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Abstract The heat transfer analysis during melting process in steady flow of an incompressible

Burgers’ fluid over stretching surface is investigated. The two-dimensional flow equations are mod-

eled and then simplified by employing boundary layer analysis. The solution to the arising nonlinear

problem is computed. Interpretation of various emerging parameters is given through graphs for

velocity and temperature fields. Furthermore tables are constructed in order to show a comparative

study with the previous published results. Comparison shows an excellent agreement with the pre-

vious limiting investigations in the field.
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1. Introduction

In the recent years, researchers have keen interest in the flow of
non-Newtonian fluid due to their practical applications in the

field of engineering and technology. For-instance in designing
plunge bearings and radial diffusers, in thermal oil recovery,
cooling of strips, in traffic engineering where traffic is assumed

as continuous fluid etc. The non-Newtonian fluids in view
of diverse characteristics cannot be described by a single
constitutive relation. Hence researchers have proposed various
non-Newtonian fluid models to predict different rheological

features. The survey of literature witnesses that there is replete
literature on the topic concerning the flows of differential type
fluids (a subclass of non-Newtonian fluids) in boundary layer
region whereas such flows are in scarce for the rate type fluid

models. It is because of the fact that the derivation of govern-
ing equations for the rate type fluids in two-dimensional flow
analysis is much more complex than those of differential type

fluids. However recent researchers have paid considerable
attention on rate type fluids. For-instance Jamil et al. [1]
examined the helical flows of Oldroyd-B fluids. Constantly

accelerated flow between two sided walls perpendicular to
the plate has been investigated by Fetecau et al. [2]. Pahlavan

http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2014.04.004&domain=pdf
mailto:awais_mm@yahoo.com
http://dx.doi.org/10.1016/j.joems.2014.04.004
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2014.04.004


Investigation of heat transfer in flow of Burgers’ fluid during a melting process 411
and Sadeghy [3] examined the homotopy analysis method for
solving unsteady MHD flow of Maxwellian fluids above
impulsively stretching sheets. Hayat et al. [4] investigated the

effects of mass transfer on the stagnation point flow of an
upper-convected Maxwell (UCM) fluid. Sajid et al. [5] pre-
sented boundary layer flow of an Oldroyd-B fluid in a region

of stagnation point over a stretching sheet. Similar solution
for the three-dimensional flow of an Oldroyd-B fluid has been
presented by Hayat et al. [6]. Recently Hayat et al. [7] investi-

gated stagnation point flow of Burgers’ fluid over a stretching
surface.

Melting heat transport phenomenon has been introduced
recently in view of its relevance to some particular engineering

problem. For-instance in the magma solidification, melting of
permafrost, preparations of semi-conductor materials, etc. The
seminal work by Epstein and Cho [8] incorporated melting

effects on heat transport phenomenon to submerged bodies.
The work of Epstein has been extended by the various
researchers. Cheng and Lin [9] studied melting effect on mixed

convective heat transfer with aiding and opposing external
flows from the vertical plate in a liquid-saturated porous med-
ium. Ishak et al. [10] studied melting heat transfer in steady

laminar flow over a moving surface. Melting heat transfer in
boundary layer stagnation-point flow toward a stretching/
shrinking sheet has been analyzed by Bachok et al. [11]. Hayat
et al. [12] investigated melting heat transfer in the stagnation-

point flow of a second grade fluid. Royon and Guiffant [13]
analyzed the heat transfer properties of slurry of stabilized par-
affin during a melting process.

The purpose of current study is to analyze the characteris-
tics of melting heat transfer on the boundary layer flow of Bur-
gers’ fluid [7] over a stretched surface. Nonlinear analysis is

formulated. The solutions are derived by homotopy analysis
method (HAM) which has been already applied to provide ser-
ies solutions of various nonlinear problems [14–18]. Graphical

results for dimensionless velocity and temperature are dis-
played and discussed. The numerical values of local Nusselt
number have been obtained for various values of embedded
parameters. Several tables are constructed in order to make

a comparative study with various published articles in the lim-
iting sense. These tables assure the validity of the present
investigation.

