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This article presents some spectral Petrov—Galerkin numerical algorithms based on using
Chebyshev polynomials of third and fourth kinds for solving the integrated forms of high odd-order
two point boundary value problems governed by homogeneous and nonhomogeneous boundary
conditions. The principle idea behind obtaining the proposed numerical algorithms is based on
constructing trial and test functions as compact combinations of shifted Chebyshev polynomials
of third and fourth kinds. The algorithms lead to linear systems with specially structured matrices
that can be efficiently inverted. Some numerical examples are illustrated for the sake of demonstrat-
ing the validity and the applicability of the proposed algorithms. The presented numerical results

indicate that the proposed algorithms are reliable and very efficient.
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1. Introduction

Chebyshev polynomials have become increasingly crucial in
numerical analysis, from both theoretical and practical points
of view. It is well-known that there are four kinds of Cheby-
shev polynomials, and all of them are special cases of the more
widest class of Jacobi polynomials. The first and second kinds
are special cases of the symmetric Jacobi polynomials (i.e.,
ultraspherical polynomials), while the third and fourth kinds
are special cases of nonsymmetric Jacobi polynomials. In liter-
ature, there is a great concentration on first and second kinds
of Chebyshev polynomials 7,(x) and U,(x) and their various
uses in numerous applications, (see for instance, [1-3]).
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However, there are few articles concentrate on the other two
types of Chebyshev polynomials namely, third and fourth
kinds V,(x) and W,(x), either from theoretical or practical
points of view and their uses in various applications, (see,
for example, [4-6]). This motivates our interest in such polyno-
mials. The interested readers in Chebyshev polynomials of
third and fourth kinds are refereed to the excellent book of
Mason and Handscomb [7].

If we were asked for ““a pecking order” of these four Cheby-
shev polynomials T7,(x), U,(x), V,(x) and W,(x), then we
would say that 7,(x) is the most important and versatile.
Moreover T,(x) generally leads to the simplest formulae,
whereas results for the other polynomials may involve slight
complications. However, all four polynomials have their role.
For example, U,(x) is useful in numerical integration (see,
Mason [8]), while V,(x) and W,(x) can be useful in situations
in which singularities occur at one end point (+ 1 or -1) but not
at the other (see, Mason and Handscomb [7]).

Due to their great importance in several applications, high
even-order and high odd-order boundary value problems have
been investigated by a large number of authors. Theorems
which discuss the conditions for the existence and uniqueness
of solutions of such problems are contained in a comprehen-
sive survey in a book by Agarwal [9].

Spectral methods (see, for instance, Boyd [1] and Canuto
et al. [10]) are a class of techniques used extensively in applied
mathematics and scientific computing to numerically solving
ordinary and partial differential equations. The numerical
solution is written as an expansion in terms of certain “‘basis
functions”, which may be expressed in terms of various
orthogonal polynomials. Spectral methods have advantage
that they take on a global approach while finite element meth-
ods use a local approach, and for this reason, spectral methods
have excellent error properties, and converge exponentially.

The study of odd-order equations is of mathematical and
physical interest. As an example, third-order equation contains
a type of operator which appears in many commonly occurring
partial differential equations such as the Kortweg-de Vries
equation. Also, fifth-order boundary value problems are of
interest as they arise in the mathematical modelling of visco-
elastic flows (see, [11,12]). Abd-Elhameed in [13] and Doha
and Abd-Elhameed in [14] have constructed efficient spec-
tral-Galerkin algorithms using compact combinations of ultra-
spherical polynomials for solving the differentiated forms of
elliptic equations of high odd-order boundary value problems.
Recently, in the two papers of Abd-Elhameed et al. in [15] and
Doha et al. in [16], some algorithms for solving numerically the
differentiated and integrated forms of third and fifth-order dif-
ferential equations based on a dual Petrov—Galerkin method
using two new families of general parameters generalized
Jacobi polynomials, are analyzed.

Of the important high-order differential equations are the
singular and singularly perturbed problems (SPPs). These
kinds of problems usually appear in quantum mechanics, opti-
mal control, etc. The presence of small parameter in these
problems prevents one to obtain satisfactory numerical solu-
tions. It is a well-known fact that the solutions of SPPs have
a multi-scale character, that is, there are thin layer(s) where
the solution varies very rapidly, while away from the layer(s)
the solution behaves regularly and varies slowly. The existence
and uniqueness of singularly purturbed boundary value

problems was discussed by Howers [17], Kelevedjiev [18],
and Roos et al. [19].

As an alternative approach to differentiating solution
expansions is to integrate the differential equation ¢ times,
where ¢ is the order of the equation. An advantage of this
approach is that the resulted algebraic system contains a finite
number of terms and hence they are cheaper in solving than
those obtained by the differentiated forms. Doha et al. in
[16] followed this approach for solving the integrated forms
of third- and fifth-order elliptic differential equations. More-
over, Doha and Abd-Elhameed in [4] obtained new formulae
for the repeated integrals of Chebyshev polynomials of third
and fourth kinds and they used these formulae for solving
the integrated forms of sixth-order boundary value problems.

