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Abstract This study deals with the steady mixed convection stagnation point flow of an incom-

pressible Oldroyd-B fluid over the stretching sheet in the presence of a constant applied magnetic

field. It is assumed that the surface temperature varies linearly with the distance from the stagnation

point. A coupled system of non-linear differential equations is developed by employing the similar-

ity transformations. To analyze the behavior of the velocity, temperature, skin friction coefficient

and rate of heat transfer through the wall, a numerical solution is developed using finite difference

scheme. The obtained results are used to discuss the influence of pertinent parameters of interest.
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1. Introduction

The analysis regarding the fluid flow and heat transfer over a
stretching sheet is a subject of interest for many researchers
working in the area of the two-dimensional boundary layer
flows. The reasons lie in the fact that such kinds of investiga-

tions have applications in the manufacturing industry.
For example, in many manufacturing processes such as glass
fiber production, hot rolling, continuous casting, extrusion
process, manufacturing of sheets, coating and paper produc-
tion. The initial work was investigated by Sakiadis [1] for

two-dimensional boundary layer flow when the plate is moving
with constant velocity. The Sakiadis’s problem for heat transfer
analysis was studied by Erickson et al. [2]. In the above mention

studies the velocity of the sheet is assumed to be constant. This
assumption of constant velocity is adequate when we are inter-
ested in the analysis of continuous extrusion of polymer sheets.

Due to the flexibility of polymer materials, a stretching may
occur. Crane [3] found a closed form solution for boundary layer
flow by imposing the condition of stretching wall. He assumed a
linear variation of stretching velocity with respect to the distance

from the origin. The Crane’s problem for viscous fluid was
extended in different directions in the literatures [4–9], etc.

In above mentioned Refs. [3–9], the fluid flow is induced

due to the motion of the surface. But in many real situations
the thermal buoyancy is also play part for the occurrence of
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fluid flow. Therefore, the flow behavior is analyzed under the
influence of both the mechanism; the motion of solid surface
and buoyancy. These buoyancy forces occurs due to the heat-

ing and cooling of stretching sheets resulting in producing
changes to both flow and temperature fields as discussed by
Chen and Strobel [10]. The literature survey indicates that

work in this direction is carried out by many workers in the
field [11–14] and reference therein. On the other hand, the con-
stitutive relationships for rate type fluids are implicit and elim-

ination of stress components from the equation of motion is
not straightforward. This fact is the major cause for the lack
of literature on the two-dimensional flow of rate type fluids.
The simplest class of rate type fluids is the Maxwell fluid and

one can find a number of articles regarding the stretching flow
of Maxwell fluid [15–20] and reference there in. However, for
an Oldroyd-B fluid there are only two studies regarding the

flow over a stretching sheet [21,22].
On the other hand, an extensive literature can be found on

the mixed convection flow of Non-Newtonian fluids over

continuously moving surfaces. Mixed convection flow of a
non-Newtonian micropolar fluid was discussed by Takhar
et al. [23]. Mushtaq et al. [24] considered the steady mixed con-

vection flow of a second grade fluid by considering the case of
variable surface temperature. The steady mixed Convection
flow of a micropolar fluid near the stagnation point on a
vertical surface is studied by Lok et al. [25]. In 2008 , Hayat

et al. [26] investigated the series solution for the mixed convec-
tion flow of a micropolar fluid over a non-linear stretching
sheet using homotopy analysis method. Recently, Hsiao [27]

studied the heat, mass transfer and mixed convection for
MHD flow of a viscoelastic fluid past a continuously moving
surface with Ohmic dissipation numerically. Very recently,

the mixed convection in the stagnation-point flow of a Maxwell
fluid toward a vertical stretching sheet has been investigated by
Abbas et al. [28]. They have discussed the results both analyti-

cally using homotopy analysis method (HAM) and numerically
using finite difference method. To best of our knowledge, no
such attention has been given for the mixed convection flow
of an Oldroyd-B fluid. Our aim was to discuss the mixed con-

vection in the stagnation-point flow of an Oldroyd-B fluid over
a stretching sheet. As a first step the boundary layer equations
under these assumptions have been developed and then a

numerical solution by employing a finite difference method is
presented for the transformed nonlinear coupled ordinary
differential equations. The effects of various involving physical

parameters on the flow and temperature distributions are
discussed through graphs and tables.
2. Formulation of the problem

Consider an incompressible, two-dimensional Oldroyd-B fluid
in the region of a stagnation point over a semi-infinite, imper-
meable stretching sheet at y = 0. The assumed stretching

velocity and wall temperature of the sheet is uw(x) = cx, with
c > o and Tw(x) = bx, with b > 0, respectively. Far away
from the plate the external flow velocity is ue(x) = ax, with

a > 0 and we assume that body attains a uniform temperature
T1 outside the boundary layer. A constant magnetic field of
strength B0 is applied in y-direction. Under the usual Bous-

sinesq approximation the governing equations for boundary
layer flow and heat transfer are (see [22,30])
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where u and v are the velocity components in the x and y direc-
tions respectively, m is the kinematics viscosity of fluid, p is the

pressure, q is the density of the fluid, K 1 is the relaxation time,
K2 is the retardation time, g is the gravitational acceleration, b
is the thermal expansion coefficient, cp is the specific heat, k is

the thermal diffusivity and T is the temperature.
The appropriate boundary conditions applicable to the

present flow problem are:

u ¼ uwðxÞ ¼ cx; v ¼ 0; T ¼ TwðxÞ ¼ T1 þ bx at y ¼ 0;

