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Abstract In this paper, the heat and mass transfer of an electrically conducting incompressible

nanofluid over a heated stretching sheet with convective boundary condition is investigated. The

transport model includes the effect of Brownian motion with thermophoresis in the presence of

thermal radiation, chemical reaction and magnetic field. Lie group transformations are applied

to the governing equations. The transformed ordinary differential equations are solved numerically

by employing Runge–Kutta–Fehlberg method with shooting technique. Numerical results for tem-

perature and concentration profiles as well as wall heat and mass flux are elucidated through graphs

and tables.
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1. Introduction

In the recent past a new class of fluids, namely nanofluids has
attracted the attention of the science and engineering commu-
nity because of the many possible industrial applications of

these fluids. An innovative way of improving the thermal con-
ductivities of heat transfer fluids is to suspend small solid par-
ticles in the fluids. Nanofluids are nanometer-sized particles
(diameter less than 50 nm) dispersed in a base fluid such as

water, ethylene glycol, toluene and oil. Addition of high ther-
mal conductivity metallic nanoparticles (e.g., aluminum, cop-
per, silicon, silver and titanium or their oxides) increases the

thermal conductivity of such mixtures; thus enhancing their
overall energy transport capability. The enhancement of ther-
mal conductivities by nanofluids was first discussed by Choi

[1]. It should be noticed that there have been published several
recent papers [2–5] on the mathematical and numerical model-
ing of convective heat transfer in nanofluids. The boundary
layer flow of a nanofluid caused by a stretching surface has

drawn the attention of a growing number of researchers
[6–10] because of its immense potential to be used as a
technological tool in many engineering applications.

The effect of radiation on heat transfer problems has
studied by Makinde [11], Ibrahim et al. [12], Hayat et al.
[13], Das [14] and Nadeem et al. [15]. Lie group analysis, also
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known as symmetry analysis, is the most powerful, sophisti-
cated, and systematic method for finding similarity solution
of non-linear differential equations and is widely used in

non-linear dynamical system, especially in the range of deter-
ministic chaos. This technique has been applied by many
researchers [16–19] to study different flow phenomena over dif-

ferent geometrics arising in fluid mechanics, chemical engineer-
ing and other engineering branches. Hamad and Ferdows [20]
considered similarity solution of boundary layer stagnation-

point flow toward a heated porous stretching sheet saturated
with a nanofluid using Lie group analysis. Recently, heat
transfer problems for boundary layer flow concerning with a
convective boundary condition were investigated by Ishak

[21], Makinde and Aziz [22]. Recently, radiation effects on
MHD nanofluid flow toward a stretching surface with convec-
tive boundary condition were discussed by Akbar et al. [23].

The aim of the present work was to study the effects of the
thermal radiation on the heat and mass transfer of an electri-
cally conducting incompressible nanofluid over a heated

stretching sheet with convective boundary conditions. The flow
is permeated by a uniform transverse magnetic field in presence
of Brownian motion, chemical reaction with thermophoresis.

2. Mathematical analysis

The steady two-dimensional boundary layer flow of an electri-

cally conducting nanofluid over a heated stretching sheet is
considered in the region y > 0. Keeping the origin fixed, two
equal and opposite forces are applied along the x-axis which
results in stretching of the sheet and a uniform magnetic field

of strength B0 is imposed along the y-axis. It is assumed that
the velocity of the external flow is UðxÞ ¼ ax and the velocity
of the stretching sheet is uwðxÞ ¼ bx where a is a positive con-

stant and b is a positive (stretching sheet) constant. The chem-
ical reaction and thermal radiation is taking place in the flow.

Under the above conditions, the governing boundary layer

equations are
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where u; v are the velocity components along the x and y-axis
respectively, T is temperature, k is the permeability of the por-

ous medium, m is the kinematic viscosity, r is the electrical con-
ductivity, Cp is the specific heat at constant pressure,
s ¼ ðqcÞp=ðqcÞf is the ratio of the effective heat capacity of

the nanoparticle material and the base fluid, qf is the density
of base fluid, qp is the nanoparticle density, DB is the Brownian
diffusion coefficient, DT is the thermophoretic diffusion coeffi-
cient, k1 is the rate of chemical reaction.

The radiative heat flux term qr by using the Rosseland
approximation is given by
qr ¼ �
4r�

3k�
@T 4

@y
ð5Þ

where r� is the Stefan–Boltzmann constant and k� is the mean
absorption coefficient. Assuming that the differences in tem-

perature within the flow are such that T 4 can be expressed as
a linear combination of the temperature, T 4 may be expanded
in Taylor’s series about T1 and neglecting higher order terms,
one may get

T 4 ¼ 4T 3
1T� 3T 4

1 ð6Þ
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The boundary conditions at the plate surface and far into
the cold fluid may be written as

u¼ uwðxÞ; v¼ vw;�j @T
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where vw is the wall mass transfer velocity and Tf is the convec-

tive fluid temperature.
Introducing the following non-dimensional variables:

x0 ¼ xffiffiffiffiffi
mb
p ; y0 ¼ yffiffiffiffiffi

mb
p ; u0 ¼ uffiffiffiffiffi

mb
p ; v0 ¼ vffiffiffiffiffi

mb
p ;

U0 ¼ Uffiffiffiffiffi
mb
p ; h ¼ T� T1
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and using classical Lie group approach along the same lines as
in Das [10] and Hamad and Ferdows [20], we get

g ¼ y; w ¼ xfðgÞ; h ¼ hðgÞ; / ¼ /ðgÞ ð10Þ

Substituting (10) into Eqs. (2)–(4) we finally obtain the follow-

ing system of non-linear ordinary differential equations
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The corresponding boundary conditions (8) become
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where Pr ¼ m
a is the Prandtl number, Le ¼ a

DB
is the Lewis num-

ber, Nr ¼ 4T 3
1r�

3k�j is the thermal parameter, Nb ¼ sDBðCw�C1Þ
m is the

Brownian motion parameter, Nt ¼ sDTðTw�T1Þ
mT1

is the thermo-

phoresis parameter, S ¼ vwffiffiffi
bm
p is the suction/injection parameter,

Kr ¼ k1m
bDB

is the chemical reaction rate parameter, K ¼ bk
m is the

permeability parameter, M ¼ B0

ffiffiffiffi
r
bq

q
is the magnetic field

parameter and c ¼ hw
ffiffiffi
mb
p

j is the surface convection parameter.

The quantities of physical interest in this problem are the
local Nusselt number Nu and the local Sherwood number Su
which are defined as

Nur ¼ Re�1=2x Nu ¼ �ð1þNrÞh0ð0Þ; ð15Þ
Shr ¼ Re�1=2x Sh ¼ �/0ð0Þ ð16Þ



Table 2 Effects of various parameters on Nur and Shr.

Nr Nb Nt c Nur Shr

0.0 0.1 0.2 0.2 0.148816 2.52876

0.4 0.197601 2.54675

0.8 0.244394 2.55886

0.2 0.193821 2.58631

0.3 0.189919 2.59959

0.2 0.197601 2.54675

0.4 0.196306 2.48457

0.0 0.103318 2.23404

10 0.611874 2.4208

1 0.632462 2.4151

Figure 1 Temperature profiles for various values of Nb.

Figure 2 Temperature profiles for various values of Nt.
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where Rex ¼ xuw=mf is the local Reynolds number, Nur, the

reduced Nusselt number and Shr, the reduced Sherwood
number.

3. Numerical experiment

The set of highly non-linear ordinary differential Eqs. (11)–
(13) with boundary conditions (14) are solved numerically by

employing Runge–Kutta–Fehlberg method with shooting
technique taking Nr;Nt;Nb;Le; c as prescribed parameters.
A step size of Dg ¼ 0:01 is selected to be satisfactory for a con-
vergence criterion of 10�6 in all cases. For numerical computa-

tion infinity condition was considered for a large but finite
value of g where no considerable variation in temperature,
concentration, etc. occurs. Table 1 shows the comparison of

the data produced by the present code and that of Das [10]
and Hamad and Ferdows [20] in the absence of mass transfer,
thermal radiation, magnetic field and convective surface

boundary condition. The results show excellent agreement
among data. Thus the use of the present numerical code for
current model is justified.