The main objective of the present article is to develop some
efficient spectral algorithms based on shifted Chebyshev third
and fourth kinds-Galerkin methods for solving the integrated
forms of high odd-order differential equations.

The contents of this article are organized as follows. In Sec-
tion 2, some properties and relations of Chebyshev polynomials
of third and fourth kinds and their shifted ones are presented.
In Section 3, we discuss some algorithms for solving the inte-
grated forms of high odd-order elliptic differential equations
governed by homogeneous and nonhomogeneous boundary
conditions using shifted Chebyshev third kind Petrov—Galerkin
method (SC3PGM). In Section 4, we are concerned with the
same equations but by using shifted Chebyshev fourth kind
Petrov—Galerkin method (SC4PGM). Section 5 is concerned
with discussing the condition numbers resulted from the appli-
cation of the two proposed algorithms in Sections 3 and 4. In
Section 6, we present three numerical examples including com-
parisons with some other methods aiming to exhibit the accu-
racy and the efficiency of our proposed algorithms. Some
concluding remarks are presented in Section 7.

2. Some properties of third and fourth kinds of Chebyshev
polynomials and their shifted ones

2.1. Chebyshev polynomials of third and fourth kinds

Chebyshev polynomials V;(x) and W;(x) of third and fourth
kinds are polynomials in x, which can be defined by one of
the two following equivalent forms (see, [7]):

~ cos (i+1)o B 2%

(-39
Vi - - . P; > )
0 =" a1 ) (x)
i
and
in(i+H6 2% 1.
W,-(x) _ Sin (l + 2) _ P(é' D (x)7

sin? (21') f
i

where x = cosf, and P™P(

degree i. It is clear that

Wi(x) = (~1) Vi(~x). (1)

x) is the Jacobi polynomial of

The polynomials V;(x) and W;(x) are orthogonal on

(=1,1) with respect to the weight functions |/{** and /{75,
respectively, i.e.,
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: 1 + X I‘l1
[1 1(1 s V(’C d’C—/ 1+x dx ) ZG/(I}’H i+m— k )+pmfl(x)7
= { > E=) where
0, ), _ .

. G'im = (-1 ‘ G imsy 4
and they may be generated by using the two recurrence i (=1)" G, “)
relations Pn_1(x) is a polynomial in x of degree at most (m — 1) and

Vix) =2x Vi (x) = Via(x), i=2,3,...,
with the initial values

Vo(x) =1, Vi(x)=2x-1,

and

Wilx) =2x Wiy (x) = Wia(x), 1=2,3,...,
with the initial values

Wo(x)=1, Wi(x)=2x+1.

The following special values are of important use later:
Vi =1, V(=D =(=1) @i+,
Wi(l) =2i+ 1, W,(—1) = (-1)"

Also, for all m > 1, we have

1 . _
DmV( ) ﬁ (l+m)' l"(m+%)7 if x 17
i\X) = SNy i+m .
i mo(: | (=D™" (2 i+1) . _
2" (i —m)! ey if x=—1,
and
(2 i+1) PN
D"Wi(x) = Va(i+m)! | 20(mid)’ X )
[ANS - 2m (l _ m)' (71)i+m lf v _1
I"(m+%)7 .

The following theorem is needed in obtaining the desired
spectral numerical solutions.

Theorem 1. If the m times repeated integration of Vi(x) is
denoted by

m times
m times
1" (x / / / X)dx dx .. dx,
then
2m
Zthm i+m— k ) + Om— l( ) (2)
where
k
(71)2(,%)!
. m! (%‘)' (m—’i‘)! (m+i—%)!7 k even,
Grim = 5 e (3)
C0>((5)): k odd,

(5 (m=ED)r (m+i-EH)
and 0,,_1(x) is a polynomial in x of degree at most (m — 1).

(For the proof of Theorem 1, see Doha and Abd-Elhameed
[4]).

Theorem 1 with the aid of relation (1), enables one to get
immediately the following corollary.

Corollary 1. The m times repeated integration of W;(x) is given
by

Gy,im 1s as defined in (3).

2.2. Shifted Chebyshev polynomials of third and fourth kinds

The shifted Chebyshev polynomials of third and fourth kinds
are defined on [a, b], respectively as

v = (250w =w (20 )

All results of Chebyshev polynomials of third and fourth
kinds, can be easily transformed to give the corresponding
results for their shifted ones. The orthogonality relations of
Vi(x) and W} (x) on [a, b] with respect to the weight functions

Vs and y/ [i%;, are given by
x—a —
[ e [ i

) 5, =,
= 6
{0, 7). ©
Based on (5) and with the aid of formula (2), we have the
following theorem.

Theorem 2. If the m times repeated integration of Vi(x) is

denoted by
m times m rimes
1 (x // /w dxdv...d,,
then

m 2m
I<m( = ( ) ZGk"" i+m— k )+a—m*|7

where Gy, is defined as in (3) and G,,_,(x) is a polynomial in x
of degree (m — 1) at most.

