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Abstract An analysis is carried out to study the entropy generation of an incompressible, MHD
flow of water based nanofluid over a stretching sheet. The analytical solutions of the governing
non-dimensional nonlinear ordinary differential equations are presented in terms of hypergeometric
functions and used to compute the entropy generation number. The effects of the physical param-
eters on velocity and temperature profiles are already studied in our previous work [13]. This work
is extended to discuss the effects of magnetic parameter, nanoparticle volume fraction, Hartmann

number and the dimensionless group parameter on the entropy generation for Cu, Ag, Al,O3 and
TiO, nanoparticles. The local skin friction coefficient and reduced Nusselt number are tabulated.
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1. Introduction

Entropy of a thermo dynamical system refers to the unavail-
ability of useful work. Physically entropy generation is associ-
ated with thermo dynamical irreversibility, which is a common
phenomenon in all kinds of heat transfer designs. Greater rate
of entropy generation in any thermal system destroys the
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useful work and greatly reduces the efficiency of the system.
Bejan [1,2] presented a method named Entropy Generation
Minimization (EGM) to measure and optimizes the disorder
or disorganization generated during a process specifically in
the fields of refrigeration (cryogenics), heat transfer, storage
and solar thermal power conversion. The entropy generation
analysis of nanofluids investigated by several authors in differ-
ent geometries [3-9].

The boundary layer flow over a continuously stretching sur-
face finds many important applications in engineering pro-
cesses, such as polymer extrusion and drawing of plastic
films, and the applied magnetic field may play an important
role in controlling momentum and heat transfers in the bound-
ary layer flow of different fluids over a stretching sheet. The
effect of magnetic field on nanofluids studied by the followers
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Nomenclature

By magnetic field strength

Br Brinkman number

Ha Hartmann number

M Kummer’s function

Mn magnetic parameter

Ny entropy generation number

Pr Prandtl number

Rel_/ 2 Cr local skin friction coefficient

Re;l/ 2Nu, reduced Nusselt number

S¢ local volumetric entropy generation rate
(S6)o characteristic entropy generation rate
T local temperature of the fluid

kuy thermal conductivity of the nanofluid

kr thermal conductivity of the base fluid

ks thermal conductivity of the nanoparticles
o electric conductivity

Q dimensionless temperature difference

103 the solid volume fraction

Pnf the effective density of the nanofluid

Py density of the pure fluid

0 density of the nanoparticles

Tt effective dynamic viscosity of the nanofluid
1y dynamic viscosity of the basic fluid

n space variable

Olpf thermal diffusivity of the nanofluid

[10-12]. Very recently, we investigated the effect of magnetic
field on water based nanofluid over a stretching sheet numeri-
cally [13] and also we studied the MHD flow of nanofluid with
thermal radiation effect both analytically and numerically [14].

The purpose of this attempt is to analyse the entropy gen-
eration of magneto hydrodynamic flow of an incompressible
viscous nanofluid over a stretching sheet analytically. The
analytical solutions of dimensionless governing equations are
presented in terms of hypergeometric function. The entropy
generation is calculated using the entropy relation by substitut-
ing the velocity and temperature fields obtained from the
momentum and entropy equations.

2. Formulation of the problem

The entropy analysis for a steady laminar two-dimensional
flow of an incompressible viscous nanofluid past a linearly
semi-infinite stretching sheet is studied with magnetic field
effect. We also consider influence of a constant magnetic field
of strength By, which is applied normally to the sheet. The
temperature at the stretching surface takes the constant value
T,, while the ambient value, attained as y tends to infinity,
takes the constant value T,.,. It is further assumed that the
induced magnetic field is negligible in comparison to the
applied magnetic field (as the magnetic Reynolds number is
small). The fluid is a water based nanofluid containing differ-
ent types of nanoparticles: Copper (Cu), Aluminium (Al,O3),
Silver (Ag) and Titanium Oxide (TiO,). It is also assumed that
the base fluid water and the nanoparticles are in thermal equi-
librium and no slip occurs between them. The thermo physical
properties of the nanofluid are considered as in [13]. Under the
above assumptions, the governing equations can be written in
non-dimensional (see [13]) form as

F" 4+ (1= ¢){[L = ¢ + d(p,/p)|(FF" = F*) = Mn F'} = 0
(1)

