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1. Introduction

The two-parameter Weibull distribution is a very popular dis-
tribution that has been extensively used over the past decades
for modeling data in reliability, engineering and biological

studies. It is well-known that the major weakness of the Wei-
bull distribution is its inability to accommodate nonmonotone
failure rates. The first generalization of the two-parameter
Weibull distribution to accommodate nonmonotone failure

rates was introduced by [1] and it is known as the exponentiat-
ed Weibull (EW) distribution. The three-parameter EW distri-
bution has cumulative function in the form GEWðxÞ ¼
GEWðx; b; a; bÞ ¼ ð1� e�axbÞb, x > 0, where b > 0 and b > 0
are shape parameters, and a > 0 is the scale parameter. The

EW density function is gEWðxÞ ¼ gEWðx; b; a; bÞ ¼ b a b xb�1

e�axbð1� e�axbÞb�1; x > 0. The reader is refereed to [2] for an

overview of the EW distribution.
The recent literature has suggested several other ways of

extending well-known distributions. The earliest is the class

of distributions generated by a standard beta random variable
introduced by [3]. The more recent ones are as follows: the
class of distributions generated by [4]’s random variable intro-
duced by [5]; the class of distributions generated by gamma

random variables introduced by [6,7]; the class of distributions
generated by [8]’s generalized beta random variable introduced
by [9]; and the T-X family of distributions introduced in [10].

Some of the above methods were recently discussed in [11].
By using the generator approach suggested by [3], several gen-
eralized distributions have been proposed in the last few years.

In particular, [3,12,13] defined the beta normal, beta Fréchet,
beta Gumbel, beta exponential, beta Weibull and beta Pareto
distributions by taking GðxÞ to be the cumulative function of

the normal, Fréchet, Gumbel, exponential, Weibull and Pareto
distributions, respectively. More recently, [14–20] defined the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2014.03.009&domain=pdf
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1 See , f o r examp l e , h t tp : / /ma thwor ld .wo l f ram.com/

StirlingPolynomial.html.
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beta generalized exponential, beta generalized half-normal,
beta modified Weibull, beta Burr XII, beta Birnbaum–Saun-
ders, beta Laplace and beta half-Cauchy distributions, respec-

tively. Some generalized distributions generated by [4]’s
random variable are proposed in [21–23]. Recently, a five-
parameter continuous model generated by [8]’s generalized

beta random variable was proposed by [24]. As can be
observed from these references, several new generalized
distributions were constructed from the logit of a beta random

variable. On the other hand, the generator approaches in
[5–7,9,10] have not been much explored for generating new
classes of generalized distributions. We refer the reader to
[25,26] for some generalized distributions constructed by using

the generator approach of [10].
In this paper, we use the generator approach of [6] to intro-

duce a new generalized Weibull family of distributions. The

generator approach introduced by these authors is as follows.
For any continuous baseline cumulative distribution function

(cdf) GðxÞ ¼ Gðx; sÞ and parameter vector s ¼ ðs1; . . . ; sqÞ>
of dimension q, the cumulative function of the new distribution

is defined by FðxÞ ¼ Fðx; a; sÞ ¼ CðaÞ�1cða;� log½1� GðxÞ�Þ,
x 2 R, where a > 0 is an additional shape parameter to those
in s that aims to introduce skewness and to provide greater

flexibility of its tails. Also, CðrÞ ¼
R1
0

tr�1e�tdt is the gamma

function, and cðr; sÞ ¼
R s

0
tr�1e�tdt is the incomplete gamma

function. From now on, the cdf GðxÞ will be referred to as
the parent distribution or baseline distribution. The probabil-
ity density function (pdf) of the new distribution takes the

form

fðxÞ ¼ fðx; a; sÞ ¼ gðxÞ
CðaÞ f� log½1� GðxÞ�ga�1; x 2 R; ð1Þ

where gðxÞ ¼ gðx; sÞ ¼ dGðxÞ=dx is the baseline pdf. For
a ¼ 1; fðxÞ ¼ gðxÞ and, therefore, gðxÞ is a basic exemplar of
(1). Further, if Z has a gamma distribution, Z � Gammaða; 1Þ
say, with density function hðzÞ ¼ CðaÞ�1za�1e�zðz > 0Þ, then

the random variable X ¼ G�1ð1� e�ZÞ has pdf given by Eq.
(1). In this paper, we shall refer to (1) as the gamma G
ðC-GÞ distribution.

Recently, [7] used a similar approach presented in [6] to
introduce a new family of distributions generated by gamma
random variables. They define FðxÞ in the form

FðxÞ ¼ Fðx; a; sÞ ¼ 1� CðaÞ�1cða;� log½GðxÞ�Þ, for x 2 R,
whereas the pdf is

fðxÞ ¼ fðx; a; sÞ ¼ gðxÞ
CðaÞ f� log½GðxÞ�ga�1; x 2 R: ð2Þ

Some interesting motivations for this new class of distributions
are provided by [7]. In particular, if Z �Gammaða; 1Þ, then the

random variable X ¼ G�1ðe�ZÞ has pdf given by Eq. (2). Thus,
accordingly to [7], the new family of distributions may be
regarded as a dual family of the Zografos–Balakrishnan’s fam-

ily of distributions. Also, let Z be a random variable with log-
gamma distribution with density function hðzÞ ¼ CðaÞ�1 exp
ðaz� ezÞ; z 2 R. Then, the random variable X ¼
G�1ðexpð�eZÞÞ also has the pdf (2). We shall refer to (2) as
the gamma dual G ðC2-GÞ distribution.

The purposes of the present paper are twofold. First, we
propose a new representation for the pdf of the C-G model

as an absolutely convergent power series of the cumulative
function of the baseline distribution. Second, we use the gener-
ator approach suggested by [6] to define a new model, called
the gamma exponentiated Weibull ðC-EWÞ distribution, which
generalizes the exponentiated exponential, Weibull and EW

models. In addition, we investigate some structural properties
of the new model and discuss maximum likelihood estimation
of its parameters. The proposed model is much more flexible

than the Weibull and EW distributions and can be used effec-
tively for modeling positive real data in many areas. A real
data example is presented to show the flexibility of the

C-EW model over other lifetime models in practice.
Recently, a new four-parameter generalization of the Wei-

bull distribution was introduced in [27] by using the generator
approach of [7], named here as the gamma dual exponentiated

Weibull distribution (C2-EW). Unfortunately, the expansion
for the C2-EW density function derived by these authors,
which is used to obtain some general properties of this model,

is not a valid expansion, i.e. not convergent (see Appendix),
and hence some properties of the C2-EW distribution pre-
sented in their paper like moments, moment generating func-

tion, etc., do not work. The general expansion derived in this
paper for the C-G density function, however, is a valid expan-
sion (i.e. convergent). In particular, we use this general expan-

sion to derive the moments, moment generating function, etc.,
of the new four-parameter C-EW distribution.

2. Expansion for the G density function

In what follows, we derive a very useful representation for the
C-G density function, which can be used to derive general
properties (moments, entropy, etc.) of this new class of distri-

butions. It should be noticed that a representation for the C2-G
density function can be directly obtained from the representa-
tion for the C-G density function simply by replacing the base-

line cdf GðxÞ with the survival function of the baseline G
distribution, that is, by replacing GðxÞ with SðxÞ ¼ 1� GðxÞ.

It can be shown that

� logð1� zÞ
z

� �d

¼ 1þ dz
X1
n¼0

wnðnþ dÞzn; ð3Þ

where d 2 R; jzj < 1 and the coefficients wnð�Þ are Stirling
polynomials. These coefficients can be expressed in the form

wn�1ðwÞ ¼
ð�1Þn�1

ðnþ 1Þ! Hn�1
n � wþ 2

nþ 2
Hn�2

n þ ðwþ 2Þðwþ 3Þ
ðnþ 2Þðnþ 3Þ H

n�3
n

�

� � � � þ ð�1Þn�1 ðwþ 2Þðwþ 3Þ � � � ðwþ nÞ
ðnþ 2Þðnþ 3Þ � � � ð2nÞ H0

n

�
; ð4Þ

where Hm
n are positive integers defined recursively by

Hm
nþ1 ¼ ð2nþ 1�mÞHm

n þ ðn�mþ 1ÞHm�1
n , with H0

0 ¼ 1;
H0

nþ1 ¼ 1� 3� 5� � � � � ð2nþ 1Þ, and Hn
nþ1 ¼ 1. The first six

polynomials are w0ðwÞ ¼ 1=2; w1ðwÞ ¼ ð2þ 3wÞ=24, w2ðwÞ ¼
ðwþ w2Þ=48; w3ðwÞ ¼ ð�8� 10wþ 15w2 þ 15w3Þ=5760; w4

ðwÞ ¼ ð�6w� 7w2 þ 2w3 þ 3w4Þ=11520 and w5ðwÞ ¼
ð96þ 140w� 224w2 � 315w3 þ 63w5Þ=2903040.

Remark 1. According to another definition,1 the polynomials
S0ðwÞ ¼ 1 and SnðwÞ ¼ n!ðwþ 1Þwn�1ðwÞ; n P 1, are also

known as Stirling polynomials. In this article, we use this

http://mathworld.wolfram.com/StirlingPolynomial.html
http://mathworld.wolfram.com/StirlingPolynomial.html
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terminology to refer to the polynomials wnðwÞ in accordance

with [28,29].

We have the following propositions.

Proposition 1. The expansion (3) is absolutely convergent.

Proof. The proof is given in details by [30] or [31] (see Theo-
rem VI.2, page 385). h

Proposition 2. The expansion (3) can be expressed as
½� logð1� zÞ�d ¼ zd

P1
m¼0qmðdÞ zm, where d 2 R; jzj < 1;

q0ðdÞ ¼ 1, qmðdÞ ¼ dwm�1ðmþ d� 1Þ for m P 1, and the coef-

ficients wmð�Þ are Stirling polynomials given by ð4Þ.

Proof. It follows from the results by [28,29]. h

We have the following theorem.

Theorem 1. The C-G density function admits the expansion

fðxÞ ¼ gðxÞ
X1
m¼0

umðaÞ GðxÞ
mþa�1

; x 2 R; ð5Þ

where a > 0; u0ðaÞ ¼ CðaÞ�1, umðaÞ ¼ CðaÞ�1qmða� 1Þ ¼
ða� 1ÞCðaÞ�1wm�1ðmþ a� 2Þ for m P 1, and the coefficients
wmð�Þ are Stirling polynomials given by ð4Þ.

Proof. It follows from Proposition 2. h

Remark 2. Theorem 1 shows that the C-G pdf can be
expressed as an absolutely convergent power series of the dis-
tribution function of the baseline distribution. The general

expansion in (5) is very useful to obtain properties of interest
of the C-G distribution. In Section 5, we will use this expansion
to derive some properties of the C-EW model.
Table 1 Sub-models of the C-EW distribution.

Distribution a b b a

Exponentiated Weibull 1 – – –

C-exponentiated Rayleigh – – 2 –

C-exponentiated exponential – – 1 –

C-Rayleigh – 1 2 –

C-exponential – 1 1 –

Exponentiated exponential 1 – 1 –

Exponentiated Rayleigh 1 – 2 –

Weibull 1 1 – –

Rayleigh 1 1 2 –

Exponential 1 1 1 –
3. The generalized Weibull distribution

The cdf of the new four-parameter C-EW distribution is given

by FðxÞ ¼ CðaÞ�1 cða;� log½1� ð1� e�axbÞb�Þ; x > 0, where
a > 0; b > 0 and b > 0 are shape parameters, and a > 0 is

the scale parameter. If X has the C-EW distribution, we use
the notation X � C-EWða; b; a; bÞ. If X � C-EWða; b; a; bÞ,
then kX � C-EWða; b; a�; bÞ, where a� ¼ ak�b and k > 0, i.e.
the class of C-EW distributions is closed under scale transfor-
mations. The EW, Weibull and exponentiated exponential
(EE) distributions are clearly the most important sub-models

for a ¼ 1; a ¼ b ¼ 1 and a ¼ b ¼ 1, respectively. Other sub-
models can be immediately defined from Table 1.

The C-EW pdf takes the form

fðxÞ ¼ babxb�1e�axbð1� e�axbÞb�1

CðaÞf� log½1� ð1� e�axbÞb�g
1�a ; x > 0; ð6Þ

whereas the C-EW failure rate function is defined as
rðxÞ ¼ fðxÞ=½1� FðxÞ�, for x > 0. Evidently, the new density

function (6) does not involve any complicated function. Also,
there is no functional relationship among the parameters and
they vary freely in the parameter space. If Z � Gammaða; 1Þ,
then X � C-EWða; b; a; bÞ is given by X ¼ a�1=bf� log½1�
ð1� e�ZÞ1=b�g1=b, which can be used to generate C-EW random
variates.

The new C-EW distribution has three shape parameters:

a > 0, b > 0 and b > 0. These parameters allow for a high
degree of flexibility of the C-EW distribution. Fig. 1 illustrates
some possible shapes of the density function (6) for selected

parameter values. Notice that the additional shape parameter
a allows for a high degree of flexibility of the C-EW distribu-
tion; that is, it introduces more flexibility to the new model

both in terms of skewness and in terms of kurtosis. It is inter-
esting to note that the C-EW pdf can also be approximately
symmetric depending on the parameter values. It is worth
emphasizing that the C-EW distribution can be applied in sur-

vival analysis, engineering, biological studies, hydrology, eco-
nomics, among others, as the Weibull distribution and it can
be used to model reliability problems.

We display in Fig. 2 some plots of the C-EW failure rate
function for some parameter values to show the flexibility of
this model. The parameter a does not change the shape of

the failure rate function since it is a scale parameter. It is evi-
dent that the failure rate function of the proposed C-EW dis-
tribution can be increasing, decreasing, upside-down bathtub

shaped (unimodal) or bathtub-shaped depending on the
parameter values. So, the new distribution is quite flexible
and can be used effectively in analyzing lifetime data. It should
be mentioned that is difficult (or even impossible) to determine

analytically the parameter spaces corresponding to the increas-
ing, decreasing, upside-down bathtub shaped (unimodal) or
bathtub-shaped failure rate functions for the C-EW
distribution.

Next, we use the general results derived in Section 2 to write
theC-EWdensity as a linear combination of EWdensities. Note

that gEWðxÞGEWðxÞaþm�1 ¼ b a bxb�1e�axb ð1� e�axbÞbðmþaÞ�1.
Hence, it follows from (5) that
fðxÞ ¼
X1
m¼0

pm gEWðx; bðaþmÞ; a; bÞ; x > 0; ð7Þ
where pm ¼ pmðaÞ ¼ umðaÞ=ðaþmÞ. So, the C-EW pdf can be

expressed as an infinite linear combination of EW pdfs with
parameters bðaþmÞ; a and b. From (7), we can obtain several
mathematical properties of the C-EW distribution directly

from those properties of the EW distribution. It illustrates
the utility and applicability of the general expansion for the
C-G density function derived in Section 2.
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Figure 1 Plots of the C-EW density function for some parameter values.
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Figure 2 The C-EW failure rate function for some parameter values.
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4. Numerical computation

Here, we briefly discuss the precision and convergence speed of
(7). In order to evaluate numerically the polynomials wnð�Þ as
defined in (4), we use the procedure below to obtain the Hr

p

numbers. This algorithm calculates H0
pþ1; . . . ;Hp

pþ1

n o
given

H0
p; . . . ;Hp�1

p

n o
, for p > 0. The algorithm is as follows:

Hr
p numbers, 0 6 r 6 p� 1. Remark: H0

1 ¼ 1

input: vðpÞ ¼ H0
p;H

1
p; ; . . .Hp�1

p

h i
output: vðpþ1Þ ¼ H0

pþ1;H
1
pþ1; ; . . .Hp

pþ1

h i
1 if p ¼ 1 do vð2Þ ¼ ½3; 1� and stop.

2 vðpþ1Þ½p�  1

3 vðpþ1Þ½0�  ð2pþ 1ÞvðpÞ½0�
4 for 1 6 i 6 p� 1 do

5 vðpþ1Þ½i�  ð2p� iþ 1ÞvðpÞ½i� þ ðp� iþ 1ÞvðpÞ½i� 1�
6 end for

7 return vðpþ1Þ
This algorithm is very simple and similar to the Pascal’s tri-

angle. One can use the following R script [32] to compute the
Hr

p numbers:

Stnumbers <- function(v1) {

p <- length(v1)+1

if (p==2) return(c(3,1))

v2 <- c(rep(0,p-1),1)

v2[1] <- v1[1]\(2\p-1)

for (i in 2:length(v1))

v2[i] <- (2\p-i)\v1[i]+(p-i+1)\v1[i-1]

return(v2)

}

v1 <- c(3,1)

Stnumbers(v1)

15 10 1
Hence, to evaluate numerically the polynomials wnð�Þ in (4),

one can use the following R script:

psi <- function(x,p) {

if (p==0) return(0.5)

p <- p+1

X <- rep(1,p)

for(i in 2:p)

X[i] <- -X[i-1]\(x+i)/(p+i)

H <- 1

while(length(H)<p) H <- Stnumbers(H)

psi <- rev(H)\X

psi <- (-1)
û
(p-1)\sum(psi)/factorial(p+1)

return(psi)

}

psi(1,1)

0.2083333
Fig. 3 displays comparisons between the C-EW density

function obtained from (6) and the C-EW density function
obtained from expansion (7). Note that only the first 25 terms
in (7) are needed to come a good agreement of (6) and (7). We
observe that, in general, the expansion (7) for the C-EW den-

sity function provides very fast convergence with very good
accuracy for 0 < a < 1. For a > 1, the expansion also con-
verges fast and the speed of convergence becomes slow if x is

far of 0. In this case, a large amount of terms is required to
achieve good accuracy.

5. Moment properties

Let X � C-EWða; b; a; bÞ. The sth moment of X follows
immediately from (7) and is given by l0s ¼
EðXsÞ ¼

R1
0

xsfðxÞdx ¼
P1

m¼0pm
R1
0

xsgðx; bðaþmÞ; a; bÞdx.
We have the following lemma.

Lemma 1. Let Z � EWðb; a; bÞ. The sth moment of Z takes

the form EðZsÞ ¼ b a�s=bCðs=bþ 1Þ
P1

n¼1ð1� bÞn�1=ðn! ns=bÞ;
s > �b, where ðqÞm ¼ qðqþ 1Þ � � � ðqþm� 1Þ; q 2 R and
ðqÞ0 ¼ 1.

Proof. It follows from the expansion of the EW density as a

linear combination of Weibull densities and from the moments
of the Weibull distribution. h

We have the following proposition.

Proposition 3. The sth moment of X � C-EWða; b; a; bÞ takes
the form l0s ¼ b a�s=bCðs=bþ 1Þ

P1
m¼0
P1

n¼1umðaÞ ð1� bðaþ
mÞÞn�1=ðn! ns=bÞ; s > �b.

Proof. By using the expansion (7) and Lemma 1 the result
holds. h

The moment generating function (mgf) of the C-EW model,
MðtÞ say, can be directly obtained from (7) as

MðtÞ ¼ EðetXÞ ¼
R1
0

etxfðxÞdx ¼
P1

m¼0pmMmðtÞ, where MmðtÞ
is the mgf of the EW model with parameters bðmþ aÞ; a
and b. We have the following lemma.

Lemma 2. Let Z � EWðb; a; bÞ. The mgf of the Z takes

the form EðetZÞ ¼ b
P1

n¼1
P1

k¼0Cðk=bþ 1Þð1� bÞn�1 tk a�k=b=
ðn! k!Þ; b > 1, where ðqÞm ¼ qðqþ 1Þ � � � ðqþm� 1Þ; q 2 R

and ðqÞ0 ¼ 1.

Proof. It follows from the expansion of the EW density as a
linear combination of Weibull densities and from the mgf of
the Weibull distribution. h

We have the following proposition.

Proposition 4. If X � C-EWða; b; a; bÞ, then MðtÞ ¼
b
P1

m¼0
P1

n¼1
P1

k¼0Cðk=bþ 1ÞumðaÞ ð1� bÞn�1 tk a�k=b= ðn! k!Þ;
b> 1.

Proof. The result holds from the mgf of the EW model derived

in Lemma 2. h

Let /ðtÞ be the characteristic function of

X � C-EWða; b; a; bÞ. We have the following result.
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Figure 3 The C-EW density function computed from Eq. (6) and from expansion (7) over the first 2, 5 and 25 terms.
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Theorem 2. If X � C-EWða; b; a; bÞ, then /ðtÞ ¼ b
P1

m¼0
P1

n¼1P1
k¼0Cðk=bþ 1ÞumðaÞ ð1� bÞn�1 ðitÞ

k a�k=b=ðn! k!Þ.

Proof. The result follows from the characteristic function of
the EW model. h

One of the popular entropy measure is the Shannon
entropy. It plays a similar role as the kurtosis measure in

comparing the shapes of various densities and measuring heavi-
ness of tails. It is defined by ISh ¼ Ef� log½fðXÞ�g ¼ �

R1
�1 fðxÞ

log½fðxÞ�dx. We have the following theorem.

Theorem 3. For the general density function (1), the Shannon
entropy can be expressed as ISh ¼ log½CðaÞ� � ða� 1ÞWðaÞ�
EZflog½gðQGðe�VÞÞ�g, where Wð�Þ is the digamma function,
QGð�Þ is the quantile function of the G distribution and the
expectation EZf�g is calculated with respect to the random

variable Z � Gammaða; 1Þ.
Table 2 Empirical means and
ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

in parentheses; a ¼ 1.

n â b̂ â b̂

a ¼ 1:5; b ¼ 1:0 and b ¼ 1:8

250 1.804(1.695) 1.450(1.610) 1.248(0.951) 1.704(0.515)

350 1.739(1.622) 1.419(1.487) 1.203(0.894) 1.679(0.500)

500 1.767(1.590) 1.311(1.265) 1.203(0.863) 1.676(0.471)

a ¼ 2:5; b ¼ 1:5 and b ¼ 1:2

250 2.622(2.100) 2.807(4.161) 1.249(1.132) 1.101(0.423)

350 2.662(2.106) 2.490(3.274) 1.236(1.076) 1.092(0.399)

500 2.559(1.963) 2.313(2.693) 1.158(0.903) 1.094(0.378)

a ¼ 2:0; b ¼ 1:2 and b ¼ 1:0

250 2.289(1.988) 2.024(2.685) 1.282(1.066) 0.930(0.309)

350 2.283(1.955) 1.822(2.099) 1.241(0.969) 0.932(0.284)

500 2.174(1.729) 1.715(1.891) 1.168(0.841) 0.942(0.268)

a ¼ 1:0; b ¼ 1:5 and b ¼ 2:5

250 1.149(0.856) 1.853(1.914) 1.146(0.767) 2.167(0.948)

350 1.131(0.782) 1.755(1.683) 1.104(0.637) 2.159(0.915)

500 1.097(0.756) 1.680(1.576) 1.071(0.596) 2.091(0.955)
Proof. It follows immediately. h

We have the following corollary.

Corollary 1. If X � C-EWða; b; a; bÞ, then the Shannon entropy
becomes ISh ¼ log½CðaÞ� � ða� 1ÞWðaÞ � logðb bÞ� b�1 log
ðaÞ þ a b�1ðb � 1Þ � b�1ðb � 1Þ þ a b�1ðb � 1Þ þ

P1
k¼1k

�1

ð1 þ k=bÞ�a � ba b�1ðb � 1Þ
P1

n¼0wnðnÞðn þ bÞ�a, where wnð�Þ
was defined in Section 2, and a P 1.

Proof. It follows from Theorem 3. h

Several other properties like reliability, mean deviations,
other kinds of entropy, etc., can be derived in a similar fashion,
but we consider only the above properties to save space.

6. Maximum likelihood estimation

Let x1; . . . ;xn be a random sample of size n of the

C-EWða;b;a;bÞ distribution. The log-likelihood function for

h¼ða;b;a;bÞ> based on a given random sample is ‘ðhÞ¼
n logðb a bÞ�n log½CðaÞ�þðb�1Þ

Pn
i¼1 logðxiÞ�

Pn
i¼1viþ ðb�1ÞPn

i¼1 logð1�ziÞþða�1Þ
Pn

i¼1 logf� log½SðxiÞ�g, where vi¼
a xb

i ; zi¼ expð�viÞ; GðxiÞ¼ð1�ziÞb and SðxiÞ¼1�GðxiÞ, for
i¼1; . . . ;n. The maximum likelihood estimates of the unknown
parameters are obtained by maximizing the log-likelihood

function ‘ðhÞ with respect to h. The likelihood equations,
which are obtained from the partial derivatives of ‘ðhÞ with
respect to the parameters, become

@‘ðhÞ
@a
¼ �n WðaÞ þ

Xn
i¼1

logf� log½SðxiÞ�g;

@‘ðhÞ
@b
¼ n

b
þ 1

b

Xn
i¼1

log½GðxiÞ� �
ða� 1Þ

b

Xn
i¼1

GðxiÞ log½GðxiÞ�
SðxiÞ log½SðxiÞ�

;

@‘ðhÞ
@a
¼ n

a
� 1

a

Xn
i¼1

vi þ
ðb� 1Þ

a

Xn
i¼1

vi zi
1� zi

� b ða� 1Þ
a

Xn
i¼1

vi zi ð1� ziÞb�1

SðxiÞ log½SðxiÞ�
;
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@‘ðhÞ
@b
¼ n

b
þ
Xn
i¼1
ð1� viÞ logðxiÞ þ ðb� 1Þ

Xn
i¼1

vi zi logðxiÞ
1� zi

� b ða� 1Þ
Xn
i¼1

vi zi ð1� ziÞb�1 logðxiÞ
SðxiÞ log½SðxiÞ�

;

where Wð�Þ is the digamma function. The maximum likelihood

estimator ĥ ¼ ðâ; b̂; â; b̂Þ> of h ¼ ða; b; a; ;bÞ> can be obtained
by solving simultaneously the likelihood equations
@‘ðhÞ=@a ¼ @‘ðhÞ=@b ¼ @‘ðhÞ=@a ¼ @‘ðhÞ=@b ¼ 0. There is no
closed-form expression for the maximum likelihood estimator

and its computation has to be performed numerically using a
nonlinear optimization algorithm. The observed information
matrix used for computing asymptotic confidence intervals

for the parameters a; b; a and b can be determined numeri-
cally from standard maximization routines, which now provide
the observed information matrix as part of their output; e.g.,

one can use the R functions optim or nlm, the Ox function Max-
BFGS, the SAS procedure NLMixed, among others, to compute
the observed information matrix numerically.

Next, a small Monte Carlo simulation is conducted to eval-

uate the estimations of the C-EW distribution parameters. The
simulation was performed using the Ox matrix programming
language. The number of Monte Carlo replications was
Table 3 Maximum likelihood estimates (standard errors in

parentheses).

Model Estimates

C-EWða; b; a;bÞ 0.4243 6.7574 0.4450 0.6261

(0.4919) (9.5571) (0.2730) (0.1612)

C2-EWða; b; a; bÞ 0.7590 2.5262 0.5023 0.6884

(1.0878) (1.6978) (0.3452) (0.2209)

BWða; b; a;bÞ 2.7348 0.9083 0.4697 0.6661

(1.6355) (1.5443) (0.3728) (0.2495)

KwWða; b; a;bÞ 4.1178 2.9414 0.4949 0.4589

(5.8731) (8.2214) (0.5063) (0.5193)

EWðb; a; bÞ 2.7960 0.4537 0.6544

(1.2603) (0.2384) (0.1342)

C-Wða; a; bÞ 3.7479 1.3099 0.5201

(2.6699) (1.5159) (0.1984)

C-EEða; b; aÞ 0.5915 2.0405 0.1078

(0.3942) (1.3036) (0.0182)

EEðb; aÞ 1.2180 0.1212

(0.1486) (0.0136)

Weibullða; bÞ 0.0939 1.0478

(0.0191) (0.0676)

Table 4 Statistics W� and A�.

Model W� A�

C-EW 0.03945 0.25992

C2-EW 0.04338 0.28654

BW 0.04362 0.28825

KwW 0.04149 0.27322

EW 0.04367 0.28848

C-W 0.04788 0.31425

C-EE 0.10540 0.63199

EE 0.11221 0.67412

Weibull 0.13137 0.78648
R ¼ 2; 000. For maximizing the log-likelihood function, we
use the subroutine MaxBFGS with analytical derivatives. The
evaluation of point estimation was performed based on the fol-

lowing quantities for each sample size: the empirical mean and

the root mean squared error
ffiffiffiffiffiffiffiffiffiffiffi
MSE
p� �

, where MSE is the mean

squared error estimated from R Monte Carlo replications. We

set the sample size at n ¼ 250; 350 and 500. We consider differ-
ent values for the shape parameters a; b and b, whereas the
scale parameter a was fixed at 1.0 without loss of generality.

It can be seen from Table 2 that the estimates are quite stable
and, more important, are close to the true values for the sam-
ple sizes considered. Additionally, as the sample size increases,

the
ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

decreases, as expected.

7. Real data illustration

In this section, we present an application of the proposed
C-EW distribution to real data for illustrative purposes. We

also consider some sub-models of the new four-parameter
C-EW distribution to fit this real data set for the sake of com-
parison: Weibull distribution, EE distribution, gamma Weibull

ðC�WÞ distribution, gamma exponentiated exponential
ðC-EEÞ distribution, and EW distribution. Additionally, three
recent four-parameter generalizations of the Weibull distribu-

tion will also be considered to fit these data: C2-EW distribu-
tion [27], beta Weibull (BW) distribution [34], and
Kumaraswamy Weibull (KwW) distribution [21]. We shall
consider the real data set presented by [33], which represents

the remission times (in months) of a random sample of 128
bladder cancer patients. For each model, we estimate the
unknown parameters by the maximum likelihood method.

Table 3 lists the maximum likelihood estimates (and the corre-
sponding standard errors in parentheses) of the unknown
parameters of all lifetime models for the remission times data.

All the computations were performed using the Ox matrix pro-
gramming language.

Now, we shall apply formal goodness-of-fit tests in order to

verify which distribution fits better these real data sets. We
consider the Cramér–von Mises ðW�Þ and Anderson–Darling
ðA�Þ statistics, which are described in details by [35]. In gen-
eral, the smaller the values of these statistics, the better the

fit to the data. The statistics W� and A� for all the models
are listed in Table 4. Note that the new C-EW distribution out-
performs all their sub-models as well as the four-parameter C2-
EW, BW and KwW distributions. Notice that the C-EW distri-
bution is clearly a competitive model for the C2-EW, BW and
KwW distributions, since they have the same number of

parameters. Therefore, the new model may be an interesting
alternative to the other models available in the literature for
modeling positive real data.
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Appendix A

Wewill show that the expansion for theC2-EWdensity func-
tion derived in [27] cannot be used to compute some general
properties of the C2-EW model as, for example, moments, gen-
erating function, etc. The C2-EW density can be expressed as

fðxÞ ¼ ðbaa b=CðaÞÞ xb�1y ð1� yÞb�1½� logð1� yÞ�d�1, where

0 < y ¼ e�axb
< 1 for x > 0. We have that � logð1� yÞ can be

expanded (for 0 < y < 1) in the form � logð1� yