
Journal of the Egyptian Mathematical Society (2015) 23, 451–456
Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems
ORIGINAL ARTICLE
Nanofluid flow over a non-linear

permeable stretching sheet with partial slip
* Tel.: +91 9748603199.

E-mail address: kd_kgec@rediffmail.com

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

1110-256X ª 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

http://dx.doi.org/10.1016/j.joems.2014.06.014
Kalidas Das *
Department of Mathematics, Kalyani Government Engineering College, Kalyani, Nadia, West Bengal 741235, India
Received 20 August 2013; revised 2 June 2014; accepted 18 June 2014

Available online 22 July 2014
KEYWORDS

Nanofluid;

Slip velocity;

Brownian motion;

Non-linear stretching sheet
Abstract In the present study, the problem of boundary layer flow of a nanofluid over non-linear

permeable stretching sheet at prescribed surface temperature in the presence of partial slip is inves-

tigated numerically. By means of proper similarity variables, the governing equations are trans-

formed to ordinary differential equations which are solved using symbolic software

MATHEMATICA. The similarity solutions that depend on slip parameter, stretching parameter,

etc. are elucidated through graphs and tables.
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1. Introduction

The flow over a stretching sheet is relevant to several impor-
tant engineering applications in the field of metallurgy and

chemical engineering processes. These applications involve
the cooling of continuous strips or filaments by drawing them
through a quiescent fluid. The steady two dimensional bound-
ary layer flow of Newtonian fluid over a stretching surface has

been studied by Crane [1]. After this pioneering work the flow
field over a stretching surface has drawn considerable attention
and a good amount of literature has been generated on this

problem [2–5]. In this study the fluid velocity is assumed to
be zero relative to the solid boundary. But this is not true
for fluid flows at the micro- and nanoscale. Investigation

shows that slip flow happens when the characteristic size of
the flow system is small or the flow pressure is very low. To
describe the phenomenon of slip, Navier [6] introduced a

boundary condition which states that the component of the
fluid velocity tangential to the boundary walls is proportional
to tangential stress. Martin and Boyd [7] analyzed Blasius

boundary layer problem in the presence of slip boundary con-
dition. The hydrodynamic flow in the presence of partial slip
over a stretching sheet with suction has been studied by Wang

[8]. Das [9] analyzed the slip effects on heat and mass transfer
in MHD micropolar fluid flow. Recently, Das [10] investigated
convective heat transfer of nanofluids over a stretching sheet in
the presence of partial slip and thermal radiation.

However, all these studies are restricted to linear stretching
of the sheet. It is worth mentioning that the stretching is not
necessarily linear, as in a polymer extrusion process. The prob-

lem of non-linear stretching sheet for different cases of fluid
flow has also been analyzed by different researchers. Gupta
and Gupta [11] first point out in their study that the stretching
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of the sheet may not necessarily be linear. In view of this, Vaj-
ravelu [12] studied flow and heat transfer over a non-linear
stretching sheet. Cortell [13] extended the model proposed by

[12] considering two different types of thermal boundary con-
ditions on the sheet, constant surface temperature and pre-
scribed surface temperature. Prasad et al. [14] investigated

the mixed convection heat transfer over a non-linear stretching
surface with variable fluid properties. Recently, Yazdi et al.
[15] discussed the slip flow and heat transfer over a non-linear

permeable stretching surface.
A nanofluid is a new class of heat transfer fluids that con-

tain a base fluid and nanoparticles. Nanofluids have been
shown to increase the thermal conductivity and convective

heat transfer performance of the base liquids. One of the pos-
sible mechanisms for anomalous increase in the thermal con-
ductivity of nanofluids is the Brownian motions of the

nanoparticles inside the base fluids. It should be noticed that
there have been published several recent papers [16,17] on
the mathematical and numerical modeling of natural convec-

tion heat transfer in nanofluids. A comprehensive survey of
convective transport in nanofluids was made by Buongiorno
[18] and Kakac and Pramuanjaroenkij [19]. The Buongiorno

model [18] has also been used by Khan and Pop [20] to study
the boundary layer flow of a nanofluid past a stretching sheet.
The boundary layer flow of a nanofluid caused by a stretching
surface has drawn the attention of many researchers [21–23].

Very recently Rana and Bhargava [24] investigated the bound-
ary layer flow of a nanofluid flow over a non-linearly stretching
sheet.

There have been many theoretical models developed to
describe slip flow along the surface. However, to the best of
my knowledge, no investigation has been made yet to analyze

the slip flow and heat transfer of a nanofluid past a non-linear
stretching permeable surface at prescribed surface tempera-
ture. The objective of present article was therefore to extend

the work of [24] by taking steady boundary layer flow and heat
transfer of a nanofluid in the presence of partial slip over a
non-linear permeable stretching surface at prescribed surface
temperature.