P}"kf[l — (,b + ¢(PC1:)3/(pCp)/]

0 n
- kfz/‘

FO' =0 )

with the corresponding boundary conditions

F=0 F =1 at 5=0, 3
Fl—0 as n—
0(0) = 1 and 0(c0) =0 (4)

where ¢ is the solid volume fraction, p, and p, are the densities
of the base fluid and nanoparticles, (pC,), and (pC,), are the
specific heat parameters of the base fluid and nanoparticles,
ky is the thermal conductivity of the base fluid, &, the thermal
conductivity of the nanofluid, Pr is the Prandtl number and

Mn is the magnetic parameter.
3. Analytical solutions of the flow field and the heat transfer

The exact solution to differential Eq. (1) satisfying the bound-
ary condition (3) is obtained as (see Anjali Devi and Ganga

[15])
1 —e

Fin) = —— 5)

where m is the parameter associated with the nanoparticle
volume fraction, the magnetic field parameter, the fluid density
and the nanoparticle density as follow

m=/(1 = $) (Mt 1 - §+ (p,/p))] (6)

The analytical solution of (2) satisfying (4) interms of # is
obtained as

Mlag, ap + 1, —age™™]

0 — e Mmaon 7
) Mlay, ap + 1, —ay) @
where M is the Kummer’s function ([15]), o = % and
Pr ky(1=¢+ )
do = - e
The skin friction can be written as
2F"(0
Re*Cy=~ ( 25
a0
2

_ _W\/U — ) [Mn+1-¢p+d(p,/p)]  (8)

The non-dimensional wall temperature gradient derived
from Eq. (7) reads as
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Wla% M[ao + 1,(10 +2, —(lo]
l+ay Mlay, a0+ 1, —ay)

0'(0) = —may + 9)
where Re, is the local Reynolds number and Re!/>C; is the
local skin friction coefficient and Re;l/zNux = —%’0/(0) is
the reduced Nusselt number.

4. Entropy generation analysis

The local volumetric rate of entropy generation in the presence
of a magnetic field for nanofluids can be expressed as Wood

[16]
ar\*  (oT\’| wy (0@\’ @B,

&) (&) |G 2 o
The contributions of three sources of entropy generation
are considered in Eq. (10). The first term indicates the entropy
generation due to heat transfer across a finite temperature
difference, the second term the local entropy generation due
to viscous dissipation and the third term the local entropy gen-
eration due to the effect of the magnetic field. A dimensionless
number for entropy generation rate Ny is defined as the ratio
of the local volumetric entropy generation rate (Sg) to a char-

Ky
TZ

Se =

Table 1 Comparison of results for the reduced Nusselt

acteristic entropy generation rate (Sg),. For a prescribed
boundary condition the characteristic entropy generation rate
is

2
(Seho =7 (1)
therefore, the entropy generation number is
Sg
(S6)s
Using Egs. (7), (10), (11) and (12) the entropy generation
number is given by

N, = (12)

BrH&?

QRe. F(n) (13)

/. Br U
N, = 07(n) +§F2('I) +
where Bris the Brinkman number. Q and Ha are respectively the

dimensionless temperature difference and the Hartmann
number. These numbers are given by the following relationships

72
/l,,ﬂ/l". AT - 4
Br=_— Q=—  Ha= B — 14
" kyAT T TN (14)

5. Results and discussion

In order to get the clear insight of the physical problem the
analytical results are discussed with the help of graphical illus-
trations for Ag-water. The Prandtl number is fixed as 6.2