u ¼ ueðxÞ ¼ ax;
@u

@y
! 0; T ¼ T1 as y!1: ð4Þ

in which both a and c have the dimension of (time)�1 and b is a
positive constant. Here, the forth condition in Eq. (4) is the

augmented condition discussed by Grag and Rajagopal [29] .
Introducing the standard similarity transformations for a

stretching flow
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Governing flow problem takes the form
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f ¼ 0; f0 ¼ 1; h ¼ 1 at g ¼ 0;

f0 ¼ a

c
; f00 ¼ 0; h ¼ 0 as g!1: ð8Þ

Here prime denotes derivative with respect to g and k1 = K1c

and k2 = K2c are the dimensionless material parameters of the
fluid and Ar = Gr/Re2 is the Archimedes number, Gr = gbb/m2

is the Grashof number, Re = c/m is the Reynolds number and
M2 ¼ rB2

0=cq is the Hartmann number.

3. Results and discussion

The numerical procedure explained in detail by Sajid et al. [22]

is adopted for the solution of the transformed Eqs. (6)–(8). The
effects of the involving parameters for example, the dimension-
less relaxation/retardation times (k1,k2), the Hartmann number

M, the ratio of the external flow rate to the stretching rate a/c ,
the Archimedes number Ar , the Prandtl number Pr and the
Eckert number Ec on the velocity f0(g) and the temperature

h(g) distributions are presented through Figs. 1–3. The numer-
ical values of h0(0) are also given for different physical param-
eters in Table 1. Fig. 1 elucidates the variations in the velocity
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component f0(g) for various values of a/c and the dimensionless
relaxation/retardation time (k1, k2) , respectively. It is found
that in Fig. 1(a) that the velocity f0(g) is increased for large val-

ues of a/c , furthermore it is also noted that initially when a/
c< 1 the velocity f0(g) decreases by increasing the values of
k1 but when we take the values of a/c > 1 , the velocity field

f0(g) has opposite behavior and velocity increase by increasing
the values of k1. The boundary layer thickness is decreased as
k1 increases for both a/c < 1 and a/c > 1 . Moreover, it can be

seen from Fig. 1(b) that the retardation time k2 has opposite
effect on the velocity field f0(g) when it compared with the
effects of retardation time k1 . Fig. 2(a) depicts the influence
of a Hartmann number M on the velocity field f0(g) when a/

c= 0.1 . As expected both the velocity f0(g) and the boundary
layer thickness are decreased by increasing the values of M .
Physically this fact is due to that the magnetic force acts as a

resistance to the flow. Fig. 2(b) presents the variation of the
temperature h(g) for various values of the Eckert number Ec .
It is observed that temperature goes to increase as Ec increases.

Furthermore, both Pr and Ec have opposite behavior on the
temperature as well as on the thermal boundary layer thickness.
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Figure 1 The velocity profile f0(g) verses g (a) for different values

of a/c and k1; and (b) for different values of a/c and k2.
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Figure 2 (a) The velocity profile f0(g) verses g for different values

of M and (b) The temperature profile h(g) verses g for different

values of Ec.
Fig. 3(a) gives the change in the temperature distribution h (g)
for several values of the ratio of the external flow rate to the
stretching rate a/c . In this Fig., as we increase the values of
a/c the temperature is decreased. It is also noted that the

thermal boundary layer thickness decreases for the large values
of a/c. Fig. 3(b) is made to see the effects of the Prandtl number
Pr on the temperature distribution h(g). We can say from this

Fig. that both the temperature and thermal boundary layer
are decreased by increasing the value of Pr.

Table 1 gives the numerical values of the local Nusselt

number �h0(0) for different values of the Pr, Ar and Ec in case
of Oldroyd-B fluid. It is found that the local Nusselt number
�h0(0) is increased by increasing the values of Prandtl number

Pr and the Archimedes number Ar. But the magnitude of
�h0(0) decreases by increasing the values of Ec.

4. Concluding remarks

The two-dimensional equations incorporating the effects of
applied magnetic field under the low magnetic Reynold
number assumption and mixed convection effects for an
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Figure 3 The temperature profile h(g) verses g (a) for different

values of a/c and (b) for different values of Pr.

Table 1 Numerical values of �h0(0) for different values of Pr,
Ec and Ar .

Pr Ar Ec= 0.1 Ec= 0.5 Ec= 1.0

0.70 1.00 0.8283 0.7062 0.5673

1.50 1.00 1.2324 1.0020 0.7495

3.00 1.00 1.7586 1.3680 0.9541

7.00 1.00 2.6772 1.9820 1.2722

10.00 1.00 3.1768 2.3086 1.4351

100.00 1.00 8.5362 5.7227 3.0850

0.50 0.00 0.6075 0.4832 0.3277

0.50 0.20 0.6311 0.5159 0.3740

0.50 0.50 0.6592 0.5549 0.4285

0.50 1.00 0.6952 0.6042 0.4990

0.50 3.00 0.7875 0.7330 0.6841

0.50 5.00 0.8480 0.8183 0.8088
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Oldroyd-B fluid are presented in this paper. The obtained
equations are then used to discuss the flow and heat transfer
analysis for the stagnation point flow over a stretching sheet.
The transformed ordinary differential equations are solved
numerically by a finite difference method. The quantities of
interest are the velocity, temperature and numerical values of
f
00
(0) and the Nusselt number. The results are presented graph-

ically and discussed under the influence of the parameters
appearing in the problem. It is found that the magnitude of
heat transfer at the wall is increased by an increase in the

Archimedes number Ar.
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