2. Mathematical analysis

Consider the stagnation point flow of Burgers’ fluid. The flow

is induced by the stretching of sheet coinciding with the
plane y ¼ 0 whereas fluid occupies the region y P 0. The x-
and y-axes are chosen along and perpendicular to sheet respec-

tively. Velocity of stagnation point flow is taken as UeðxÞ ¼ ax
and the velocity of stretching sheet is UwðxÞ ¼ cx where a and c
are the positive constants. Further, the effect of melting heat
transfer is taken into account. It is assumed that the tempera-

ture of the melting surface is Tm while the temperature in the
free stream is T1, where T1 > Tm. The boundary layer equa-
tions governing the flow in the absence of viscous dissipation

effects are modeled as follows
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with the corresponding boundary conditions given by

u ¼ UwðxÞ ¼ cx; v ¼ 0; T ¼ Tm at y ¼ 0

u! UeðxÞ ¼ ax;
@u

@y
! 0; T! T1 as y!1;

k
@T

@y

� �
y¼0
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The boundary conditions for heat transport phenomena state
that the heat conducted to the melting surface is equal to the

heat of melting plus the sensible heat required to raise the tem-
perature of the solid T0 to its melting temperature Tm (see
Epstein and Cho [11]) Moreover in above equations u and v

denote the velocity components in the x- and y-directions
respectively, k1 and k2 the relaxation times respectively, k3

the retardation time, m the kinematic viscosity, T the fluid tem-

perature, Tm the mean fluid temperature, a the thermal diffu-
sivity of the fluid, k the thermal conductivity, k the latent
heat of the fluid, cs the heat capacity of the solid surface, cp
the specific heat and k the thermal conductivity, The velocity

components in terms of stream function w and similarity trans-
formations can be expressed as
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Now Eq. (1) is satisfied automatically and Eqs. (2) and (3)
become

f000 � f02 þ ff00 þ b1ð2ff0f00 � f2f000Þ þ b2ðf3f
0000 � 2ff02f00 � 3f2f002Þ

þ b3ðf002 � ff
0000 Þ þ A2 ¼ 0; ð7Þ

h00 þ Pr fh0 ¼ 0; ð8Þ

f0ð0Þ ¼ 1; Pr fð0Þ þMeh
0ð0Þ ¼ 0; hð0Þ ¼ 0;

f0ð1Þ ¼ A; f00ð1Þ ¼ 0; hð1Þ ¼ 1; ð9Þ

in which b1 and b2 denote the Deborah numbers in terms of
relaxation times respectively, b3 the Deborah number in terms
of retardation times, A the stagnation point parameter, Pr the

Prandtl number and Me the dimensionless melting parameter.
These are defined as follows:



Figure 2 �h-curve for the h0ð0Þ.

Figure 3 h-curve for error in f.
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b1 ¼ k1c; b2 ¼ k2c
2; b3 ¼ k3c; A ¼ a

c
;

Pr ¼ m
a
¼ lcp

k
; Me ¼ cpðT1 � TmÞ

kþ csðTm � T0Þ
: ð10Þ

It is noted that b2 ¼ 0 corresponds to Oldroyd-B fluid,

b2 ¼ 0 ¼ b3 gives Maxwell fluid and b1 ¼ 0 ¼ b2 ¼ b3 shows
Newtonian fluid. Furthermore Me ¼ 0 means that melting is
absent. Moreover local Nusselt number Nu is given by

Nux ¼
xqw

kðT1 � TmÞ
; ð11Þ

where qw denotes the wall heat flux given by

qw ¼ �k
@T

@y

����
y¼0
; ð12Þ

The dimensionless variables (6) lead to the following relations

NuxRe�1=2x ¼ �h0ð0Þ: ð13Þ

Eqs. (7) and (8) along with boundary conditions 9 are solved

analytically by employing an efficient approach namely the
homotopy analysis method (HAM). It is noted that �hf and �hh

are the HAM parameters which are useful in adjusting and
controlling the convergence of the nonlinear differential

equations (Eqs. (8) and (9)). Thus Figs. 1 and 2 are plotted to
obtain the permissible values of these auxiliary parameters.
It is found that range for admissible values of �hf and �hh are

�1:5 6 ð�hf; �hhÞ 6 �0:5. Further the series solutions converge
in the whole region of gð0 < g <1Þ for �hf ¼ �0:8 ¼ �hh. In
Figs. 3 and 4 the �h-curves for residual error of f and h are

sketched in order to get the admissible range for �h. It is obvious
from these Figs. that by choosing the values of �h from this range
we will get the correct result upto 6th decimal place. Table 1 is
made just to decide that howmuch order of approximations are

necessary for a convergent solution. It is found that 15th order
approximations are sufficient in the present problem.

3. Results and discussion

In order to validate our series solution for convergence, we
have constructed Table 1. This table showed that 15th order

of approximations are sufficient in the present analysis.
Further, we have given a comparative study of present results
Figure 1 �h-curve for the f00ð0Þ.

Figure 4 h-curve for error in h.
with the existing results. The results displayed in Tables 2–4
are in an excellent agreement with the existing data. Further-
more Table 5 presents the values of surface mass transfer
h0ð0Þ for various parameters. It is noted that surface mass



Table 1 Convergence of the homotopy solutions for different

order of approximation when A ¼ 0:1 ¼Me, b1 ¼ b2 ¼ b3 ¼
0:2 and Pr ¼ 1:0.