number. S . .
- which is for base fluid water and Re, is fixed as 1. The effects
Pr Present results with ¢ = 0 & Mn = 0 Wang [17] of nanoparticle volume fraction, magnetic parameter, Hart-
0.07 0.065562 0.0656 mann number and the dimensionless group parameter on the
0.2 0.169089 0.1691 entropy generation are discussed for various nanoparticles
0.7 0.453916 0.4539 such as Copper (Cu), Silver (Ag), Aluminium Oxide (Al,O3)
2 0.911358 09114 and Titanium Oxide (TiO,) when the base fluid is water. In
;O ;g?;ggg ;gg;g order to validate the present results we have compared our
: : results with those of Wang [17] for reduced Nusslet number
70 6.462200 6.4622 , . . .
—0'(0) in the absence of nanoparticle volume fraction and
Table 2 Values of —F”(0) for various Mn and ¢.
7FN(0)
Mn () Cu Ag A1203 T102
Analytical Numerical [3] Analytical Numerical [13] Analytical Numerical [13] Analytical Numerical [13]
0 0.05 1.10892 1.1089207 1.13966 1.1396602 1.00538 1.0053797 1.01150 1.0115104
0.1 1.17475 = 1.22507 - 0.99877 = 1.00952 =
0.15 1.20886 1.2088625 1.27215 1.2721531 0.98185 0.9818474 0.99603 0.9960410
0.2 1.21804 1.2180440 1.28979 1.2897881 0.95592 0.9559225 0.97259 0.9726024
0.5 0.05 1.29210 = 1.31858 = 1.20441 — 1.20953 =
0.1 1.32825 - 1.37296 - 1.17548 - 1.18463 -
0.15 1.33955 — 1.39694 - 1.13889 — 1.15114 —
0.2 1.33036 - 1.39634 - 1.09544 - 1.11002 -
1 0.05 1.45236 - 1.47597 - 1.37493 - 1.37941 -
0.1 1.46576 = 1.50640 - 1.32890 = 1.33700 =
0.15 1.45858 - 1.51145 - 1.27677 - 1.28771 -
0.2 1.43390 = 1.49532 - 1.21910 = 1.23222 =
2 0.05 1.72887 1.7288700 1.74875 1.7487500 1.66436 1.6643600 1.66806 1.6680601
0.1 1.70789 - 1.74289 - 1.59198 - 1.59875 -
0.15 1.67140 1.6713980 1.71773 1.7177294 1.51534 1.5153352 1.52457 1.5245650
0.2 1.62126 1.6212641 1.67583 1.6758341 1.43480 1.4347985 1.44596 1.4459580




432

M. Govindaraju et al.

Table 3 Values of-0'(0) for various Mn and ¢ when Pr=6.2.
Mn @ —0'(0)
Cu Ag A1203 T102
Analytical Numerical [13] Analytical Numerical [13] Analytical Numerical [13] Analytical Numerical [13]
0 0.05 1.55011 1.5500001 1.53274 1.5327023 1.57565 1.5756510 1.59777 1.5977799
0.1 1.35483 - 1.32448 - 1.39884 - 1.44010 -
0.15 1.17850 1.1785098 1.13846 1.1384695 1.23631 1.2363100 1.29495 1.2949499
0.2 1.01615 1.0161489 0.96923 0.9692299 1.08456 1.0845560 1.15984 1.1598065
0.5 0.05 1.50999 - 1.49356 - 1.53206 - 1.55440 -
0.1 1.32127 - 1.29220 - 1.36014 - 1.40175 -
0.15 1.15008 - 1.11144 - 1.20194 - 1.26100 -
0.2 0.99195 - 0.94640 - 1.05408 - 1.12978 -
1 0.05 1.47494 1.4749200 1.45917 1.4591660 1.49474 1.4947500 1.51721 1.5172125
0.1 1.29134 - 1.26323 - 1.32660 - 1.36842 -
0.15 1.12438 1.1243800 1.08686 1.0868601 1.17188 1.1718780 1.12312 1.2311705
0.2 0.96986 0.9698680 0.92561 0.9256201 1.02721 1.0272200 1.10317 1.1031672
2 0.05 1.41485 1.4148091 1.39995 1.3999590 1.43168 1.4316959 1.45429 1.4543474
0.1 1.23914 - 1.21243 - 1.26949 - 1.31152 -
0.15 1.07903 1.0790422 1.04325 1.0423810 1.12034 1.1203450 1.17986 1.1798890
0.2 0.93058 0.9305950 0.88829 0.8883250 0.98092 0.9809399 1.05705 1.0570600

magnetic parameter. The comparison are found to be in good
agreement as shown in Table 1.The values of local skin friction
coefficient and reduced Nusselt number are calculated and pre-
sented in Table 2 and Table 3. The effects of magnetic param-
eter, solid volume fraction of nanoparticles, Prandtl number
on velocity profile, temperature profile, skin friction and
reduced Nusselt number are already discussed in the previ-
ously published paper (Vishnu Ganesh et al[13]) and a good
agreement is observed in analytical and numerical results.
The influence of the magnetic parameter on the entropy
generation number is shown in Fig. 1. It is clear that the
increasing values of magnetic parameter increase the entropy
generation number near the wall and far away from the wall