3. Solution of high odd-order differential equations by using
shifted third kind Chebyshev polynomials

In this section, we are interested in using SC3PGM to solve the
integrated forms of high odd-order elliptic linear differential
equations governed by the homogeneous and nonhomogene-
ous boundary conditions.

3.1. High odd-order two point boundary value problems

Let us consider the following one dimensional high odd-order
differential equations:

+Zmy fx),

(—1)" e € (ab), n>1,
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governed by the homogeneous boundary conditions

7" (a) =y (b) =y (a) = 0, n—1, (8)

where {p,k=0,1,...,2n} are known constant coefficients.

It is to be noted here that the main differential operator in
(7) is not symmetric, so it is convenient to use a Petrov—Galer-
kin method. The difference between the Galerkin and Petrov—
Galerkin methods, is that the test and trial functions in Galer-
kin method are the same, however, in case of Petrov—Galerkin
method, the trial functions are chosen to satisfy the boundary
conditions of the differential equation, and the test functions
are chosen to satisfy the dual boundary conditions.

Now, the integral equation of (7)—(8) is:

(_])n+l y(x> + Zin:(),uk (211+]7k)y(x) (dx>(2n+l—k)
= F(x> + Z/zcnzoék V/*c(x)> X € (avb)>
¥ (a) =y (b) =y (a) = 0,

Flx) = [ ) (),

m=20,1,...

m=0,1,...,.n—1,

9)
where

m times
m times

(m) T 7 A
/ y(x)(dx) ://--~/y(x)dx dx...dx.

If we define the following spaces

Sy = span{V(x), Vi(x), V3(x),..., V() },

Py ={¢(x) € Sy + ¢ (a) = ¢"(b) = ¢ (a) =0,
m=0,1,...,n—1},

Wy = {Y(x) € Sy ¥"(a) = " (b) =y (b) = 0,
m=0,1,...,n—1},

then the spectral shifted Chebyshev third kind Galerkin proce-
dure for solving (9) is to find y} € @y such that

(=D (0,9 (),

o[ A )

= (F(XHi&c V;Z(X)HP(X)) V() € Py, (10)

wy

k=0

where (y(x),¥(x)),, = f: wy y(x) ¥(x) dx, is the scalar inner

product in the weighted space Li,l (a,b) and w; = /=2

3.2. The choice of trial and test functions

First we consider the case [a,b] = [—1, 1], and we aim to con-
struct suitable basis functions and their dual basis. For this
purpose, we set

2n+1

¢i,n(x) = V,'(.X) + Zpk,iVHk(x)? X € [717 1}7

i=0,1,2,....N—2n—1,
2n+1

Vin(x) = Vi(x) + qu,[VH—k(x)? x € [-1,1],
k=1

i=0,1,2,...,N—2n—1,

n =1, (11)

n>l. (12)

The coefficients {p,;} and {q,,} are chosen such that
¢in(X) € Pipouyr and Y, (x) € Wiinuqy, respectively. The
(n+ 1) boundary conditions d)ff?(—l) =0, m=0,1,2,...,n,
and the n boundary conditions 4)5,’:)(1) =0, m=0,1,2,...,
n— 1, lead respectively to the following system of (2n+ 1)
equations:

(1) i+ 2k + 1) (i + k 4+ m)! (2i +1)(i + m)!

p Pr,i ;
= (i+k—m) (i —m)!
m=0,1,2,...,n,
2n+1 /. .
k ! — !
P Rt L. S S
e (i+k—m) (i—m)!

The determinant of the above system of equations is different
from zero, hence the coefficients {p, ;} can be uniquely deter-
mined to give

(—1)f (Z)(zur 1), (20 + 4k + 21 + 3)

Pkt = (i+n+2),(2i+2n+3) ’
k=1,2,....n, 0<i<N-2n-1,
n
(—=1)* (k)(i+1)k(2i+4k—2n+l)
Poterri = (i+n+2),(2i+2n+3) ’
k=0,1,....n, 0<i<N-2n-1,

where (z), denotes the Pochhammer symbol, i.e., (z), = %
Similarly, it can be easily verified that the coefficients {g, ;} can

be uniquely determined to give

1 () k

= L k=1,2,....n, 0<i<N—2n—1,
T2k (i+n+2), " ! "
0 () e
= . k=0,1,....n, 0<i<N—2n—1,
q2k+1,z (l+n+2)1\ Ly ,n, 1 n

Now, if x in (11) and (12) is replaced by (25=4=) for x € [a, b],
and if we define the following basis functions:

2x—a—b 2x—a—b
b (P50 =0 () =, welad)

then it is clear that the basis and dual basis functions given by
2n+1

¢, (x) = Vi) + Y peiVia),
k=1

and
2n+1

Vi) = Vi) + D qeVi(),
k=1

satisfy the boundary conditions (8), i.e. ¢;,(x) € ®;2,41 and
Vi, (x) € Wiians1, respectively. From now on, it would be con-
venient to write the basis functions ¢;, () and their dual basis
¥, (x) in the two alternative forms:

2n+1

b;,(x) = Z PeiVink(x), (13)
k=0

2n+1

Wi, (x) = ZCIk,;VLk(x)a (14)
k=0
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where the coefficients p, ; and ¢, ; are given respectively by:

e
=021 (D)2 2k 2n43)

2 —
(i+n+2) (2i+2n+3) k_O,Z,...,Zn,
5

Pri= (15)

2 (k ) i+1)_1 (2i42k—2n—1)
+2)

(i+n 1(2i+2n+3) ’

k=1,3,....2n+1,

/
2

i n
02 (e
2

(GRS k=0,2,...,2n,
Qi = ) (16)

k=1,3,....2n+1.