4. Results and discussions

The velocity fields, i.e. the momentum equation solutions, have

been discussed in Das [10] in detail. This paper focuses on the
heat and mass transfer problem with a convective boundary
condition at the wall. The solutions for dimensionless temper-
ature and dimensionless concentration are computed for vari-

ous pertinent parameters.
Table 2 presents the effects for various pertinent parameters

on the reduced Nusselt number and the reduced Sherwood

number when the stretching sheet is heated convectively. From
Table, it can be noticed that the heat transfer rate at the plate
increases with increasing values of Nr but effect is opposite for

Nb and Nt. This enhancement is due to the nanoparticles of
high thermal conductivity being driven away from the hot
sheet to the quiescent nanofluid. Further, it is observed from
table that an increase in Nr and Nb leads to increase in the val-

ues of the rate of mass transfer while the effect is reverse for
Nt. It is observed that the heat transfer rate at the plate
increases with increase in the values of convection parameter

cin the presence of thermal radiation. But the effect is opposite
for Sherwood number.

Figs. 1 and 2 show the effects of the Brownian motion Nb

and the thermophoresis parameter Nt on temperature profiles
of nanofluid across the boundary layer region in the presence
as well as in the absence of thermal radiation. It is found that

the temperature increases with the increase in both the values
of Nb and Nt. It may be noted from Fig. 3 that as Nr increases,
Table 1 Comparison of results for f00ð0Þ with previously

published work.

K Hamad and Ferdows [20] Das [10] Present work

0.0 1.99901 1.99903 1.9990351

0.1 2.01021 2.01016 2.0101278

0.5 2.11021 2.11020 2.1102000

1.0 2.39018 2.39031 2.3903126
Figure 3 Temperature profiles for various values of Nr.



Figure 4 Temperature profiles for various values of c.

Figure 5 Concentration profiles for various values of Nb.

Figure 6 Concentration profiles for various values of Nt.

Figure 7 Concentration profiles for various values of c.
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the temperature increases substantially for both Nt ¼ 0 and
Nt ¼ 1. It is observed from the Fig. 4 that temperature

increases on increasing c in the boundary layer region and is
maximum at the surface of the plate.

The impact of Brownian motion parameter Nb on the
dimensionless concentration is shown in Fig. 5. As the param-

eter value of Nb increases in the presence as well as in the
absence of Lewis number Le, the concentration of nanofluid
decreases in the boundary layer region. Fig. 6 shows that con-

centration of nanofluid increases with the increase in the ther-
mophoretic parameter Nt (for g > 0:3, not precisely
determined) but has no effect near the boundary surface (for

g < 0:3, not precisely determined). Fig. 7 presents the variation
in concentration profiles within the boundary layer for various
values of surface convection parameter c. As c increases con-
centration of the nanofluid in the boundary layer region

increases slightly but effect is significant for large values of
Lewis number.

5. Conclusions

In this work, the heat and mass transfer problem for an elec-
trically conducting nanofluid over a convectively heated

stretching surface in the presence of thermal radiation, Brown-
ian motion and thermophoresis is investigated. The use of a
convective heating boundary condition instead of a constant
temperature or a constant heat flux makes this study more gen-

eral novel. The following conclusion can be drawn from the
present investigation:

� An increase in the surface convection parameter, thermal
radiation parameter, Brownian motion parameter and ther-
mophoretic parameter lead to an increase in the thermal

boundary layer thickness.
� The concentration of nanofluid is an increasing function of
each value of the thermophoretic parameters and surface

convection parameter.
� The results demonstrate that the surface convection param-
eter and thermal radiation parameter is able to enhance
heat transfer rate at the wall while it decreases for increas-

ing Brownian motion parameter and thermophoretic
parameter.
� The rate of mass transfer at the wall decreases with the

increase in the surface convection parameter and thermoph-
oretic parameter whereas the effect is reverse for Brownian
motion parameter.
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