Ag-water

3
N;
2 Mn=0.0, 0.5, 1.0, 2.0
1
0.25 0.5 0.75 1 1.25 1.5 1.75 2
n
Fig. 1 Dimensionless entropy generation number profiles for

different values of magnetic parameter, ¢ = 0.2, Pr = 6.2,
Re,=1,BrQ”' = 1.0, Ha = 1.0.

it is not affected by the magnetic parameter. This is due to
the increasing of the magnetic parameter causes the resistant
forces against the fluid movement and then heat transfer rate
in the boundary layer enhances. The presence of the magnetic
field creates the entropy in the nanofluid.

Fig. 2 indicates the effect of the nanoparticles volume frac-
tion on the entropy generation number. It is found that the
entropy generation number decreases with the increasing of
the nanoparticle volume fraction due to the higher dissipation
energy resulted from the sharper velocity gradient near the
wall and an opposite trend is observed far away from the wall.

The effect of Hartmann number on the entropy generation
is depicted in Fig. 3. It can be seen that the entropy generation

Ag-water

W =035, 0.3, 0.25, 0.2

Fig. 2 Dimensionless entropy generation number profiles for
different values of nanoparticles volume fraction parameter,
Mn = 1.0, Pr = 6.2, Re, = 1, BrQ~' = 1.0, Ha = 1.0.
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700

Ag-water
600
500
400
Ns

300
200 : Ha=10, 15, 20, 25
100 |

.................... —

0.5 1 1.5 2 2.5 3

Fig. 3 Dimensionless entropy generation number profiles for
different values of Hartman number, Mn = 1.0, Pr = 6.2,
Re,=1,BrQ' =10, ¢ = 0.2.

number increases with the increasing of Hartman number.
This is due to the fact the increasing of Hartmann number
leads to increase the Lorentz forces which strengthen the dissi-
pation energy as a source of irreversibility.

Fig. 4 illustrates the effect of dimensionless group parame-
ter on the entropy generation number. It is observed that the
entropy generation number increases with the increasing of
dimensionless group parameter. This is because the higher
values of the dimensionless group parameter, increase the
nanofluid friction.

The effect of different nanoparticles on the entropy gener-
ation number is shown in Fig.5. It is clear that the entropy
generation number is maximum for Ag-water and minimum

Ag-water

2.5 3

Fig. 4 Dimensionless entropy generation number profiles for
different values of dimensionless group parameter, Mn = 1.0,
Pr = 6.2, Re,=1,Ha = 1.0, ¢ = 0.2.

3
Ns
2
TiO5, AL,O3 Cu, Ag
1
0.25 0.5 0.75 1 1.25 1.5 1.75 2
n
Fig. 5 Entropy generation for different types of nanofluids when

Mn = 2.0, Pr =62, Re, =1, BrQ ' = 1.0, Ha = 1.0, ¢ = 0.2.

for TiO,—water. The entropy generation number of Cu—water
is greater than Al,O; water. It is also clear that the entropy
generation is depend on the thermal conductivity of the
nanoparticles which are present in the base fluid. The
entropy generation is high for the metallic nanofluids and
is low for the non-metallic nanofluids. This is because
the metallic nanoparticles have high thermal conductivity
and the non-metallic nanoparticles have low thermal
conductivity.

6. Conclusion

Entropy generation analysis of hydromagnetic flow of an
incompressible viscous nanofluid (Cu—water, Ag—water,
Al,Os—water and TiO,—water) over a stretching sheet in the
presence of transverse magnetic field is investigated analyti-
cally. The main conclusions derived from this study are given
below:

e The increasing values of magnetic parameter, Hartmann
number and dimensionless group parameter leads to
increase the generation of entropy in the nanofluid flow
field.

e The rising values of nanoparticle volume fraction parameter
decrease the entropy generation near the wall and an oppo-
site trend is observed far away from the wall.

e The entropy generation depends on the thermal conductiv-
ity of the nanoparticles in the base fluid. The presence of
metallic nanoparticles creates the entropy more in the nano-
fluid flow compared to the non-metallic nanoparticles.
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