It is obvious that the basis functions ¢;,(x) and
early independent. Therefore, we have

(x) are lin-

in

@N—spdn{qﬁm( ):i:0,1,2,...,N—2n—1},
and
Wy =span{y,(x) :i=0,1,2,.. . N=2n -1},

Now, the variational formulation (10) is equivalent to

(1 340 05,9)
. 122; N ( /(lek)y';v(x) ( dx)(z"“’k),l//f,n(x))wl

2n
( ) + Zék

), ,.,,,.)) , 0<i<N-2n—1.
wi

(17)

The constants 9, 0 < k < 2n, would disappear if we take
i = 2n+1in (17), then we have

((—1)”+l y’}v(x)v‘/’;"(x»u

1

2n (2n+1-k) otk
Sy ( [ s ’,l//}fn(X))
k=0 wi

= (Fe )

wi

2n+1<i<N. (18)
Let us denote

— n
An - (a,'/'> o
7/ 2n+1<ij<N

= (=1 (],(0.97,(9)

wi

BZn+l—m‘n = (b?jn+]7m‘rn) S
2n+1<ij<N
0t 1—m, 2n4+1— nt1— X
b = (ﬂ T, () ) ()
T
= (Fy, Fl o Fy o)
( II1 ) o
w1
N—-2n—1
W) =D A,
k=0
T
¢ = (cg,c'{, .. .,c’,’V72”4) .

Now Eq. (18), can be transformed into the following linear
system

2n
(An + Z,um B2n+1m,n) cn = an (19)
m=0

where the nonzero elements of the matrices 4, and
Boyii—mn (0 < m < 2n) are given explicitly in the following
theorem.

Theorem 3. If the trial and test functions ¢Zn(x) and l//,n( )
are chosen as in (13) and (14), respectively, and if

we set = (=1 (6 201,00, 0,(0) L and b7
(S a0 @) () 0<m<

wi
then

(DN+2n+l = Span{qs(*),n (X), ¢>{n (X), ) (P;\IYH(X)L
TN+2VI+1 = Span{‘//?),n(x)v libT,n (.X), Tty l/jj\fvn(x)}7
and the nonzero elements of the matrices 4, and

Byyii-ma (0 < m < 2n) are given explicitly by:

g n(a—b)(i—2n),(2i—2n—1) , (20)

P (it 1), 2n+ 1)
. 2n+1
LZ;}:(_I)"Jr (b_ ( )Zp/w 2n— lq] i—2n—14k,i» J_l+s s = 13

k=

(1)

2n—m+2  2n+1 2n+1
2n+1—-mp __ b—a
bij = n(72 E E Prj-2m-1 4ei
k=0 (=0

J=1i+s,
0<m<2n, (22)

Gj—i+k—[—nnj—2n— 1+k2n+1-m>

m—2n—1<s<6n—m+ 3,

where Giim,py,; and q,; are as defined in (3), (15) and (16)
respectively.

Proof. The basis functions ¢;,(x) and their dual functions
;,(x) are chosen such that @¢;,(x) € Pyi2,41 and ¥}, (x) €
Yrionyr fori=0,1,... N. Moreover, it s clear that
{qﬁzn(x)}ogig , and {'ﬁ,n(x)}()gg , are linearly independent and
the dimension of both @y,5,.1 and WYy, IS equal to
(N +1). Hence,

(DN+2n+| = Span{¢3,n(x)7 (an (X), ] (zbj\/,n(x)}7
and
¥ naner = span{y, (x), 7, (x), - ¥y, (X))

To prove (20) and (21), we make use of the two formulae
(13) and (14), to get

2n+12n+1

n: H]ZZ[)M - q/’( g 1Jrk( X), V*g( )) )

k=0 (=0 wi

which in turn, with the aid of the orthogonality relation (6),
yields

2n+1
ai=(-1)"(b—a ( )ZPA] ot Gjmionrkir J=i+8,5 21

J
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If we make use of relations (15) and (16), then aj; can be
evaluated to give relations (20) and (21). To prove relatlon
(22), we have for 0 < m < 2n

- (2n+1—m) (Qnt1om)

n+l—mpn * n+1-m *

g = (7 0 )™ )
wy

2n+1 2n+1

_ i(2n+ 1—m)