Order of approximation �f 00ð0Þ h0ð0Þ
1 0.888733 0.700000

5 0.915717 0.567717

10 0.916198 0.562502

15 0.916210 0.562468

25 0.916212 0.562460

35 0.916212 0.562460

Table 2 Comparison of present results of f 00ð0Þ with those of

[5] for Maxwell and Oldroyd-B fluids when b2 ¼ 0 ¼Me.

A Maxwell fluid

ðb1 ¼ 0:2;b3 ¼ 0Þ
Oldroyd-B

fluid ðb1 ¼ 0:2 ¼ b3Þ
Ref. [5] Present results Ref. [5] Present results

0.01 �1:0499 �1:04991 �0:9583 �0:95815
0.05 �1:0393 �1:03934 �0:9490 �0:94948
0.1 �1:0207 �1:02081 �0:9330 �0:93395
0.5 �0:7078 �0:70782 �0:6549 �0:65785
1.0 0.0000 0.00000 0.0000 0.00000

2.0 2.2225 2.2225 2.2255 2.22571

Table 3 Comparison of present results of f 00ð0Þ with those of

[19] for different values of A.

A Present results Ref. [19] results

0.01 �0:99823 �0:9980
0.1 �0:96954 �0:9694
0.5 �0:66735 �0:6673
2.0 2:01767 2:0175

3.0 4:72964 4:7294

Table 4 Comparison of values of h0ð0Þ when Me ¼ 0 with

those of [20].

Pr A Present results Ref. [20] results

1.0 0.1 0.602156 0.603

0.5 0.692460 0.692

1.5 0.1 0.776802 0.777

0.5 0.864771 0.863

Table 5 Values of local Nusselt number Re�1=2x Nu for various

values of parameters when A ¼ 0:2.

A Me b2 Pr Re�1=2x Nu

0.0 0.1 0.2 1.0 �0:54323
0.1 �0:56772
0.2 �0:58295
0.3 �0:60294
0.1 0.0 �0:59615

0.2 �0:53263
0.5 �0:46264
0.1 0.0 �0:56882

0.2 �0:56772
0.5 �0:55219
0.2 0.5 �0:36923

1.0 �0:56772
1.5 �0:72675

Figure 5 Influence of A on f0.

Figure 6 Influence of b2 on f0 when A > 0.
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transfer increases with an increase in A and Pr whereas by
increasing melting Me and Deborah number b2, the magnitude
of the local Nusselt number decreases. Figs. 5–12 are prepared

to give more physical insight of the problem. These graphs
show the influence of various emerging parameters on the
velocity and temperature fields for both stretching and shrink-

ing sheet cases.. Fig. 5 shows that an increase in A yields an
increase in velocity for shrinking sheet case i.e. �3 < A < 1
and the boundary layer thickness decreases. For A ¼ 1 it is

noted that boundary layer vanishes. Furthermore when the
free stream velocity is greater than the velocity of the stretch-
ing sheet i.e. A > 1, the velocity increases and the boundary
layer thickness decreases by increasing A. From the physical
point of view, the large values of A accompany with the higher
free stream velocity which increases the velocity of fluid. The

influences of b2 for ðA > 0 and A < 0Þ on f0 is shown in Figs. 6
and 7. It is noted that for both stretching and shrinking sheets



Figure 7 Influence of b2 on f0 when A < 0.

Figure 8 Influence of Me on f0 when A > 0.

Figure 9 Influence of Me on f0 when A < 0.

Figure 10 Influence of Me on h when A > 0.

Figure 11 Influence of Me on h when A < 0.

Figure 12 Influence of Pr on h.
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the velocity field and corresponding boundary layer thickness

are decreasing functions of b2. Since b2 being the Deborah
number being dependent on k2 has the properties of relaxation
phenomenon. It is evident from various previous studies that

for the smaller Deborah number, material behaves like fluids
whereas for larger Deborah number, material acts like visco-
elastic solids and conclusively the material become more den-
sor. Thus the larger values of Deborah number cause a
reduction in the fluids velocity and the momentum boundary
layer is also reduced due to the lessor molecular movement.

Figs. 8 and 9 provide the effects of melting Me on the velocity
field f0 for stretching and shrinking cases. These Figs. depicts
that Me causes an increase in the velocity field f0 in both cases.

It is because of the fact that an increase in melting causes an
increase in the molecular motion which enhances the flow.
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Figs. 10 and 11 plot the influence of Me on the temperature
profile h for stretching and shrinking cases. It is noted that
temperature field h decreases with an increase in Me for both

cases. Physically melting process causes an increase in the
molecular movement which finally results into dissipation in
energy and the reduction in the fluids temperature. The effects

of Pr on h are portrayed in Fig. 12. The larger values of the
Prandtl number Pr correspond to the weaker thermal diffusiv-
ity, which causes a reduction in the thermal boundary layer.
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