2. Mathematical formulation

Consider the boundary layer flow of nanofluid over a non-lin-

ear permeable stretching surface. The flow takes place at
y P 0, where y is the coordinate measured normal to the
stretching surface. The flow is generated, due to the stretching

of the sheet that emerges out of a slit at x ¼ 0; y ¼ 0. Let us
assume that the speed at a point on the plate is proportional
to the power of its distance from the slit and the boundary

layer approximation are applicable. The sheet is assumed to
vary non-linearly with distance x from the leading edge i.e.,

uw ¼ axn ð1Þ

where a is a positive constant and n is non-linear stretching
parameter. The stretching surface is maintained at prescribed

surface temperature, Tw as follows:

T ¼ Twð¼ T1 þ bxrÞ at y ¼ 0 ð2Þ

where b is a positive constant, r is the surface temperature
parameter in the prescribed surface temperature boundary
condition and T1 is the temperature of the fluid far away from
the surface. Special case of constant surface temperature is

obtained by introducing r equal to zero.
The governing boundary layer equations for this investiga-

tion are as follows:
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The associated boundary conditions are

u ¼ uw þ us; v ¼ �vw; T ¼ Tw; C ¼ Cw at y ¼ 0

u! 0; T! T1; C! C1 as y!1

�
ð7Þ

where u; v are the velocity components along x and y-axis
respectively, m is the kinematic viscosity, a is the thermal diffu-
sivity, s ¼ ðqcÞp=ðqcÞf is the ratio between the effective heat

capacity of the nanoparticle material and heat capacity of
the fluid, C is the nanoparticle volumetric fraction, qp is the
density of the particles, qf is the density of the base fluid, DB

is the Brownian diffusion coefficient, DT is the thermophoretic
diffusion coefficient, vw is the suction/injection and us is the slip
velocity which is assumed to be proportional to the local wall

stress as follows:

us ¼ l
@u

@y

����
y¼0

ð8Þ

where l is the slip length as a proportional constant of the slip
velocity.

By using similarity transformations
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the fundamental equations of the boundary layer (3)–(6) are
transformed to ordinary differential equations that are locally

valid as follows:

f0 00 þ ff 00 � 2n
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In view of (9), the boundary conditions (7) turn into

f ¼ Fw; f
0 ¼ 1þ fpf 00; h ¼ 1; / ¼ 1 at g ¼ 0

f 0 ! 0; h! 0; /! 0 as g!1

�
ð13Þ



Figure 1 Streamwise velocity for various values of f.
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Here prime denotes differentiation with respect to
g; Pr ¼ m=a is the Prandtl number, Le ¼ a

DB
is the Lewis num-

ber, Nb ¼ ðqcÞpDBðCw�C1Þ
ðqcÞfm

is the Brownian motion parameter,

Nt ¼ ðqcÞpDTðTw�T1Þ
ðqcÞfmT1

is the thermophoresis parameter,

Fw ¼ � vwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
axn�1mðnþ1Þ

2

p is the suction/injection parameter, and

fp ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðnþ1Þ

2m xn�1
q

is the slip parameter for liquids. It should

be noted that n (non-linear stretching parameter) and x (coor-
dinate along the surface) which appear in the Fw and fp tend to

break down the similarity solution. Concentrating on the

above dimensionless form for Fw and fp can be recognized that

n and x are producing in all of them in a special form which we
introduce it as the non-linear term, Pnx and is given by (see
Yazdi et al. [15])

Pnx ¼
xn�1ðnþ 1Þ

2
ð14Þ

This parameter obliges our equations to be solved locally.

Redefining Fw and fp based on the non-linear term Pnx yields
an independent fw and f from x and n as follows:

Fw ¼
fwffiffiffiffiffiffiffi
Pnx

p ; fp ¼ f
ffiffiffiffiffiffiffi
Pnx

p
ð15Þ

where fw ¼ � vwffiffiffi
am
p and f ¼ l

ffiffi
a
m

p
are suction/injection and slip

parameter based on Pnx which are totally independent from
x and n. Consequently there is an appropriate possibility by

defining these parameters (fw and f) keeping away from diffi-
culties of the dependency of Fw and fp on n and x. Therefore
the local similarity solution of the problem for fixed values
of the x coordinate, varying n would be obtained properly

for the various values of involved parameters of the problem.

3. Method of solution

The non-linear differential Eqs. (10)–(12) with boundary condi-
tions (13) have been solved in the symbolic computation soft-
ware MATHEMATICA using finite difference code that

implements the 3-stage Lobatto IIIa formula for partitioned
Runge–Kutta method. We take infinity condition at a large
but finite value of g where no considerable variation in velocity,

temperature, etc. occur.
To check the validity of the present code, the values of h0ð0Þ

have been calculated for f ¼ fw ¼ r ¼ 0 and for different val-

ues of non-linear stretching parameter n using MATHEMAT-
ICA 7.0 in Table 1. From Table 1, it has been observed that
Table 1 Comparison of the values of h0ð0Þ for various values of n.
Pr n Cortell [13]

1.0 0.2 0.610262

0.5 0.595277

1.5 0.574537

5.0 0.2 1.607175

0.5 1.586744

1.5 1.557463
the data produced by the present code and those of Cortell
[13] and Rana and Bhargava [24] show excellent agreement

and the use of the present numerical code is justified.