- kj—2n—1 *j-2n— l+/x q/ i 1'+ X )
k=0 wy

and the application of Theorem 2 yields
- b—a 2n4+1-m 2(2n+1—m)
j< nz: 1112(“) ( > ) Z Grjantskonti-m Vig_mo(X),

=0

(23)

where Gy, is as given in (3), which leads after making use
of the orthogonality relation (6) and relation (23), to the
relation

2n—m+2 ”n+12u+1

Dt l-ma _

by = ( 3 ) E Prj-n-t 9ei Gimivk—t-mj-2m-1+k2m41-m>0
=0 =0

<m<2n, j=i+ssm—2n—1<s<bn—m+3,

and this completes the proof of Theorem 3. O

Now, and based on Theorem 3, it is clear that the case
corresponds to u,, =0, 0 < m < 2n, leads to linear system
with nonsingular upper triangular matrices. This result is given
in the following corollary.

Corollary 2. If u,, =0, 0 < m < 2n, then the linear system (19)
takes the matrix form A, c¢"=F", where A, is an upper
triangular matrix whose solution can be immediately obtained
by the backward substitution as:

N
no__ _ n
A= Flian E , Aivont1

Jj=it2n+2

n n
G ) / Ditons1 i+2n+15
i=0,1,....,.N=2n—1,

where the elements aj and aj; are given by (20) and (21)
respectively.

Remark 1. If we consider the equation

+ZIJA 9 (x) = M),

( 1)n+1y(2n+1) € (a,b)7 nz= 17

(24)
governed by the nonhomogeneous boundary conditions

Na)=y, m=0,1,...,n—1,
(25)

}Y(m ( ) = O, J/(m) (b) = ﬂm’ }Y(”

then, and with the aid of a suitable transformation, Eq. (24)(25),
can be converted to an equation similar to (7)—(8).

4. Solution of high odd-order differential equations by using
fourth kind Chebyshev polynomials

In this section, we are concerned with the solution of the same
problems discussed in Section 3, but by using SC4PGM. All
results of this section are given without proofs.

4.1. High odd-order two point boundary value problems
SC4PGM

Let us consider the same one dimensional high odd-order dif-
ferential Eqgs. (7) governed by the same homogeneous bound-
ary conditions (8). If we define the following spaces

§N = Span{m(x)v WT(X), W;(’C), cey W}kv(x)h

Dy = {Pp(x) €S+ " (a) = $" (b) = ¢ (a) = 0,

m=0,1,...,n—1},

¥y = {Y(x) € Sy: Y (a) =y (b) = ¥ (b) = 0,

m=0,1,...,n—1},
then, the shifted Chebyshev fourth kind spectral Petrov—

Galerkin procedure for solving (7)—(8) is to find 7, € ® such
that

(=0 3300, 9)

wa

2n (2n+1-k) B
3o ([ @@ )
( +Zak " (x) )) . YV (x) € Py

In such case, the basis functions and their dual basis func-
tions are selected to take the following forms:

2n+1

=Y Wi (), (26)
=0
2n+1
= G Wi (x), 27)
=0
where the constants py; and gx; can be computed to give:
= is k:0,2,.,.72n,

I 28
b {—qm k=1,3,....2n+1, (28)
_ Pri» k=0,2,...,2n,

ki = ) 29
o {pktiv k=1,3,...,2n+1, (29)

and the coefficients p,; and ¢, ; are given in (15) and (16),
respectively. '

Now, the main result of this section is given in the following
theorem.

Theorem 4. If the trial and test functions ¢*;,(x) and " ; ,(x) are

chosen as given in (26) and (27), respectively, and if

P(x) = S0 el ¢ ia(x), is the Petrov-Galerkin approxi-

mation to (9), then the expansion coefficients {c},k =0,
., N = 2n — 1} satisfy the matrix system:

2n
<An + Z’u’” BZV[+1—mJt> c" = Fn) (30)

m=0

where the nonzero elements of the matrices A, and Ba,.i_pn
(0 < m < 2n) are given explicitly as follows:
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_,_m(b—a)(i—2n), . .
a4 = i—nt1), (31) Table 1 Condition number of the matrices 4, and D,.
2n+1 N n #(Ay) (Dy) n (4,) ©(Dy)
_n nt1 T _ _ .
ay=(-1)"(b—a) (E)Zpk.ffznfl Goimroki J=itss=1,  (32) 16 4093 8611 8472 7434
k=0 24 1 4389 8849 2 10.179  9.034
b—q\ 2 il _ 32 4.539 8.880 11.084 9.819
p2n+l—-mn — _
bii =T (T) ZZ Phkj-2n-14ei G/‘*HJ\'*[—IH,/’—ZH*l+/;.2n+l —m» 40 4.629 8.881 11.643 10.279

k=0 =0

Jj=i+s, m—2n—1<s<6n—m+3, 0<m<2n,

where 6,(_,-‘,”715;(,1- and Gi; are as defined in (4), (28) and (29)
respectively.

We note that the case corresponds to u,, =0, 0 < m < 2n,
leads to linear system with nonsingular upper triangular matri-
ces. The result for such case is summarized in the following
corollary.

