ρ,k,β(f ∗ h), then from Definition 2, we have:

(1 − α)

(
(f ∗ h)(z)

z

)β

+ α
z(f ∗ h)′(z)
(f ∗ h)(z)

(
(f ∗ h)(z)

z

)β

= p(z), p ∈ Pλ
k (ρ) (11)

and

(1 − α)

(
(f ∗ h)−1(w)

w

)β

+α
w

(
(f ∗ h)−1(w)

)′

(f ∗ h)−1(w)

(
(f ∗ h)−1(w)

w

)β

=q(w), q ∈ Pλ
k (ρ),

(12)

where p and q have Taylor expansions as follows:

p(z) = 1 + p1z + p2z2 + p3z3 + ...., z ∈ U, (13)

q(w) = 1 + q1w + q2w2 + q3w3 + ....,w ∈ U. (14)

By comparing the coefficients in (11) with (13) and coefficients in (12) with (14), we obtain:

p1 = (β + α) a2h2, (15)

p2 = (β + 2α) a3h3 + (β + 2α) (β − 1)
2

a22h
2
2, (16)

q1 = − (β + α) a2h2 (17)

and

q2 = (β + 2α)
(
2a22h

2
2 − a3h3

) + (β + 2α) (β − 1)
2

a22h
2
2. (18)

Since p, q ∈ Pλ
k (ρ) and by applying Lemma 1, we have:

∣∣pn
∣∣ ≤ k(1 − ρ) cos λ (n ≥ 1) (19)

and
∣∣qn

∣∣ ≤ k(1 − ρ) cos λ (n ≥ 1). (20)

From (16) and (18) and using inequalities (19) and (20), we obtain:

|a2|2 ≤ 1
|2α + β| |β + 1|

∣∣p2
∣∣ + ∣∣q2

∣∣

|h2|2
≤ 2k(1 − ρ) cos λ

|2α + β| (β + 1) |h2|2
. (21)

Also, from (15) and (19), we obtain:

|a2| ≤ k(1 − ρ) cos λ

|α + β| |h2| . (22)

Subtracting (18) from (16), we have:

p2 − q2 = 2 (2α + β)
(
a3h3 − a22h

2
2
)
. (23)

Also, we have:

p21 + q21 = 2 (α + β)2 a22h
2
2. (24)
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After using (23), (24), (19), and (20), and some easily calculations, we obtain:

|a3| ≤ k(1 − ρ) cos λ

|2α + β| |h3| + [k(1 − ρ) cos λ]2

|α + β|2 |h3|
, (25)

which completes the proof of Theorem 1. The result is sharp in view of the fact that assertion
(8) of Lemma 1 is sharp.

Remark 1 For h(z) = z
1−z , β = α = 1, k = 2, and λ = 0 in Theorem 1, we obtain the

result obtained by Srivastava et al. [9] [Theorem 2].

Putting h(z) = z
1−z in Theorem 1, we obtain the following corollary.

Corollary 1 Let f ∈ ∑
, α ∈ C

∗\ {−1, −1
2

}
, β ≥ 0, 0 ≤ ρ < 1, k ≥ 2 and |λ| < π

2 . If
f ∈ �α,λ,ρ,k,β(f ), then:

|a2| ≤ min
{√

2k(1 − ρ) cos λ

|2α + β| (β + 1)
;
k(1 − ρ) cos λ

|α + β|

}

and

|a3| ≤ k(1 − ρ) cos λ

|2α + β| + [k(1 − ρ) cos λ]2

|α + β|2 .

The result is sharp.

Putting λ = 0 in Theorem 1, we obtain the following corollary.

Corollary 2 Let f , h ∈ ∑
, α ∈ C

∗\ {−1, −1
2

}
, β ≥ 0, 0 ≤ ρ < 1, k ≥ 2, f ∗ h given by

(2) and h2, h3 	= 0. If f ∗ h ∈ Fα,ρ,k,β(f ∗ h), then:

|a2| ≤ min
{√

2k(1 − ρ)

|2α + β| (β + 1) |h2|2
;

k(1 − ρ)

|α + β| |h2|

}

and

|a3| ≤ k(1 − ρ)

|2α + β| |h3| + [k(1 − ρ)]2

|α + β|2 |h3|
.

The result is sharp.

Putting λ = 0 and k = 2 in Theorem 1, we obtain the following corollary.

Corollary 3 Let f , h ∈ ∑
, α ∈ C

∗\ {−1, −1
2

}
, β ≥ 0, 0 ≤ ρ < 1, f ∗ h given by (2)

and h2, h3 	= 0. If f ∗ h ∈ Fα,ρ,β(f ∗ h), then:

|a2| ≤ min
{√

4(1 − ρ)

|2α + β| (β + 1) |h2|2
;

2(1 − ρ)

|α + β| |h2|

}

and

|a3| ≤ 2(1 − ρ)

|2α + β| |h3| + [2(1 − ρ)]2

|α + β|2 |h3|
.

The result is sharp.

Putting α = 1 in Theorem 1, we obtain the following corollary.
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Corollary 4 Let f , h ∈ ∑
, β ≥ 0, 0 ≤ ρ < 1, k ≥ 2, |λ| < π

2 , f ∗ h given by (2)
and h2, h3 	= 0. If f ∗ h ∈ Fλ,ρ,k,β(f ∗ h), then:

|a2| ≤ min
{√

2k(1 − ρ) cos λ

(2 + β) (β + 1) |h2|2
;
k(1 − ρ) cos λ

(1 + β)h2

}

and

|a3| ≤ k(1 − ρ) cos λ

(2 + β) |h3| + [k(1 − ρ) cos λ]2

(1 + β)2 |h3| .

The result is sharp.

Putting α = 1, k = 2, and λ = 0 in Theorem 1, we obtain the following corollary.

Corollary 5 Let f , h ∈ ∑
, β ≥ 0, 0 ≤ ρ < 1, f ∗ h given by (2) and h2, h3 	= 0. If

f ∗ h ∈ Fρ,β(f ∗ h), then:

|a2| ≤ min
{√

4(1 − ρ)

(2 + β) (β + 1) |h2|2
;
2(1 − ρ)

(1 + β)h2

}

and

|a3| ≤ 2(1 − ρ)

(2 + β) |h3| + [2(1 − ρ)]2

(1 + β)2 |h3| .
The result is sharp.

Putting ρ = 0 in Theorem 1, we obtain the following corollary.

Corollary 6 Let f , h ∈ ∑
, α ∈ C

∗\ {−1, −1
2

}
, β ≥ 0, |λ| < π

2 , k ≥ 2, f ∗ h given by
(2) and h2, h3 	= 0. If f ∗ h ∈ Mα,λ,k,β(f ∗ h), then:

|a2| ≤ min
{√

2k cos λ

|2α + β| (β + 1) |h2|2
;

k cos λ

|α + β| |h2|

}

and

|a3| ≤ k cos λ

|2α + β| |h3| + [k cos λ]2

|α + β|2 |h3|
.

The result is sharp.

Putting ρ = λ = 0 in Theorem 1, we obtain the following corollary.

Corollary 7 Let f , h ∈ ∑
, α ∈ C

∗\ {−1, −1
2

}
, β ≥ 0, k ≥ 2, f ∗ h given by (2)

and h2, h3 	= 0. If f ∗ h ∈ Mα,k,β(f ∗ h), then:

|a2| ≤ min
{√

2k
|2α + β| (β + 1) |h2|2

;
k

|α + β| |h2|

}

and

|a3| ≤ k
|2α + β| |h3| + k2

|α + β|2 |h3|
.

The result is sharp.

Putting ρ = λ = 0 and k = 2 in Theorem 1, we obtain the following corollary.
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Corollary 8 Let f , h ∈ ∑
, α ∈ C

∗\ {−1, −1
2

}
, β ≥ 0, f ∗h given by (2) and h2, h3 	= 0. If

f ∗ h ∈ Mα,β(f ∗ h), then:

|a2| ≤ min
{√

4
|2α + β| (β + 1) |h2|2

;
2

|α + β| |h2|

}

and

|a3| ≤ 2
|2α + β| |h3| + 4

|α + β|2 |h3|
.

The result is sharp.

Putting λ = 0, α = 1 and h(z) = z
1−z in Theorem 1, we obtain the following corollary.

Corollary 9 Let f ∈ ∑
, 0 ≤ ρ < 1 and β ≥ 0. If f ∈ R∑(ρ, k,β), then:

|a2| ≤ min
{√

2k(1 − ρ)

(2 + β) (β + 1)
;
k(1 − ρ)

(1 + β)

}

and

|a3| ≤ k(1 − ρ)

(2 + β)
+ [k(1 − ρ)]2

(1 + β)2
.

The result is sharp.

Remark 2 The results in Corollary 9 correct the results obtained by Orhan et al. [11]
[Theorem 2.11, with γ = 1. ].
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