4. Numerical results and discussions

In order to get a clear insight into the present problem, the
numerical results for velocity, temperature, nanoparticle
concentration, etc. have been presented graphically in Figs. 1–

10 and in Table 1 for several sets of values of the pertinent
parameters such as slip parameter f, suction/injection parameter
fw, non-linear stretching parameter n, etc. In the simulation the
default values of the parameters are considered as [24]

f ¼ 1:0; fw ¼ 0:2; Nb ¼ 0:5; Nt ¼ 0:5; Le ¼ 5:0, Pr ¼ 2:0
and n ¼ 2:0 unless otherwise specified.

The effect of slip parameter f can be understood from the

variation of the streamwise velocity component f 0ðgÞ with the
similarity independent variable g as illustrated in Fig. 1. As slip
parameter increases, the slip at the surface wall increases, and

as a result reaches to a smaller amount of penetration due to
the stretching surface into the fluid. It is clear from figures that
the velocity component at the wall reduces with an increase in

the slip parameter f for nanofluids and decreases asymptoti-
cally to zero at the edge of the hydrodynamic boundary layer.
Thus hydrodynamic boundary layer thickness for nanofluids
decreases as the slip parameter f increases. Fig. 2 shows vari-

ation in the temperature profile for various values of slip
parameter f. Figure indicates that an increase in slip parameter
tends to increase temperature in the fluid field. Thus, by esca-

lating f, thermal boundary layer thickness enhances. The effect
f ¼ fw ¼ r ¼ 0

Rana and Bhargava [24] Present result

0.6113 0.610571

0.5967 0.595719

0.5768 0.574525

1.5910 1.60713

1.5839 1.58619

1.5496 1.55719



Figure 2 Temperature profiles for various values of f.

Figure 3 Nanoparticle concentration profiles for various values

of f.

Figure 4 Streamwise velocity for various values of n.

Figure 5 Temperature profiles for various values of n.

Figure 6 Nanoparticle concentration profiles for various values

of n.

Figure 7 Temperature profiles for various values of Nb.
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of slip velocity on nanoparticle concentration is shown in

Fig. 3. It can be seen from figure that an increase in the slip
parameter f leads to increase in the nanoparticle concentration
for both constant surface temperature and prescribed surface

temperature.
Fig. 4 depicts the variation in the streamwise velocity f 0ðgÞ

with coordinate g for various values of non-linear stretching
parameter n. It is observed that an increase in n leads to
decrease in f 0ðgÞ. As a result, the momentum boundary layer

thickness decreases with increasing non-linear stretching
parameter n. Fig. 5 illustrates variation in the temperature
versus g for different values of non-linear stretching parameter

n. The presence of stretching parameter n leads to an increase
in the thickness of the thermal boundary layer profile. Fig. 6
shows variations in the nanoparticle concentration profile as
function of g for various values of non-linear stretching



Figure 8 Nanoparticle concentration profiles for various values

of Nb.

Figure 9 Temperature profiles for various values of Nt.

Figure 10 Nanoparticle concentration profiles for various values

of Nt.
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parameter n. One can notice that the concentration increases
with increase in non-linear stretching parameter n but the

effect is not significant for constant surface temperature.
The influence of Brownian motion parameter Nb on the

temperature is shown in Fig. 7. It is found that the temperature

increases with Nb across the boundary layer and, as a
consequence, thickness of the thermal boundary layer
increases by increasing Nb in the flow field for both constant

surface temperature and prescribed surface temperature.
Fig. 8 represents the dimensionless nanoparticle concentration
profiles for different values of Brownian motion parameter Nb.
An increase in Brownian motion parameter leads to fall in con-
centration of the fluid in the boundary layer region.

The impact of thermophoresis parameter Nt on the temper-
ature profiles is presented in Fig. 9. For a non-zero fixed value
of g, temperature distribution across the boundary layer

increases with the increasing values of Nt for both constant
surface temperature and prescribed surface temperature and
hence the thickness of thermal boundary layer increases. The

variation in concentration profiles for different values of ther-
mophoresis parameter Nt is presented in Fig. 10. It is notice-
able that concentration profiles within the boundary layer
increase with an increase in thermophoresis parameter.

5. Conclusions

A numerical study is performed for the problem of nanofluid
over a non-linear permeable stretching sheet at prescribed sur-
face temperature in the presence of partial slip. A parametric
study is performed to explore the effects of various governing

parameters on the fluid flow and heat transfer characteristic.
Following conclusion can be drawn from the present
investigation:

� The streamwise velocity of the nanofluid decrease with
increase in slip parameter f and non-linear stretching

parameter n.
� An increase in the slip parameter and non-linear stretching
parameter n leads to increase the thermal boundary layer
thickness.

� The nanoparticle concentration is an increasing function of
each values of the parameters f and n.
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