Corollary 3. If 1, =0, 0 <m < 2n, then the system (30)
reduces to the matrix equation A, ¢" =F", where A, is an
upper triangular matrix whose solution can directly obtained by

the backward substitution

N
—n o —n
§ Qivons1) € itonsl,itont1s

J A p—
¢ = Flann
J=i+2n+2

i=0,1,...,N—2n—1,

where a; and @j; are given by (31) and (32) respectively.

5. Condition numbers of the two resulting matrices in systems
(19) and (30)

In this section, we discuss the condition numbers of the two
resulting matrices that appear in the two linear systems (19)
and (30). If we apply the two spectral methods namely,
SC3PGM and SC4PGM, then the two linear systems resulted
from solving the integral equation of the equation

((71)'“rl Py (x) :f(x)) are given respectively by A4,¢" =

F" and A,¢" = F". Thus, Vn > 1, we note that the condition
number of the matrix A, behaves like O(N) for large values
of N, while the condition number of the matrix 4, is indepen-
dent of N. Moreover, it has been noted that the combined

matrices D, = A, + > oy Busimn in (30) and D, = A,+
Zf::()BZVIJrl*W«," in (19) have the same conditions numbers of
the matrices 4, and A,, respectively. Hence the propagation
of roundoff errors should not be very significant. To ascertain
these observations, Table 1 illustrates the condition numbers
for the matrices 4, and D, = A4, + Zf::oanH—mm in (19) for
some values of the parameter N and (a,b) = (—1,1),n=1,2,
while Table 2 illustrates the condition numbers for the matrices

A,and D, = A, + 37" Bows1-mn in (30), n = 1,2, for the same

m=0
values of N and in the same interval.

Remark 2. It should be noted here that the main advantage of
following the integrated form approach over the differentiated
one is that the condition numbers in the integrated approach
are smaller than those obtained via the differentiated
approach. It can be shown that if the two algorithms SC3PGM
and SC4PGM are applied but on the differentiated forms (7)
and (8), then the condition numbers of the matrices appear in

Table 2 Condition number of the matrices 4, and D,.

v o @) @)
16 3.031 2.293 0.663 0.395
24 1 4.561 3.544 2 0951 0.600
32 6.087 4.797 1.241 0.809
40 7.613 6.052 1.531 1.021

Table 3 Error E for N = 8,10, 12,14, 16, 18 for Example 1.

N € SC3PGM SC4PGM
1/16 1.3 x107° 1.3 x107°

8 1/32 5.5 %1077 5.3 x 1077

1/64 2.2 x 1077 2.1 x 1077

1/16 1.4 x 1078 1.1x1078

10 1/32 5.8 x 1077 47 %107
1/64 2.4 x107° 1.9 x 107°

1/16 9.8 x 10711 6.6 x 107!

12 1/32 42 x 1071 2.8 x 1071
1/64 1.7 x 10711 1.1x 1071

1/16 49 x 1071 2.7 x 10712

14 1/32 2.1x 10713 12x 10713
1/64 8.4 x 1071 4.6 x 10714

1/16 6.5 x 10716 1.6 x 1071

16 1/32 7.4 %1071 2.5% 1071
1/64 2.2 x 10716 1.7 x 10716

Table 4 Comparison between different methods for Example
1.

€ Methods in [20] SC3PGM SC4PGM

1/16 54 %107 6.5 x 10716 1.6 x 1071
1/32 2.8 x107° 7.4 x 10716 2.5x 1071
1/64 1.4 x 1077 2.2 x 10716 1.7 x 10716

Table 5 Error E for N = 8,10, 12, 14,16 for Example 2.

N SC3PGM SC4PGM
8 1.2 %107 7.6 x 1077
10 3.4 x107° 1.8 x 1077
12 5.1 x 10712 23 %1072
14 4.8 x 107" 1.9 x 1071
16 1.1 x 10716 9.0 x 1077
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Table 6 Comparison between different methods for Example 2.

x Methods in [21,22] Method in [23] Method in [24] Method in [25] Method in [26] SC3PGM SC4PGM
0.1 1.0 x 107° 7.0 x 107* 23 x 1077 0.0 338 x 1071 5.6 x 1077 5.6 x 1077
0.2 2.0x107° 7.2 % 107* 1.6 x 107° 1.0 x 107 447 x 1071 1.1 x 1071¢ 1.1 x 1071
0.3 1.0 x 1078 4.1%x107* 4.6%10°° 1.0 x 1073 3.44 x 1071 0.0 5.6 x 1077
0.4 2.0x 1078 4.6x107* 8.9 x 107° 1.0 x 107* 6.88 x 1071 5.6 x 10717 0.0

0.5 3.1x 1078 47 x 107 13x107° 32x 1074 3.17 x 107 0.0 5.6 x 1077
0.6 3.7x 1078 48 % 107* 1.6 x 107° 3.6 x 1074 7.28 x 1071 0.0 0.0

0.7 41x10°% 3.9 x107* 1.6 x 107° 1.4 x107* 1.05x 107 5.6 x 1077 5.6 x 1077
0.8 3.1x1078 3.1x107* 1.2x107° 3.1x 1074 1.15x 1074 0.0 5.6 x 10717
0.9 14x10°% 1.6 x 107* 5.1x107° 58 x107* 8.68 x 1071 5.6 x 1077 1.1 x 1071¢

the resulting two linear systems are both of O(N*"*1), for large
values of N.

6. Numerical results

In this section, we give two numerical results for the sake of
testing the efficiency and the applicability of the proposed
algorithms of Sections 3 and 4. We consider the following
two examples.

Example 1. Consider the following singulary perturbed linear
third-order boundary value problem (see, [20]):

—e Y (x) +y(x) =81 ¢ cos(3x) + 3 esin(3x), 0< x< 1,

subject to the boundary conditions
2(0)=0, y(1)=3esin(3), yV(0)=9e¢
with the analytic solution y(x) = 3 esin(3x).

In Table 3, we list the maximum pointwise
error £ = |y — yy| using (SC3PGM and SC4PGM) with vari-
ous values of N and ¢, while in Table 4, we introduce a com-
parison between the best absolute errors obtained by
(SC3PGM and SC4PGM) in case of N =18 with the best
absolute errors obtained by using method in [20]. This table
shows that our two methods are more accurate if compared
with the method developed in [20].

Example 2. Consider the following linear fifth-order boundary
value problem (see, [21-26]):

U (x) =u(x) =15 =10 x e, 0<x<1,

governed by the boundary conditions

u(0)=0, uV(0)=1 u?(0)=0,
= —e.

The exact solution of this problem is u(x) = x(1 — x)e".

Table 5 lists the maximum pointwise error E = |u — uy| us-
ing (SC3PGM and SC4PGM) with various values of N. In
Table 6, we introduce a comparison between the best absolute
errors obtained by (SC3PGM and SC4PGM) at N = 16 with
the best error obtained by using the methods developed in
[21-26] is displayed in Table 6. This table shows that our
two methods are more accurate if compared with the methods
obtained in all of these papers.

7. Concluding remarks

We have presented some efficient direct solvers for the inte-
grated forms of high odd-order differential equations using
shifted Chebyshev polynomials of third and fourth kinds based
on applying Petrov—Galerkin spectral method. We have found
that for some particular differential equations, the resulting
systems of linear equations are upper triangular, and this is
certainly reduces the computational cost for the numerical
solutions for these special cases. The presented numerical
examples exhibit the high accuracy and efficiency of the pro-
posed algorithms.

Acknowledgment

The authors are very grateful to the anonymous referees for
carefully reading the paper and for their comments and sugges-
tions which have greatly improved the manuscript.

References

[1] J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed.,
Dover, Mineola, 2001.

[2] E.H. Doha, W.M. Abd-Elhameed, Y.H. Youssri, Second kind
Chebyshev operational matrix algorithm for solving differential
equations of Lane-Emden type, New Astron. 23-24 (2013) 113—
117.

[3] K. Julien, M. Watson, Efficient multi-dimensional solution of
PDEs using Chebyshev spectral methods, J. Comput. Phys. 228
(2009) 1480-1503.

[4] E.-H. Doha, W.M. Abd-Elhameed, On the coefficients of
integrated expansions and integrals of Chebyshev polynomials
of the third and fourth kinds, B. Malays. Math. Sci. Soc. 37 (2)
(2014) 383-398.

[5] EEH. Doha, W.M. Abd-Elhameed, M.A. Bassuony, New
algorithms for solving high even-order differential equations
using third and fourth Chebyshev—Galerkin methods, J.
Comput. Phys. 236 (2013) 563-579.

[6] M.R. Eslahchi, M. Dehghan, S. Amani, The third and fourth
kinds of Chebyshev polynomials and best uniform
approximation, Math. Comput. Model. 55 (2012) 1746—1762.

[7]1 J.C. Mason, D.C. Handscomb, Chebyshev Polynomials,
Chapman and Hall, New York, NY, CRC, Boca Raton, 2003.

[8] J.C. Mason, Chebyshev polynomials of the second, third and
fourth kinds in approximation, indefinite integration, and
integral transforms, J. Comput. Appl. Math. 49 (1993) 169-178.

[9] R.P. Agarwal, Boundary Value Problems for High Ordinary
Differential Equations, World Scientific, Singapore, 1986.

[10] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral
Methods in Fluid Dynamics, Springer-Verlag, New York, 1989.


http://refhub.elsevier.com/S1110-256X(14)00056-X/h0010
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0010
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0010
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0015
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0015
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0015
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0015
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0020
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0020
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0020
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0025
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0025
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0025
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0025
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0030
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0030
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0030
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0030
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0035
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0035
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0035
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0040
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0040
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0040
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0045
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0045
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0045
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0050
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0050
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0050
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0055
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0055
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0055

Solutions of odd-order BVPs using Chebyshev polynomials

405

[11] A.R. Davies, A. Karageorghis, T.N. Phillips, Spectral Galerkin
methods for the primary two-point boundary-value problem in
modelling viscoelastic flows, Int. J. Numer. Methods Eng. 26
(1988) 647-662.

[12] A. Karageorghis, T.N. Phillips, A.R. Davies, Spectral
collocation methods for the primary two-point boundary-value
problem in modelling viscoelastic flows, Int. J. Numer. Methods
Eng. 26 (1988) 805-813.

[13] W.M. Abd-Elhameed, Efficient spectral Legendre dual-Petrov—
Galerkin algorithms for the direct solution of (2n + 1)th-order
linear differential equations, J. Egypt Math. Soc. 17 (2009) 189—
211.

[14] EH. Doha, W.M. Abd-Elhameed, Efficient spectral
ultraspherical-dual-Petrov—Galerkin algorithms for the direct
solution of (2n + 1)th-order linear differential equations, Math.
Comput. Simulat. 79 (2009) 3221-3242.

[15] W.M. Abd-Elhameed, E.H. Doha, Y.H. Youssri, Efficient
spectral-Petrov—Galerkin methods for third- and fifth-order
differential equations using general parameters generalized
Jacobi polynomials, Quaest. Math. 36 (2013) 15-38.

[16] E.H. Doha, W.M. Abd-Elhameed, Y.H. Youssri, Efficient
spectral-Petrov—Galerkin methods for the integrated forms of
third- and fifth-order elliptic differential equations using general
parameters generalized Jacobi polynomials, Appl. Math.
Comput. 218 (2012) 7727-7740.

[17] F.A. Howers, Singular Perturbation and Differential
Inequalities, vol. 168, Memories of the American mathematical
Society, Providence, Rhode, Island, 1976.

[18] P. Kelevedjiev, Existence of positive solutions to a singular
second order boundary value problem, Nonlinear Anal.: Theory
Methods Appl. 50 (8) (2002) 1107-1118.

[19] H.G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods
for Singularly Perturbed Differential Equations, vol. 24,
Springer Series in Computational Mathematics, Springer-
Verlag, Berlin, Heidelberg, 2008.

[20] G. Akram, Quartic spline solution of a third order singularly
perturbed boundary value problem, Anziam. J. 53 (2012) 44-58.

[21] A. Wazwaz, The numerical solution of fifth-order boundary-
value problems by Adomian decomposition method, J. Comput.
Appl. Math. 136 (2001) 259-270.

[22] M.A. Noor, S.T. Mohyud-Din, Variational iteration method for
fifth-order boundary value problems using he’s polynomials,
Math. Probl. Eng. 2008 (2008) (12 pages), Article ID 954794.
http://dx.doi.org/10.1155/2008/954794.

[23] H.N. Ccglar, S.H. Caglar, E.H. Twizell, The numerical solution
of fifth-order boundary value problems with sixth-degree B-
spline functions, Appl. Math. Lett. 12 (1999) 20-30.

[24] M.A. Noor, S.T. Mohyud-Din, A new approach to fifth-order
boundary value problems, Int. J. Nonlinear Sci. 7 (2) (2009)
143-148.

[25] J. Zhang, The numerical solution of fifth-order boundary value
problems by the variational iteration method, J. Comput. Math.
Appl. 58 (2009) 2347-2350.

[26] J. Rashidinia, M. Ghasemi, R. Jalilian, An O(4°) numerical
solution of general nonlinear fifth-order two point boundary
value problems, Numer. Algor. 55 (2010) 403-428.


http://refhub.elsevier.com/S1110-256X(14)00056-X/h0060
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0060
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0060
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0060
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0065
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0065
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0065
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0065
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0070
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0070
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0070
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0070
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0070
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0070
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0075
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0075
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0075
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0075
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0075
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0075
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0080
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0080
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0080
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0080
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0085
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0085
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0085
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0085
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0085
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0090
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0090
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0090
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0090
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0095
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0095
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0095
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0100
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0100
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0105
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0105
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0105
http://dx.doi.org/10.1155/2008/954794
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0115
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0115
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0115
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0120
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0120
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0120
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0125
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0125
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0125
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0130
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0130
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0130
http://refhub.elsevier.com/S1110-256X(14)00056-X/h0130

	On using third and fourth kinds Chebyshev polynomials for solving the integrated forms of high odd-order linear boundary value problems
	1 Introduction
	2 Some properties of third and fourth kinds of Chebyshev polynomials and their shifted ones
	2.1 Chebyshev polynomials of third and fourth kinds
	2.2 Shifted Chebyshev polynomials of third and fourth kinds

	3 Solution of high odd-order differential equations by using shifted third kind Chebyshev polynomials
	3.1 High odd-order two point boundary value problems
	3.2 The choice of trial and test functions

	4 Solution of high odd-order differential equations by using fourth kind Chebyshev polynomials
	4.1 High odd-order two point boundary value problems SC4PGM

	5 Condition numbers of the two resulting matrices in systems (19) and (30)
	6 Numerical results
	7 Concluding remarks
	Acknowledgment
	References


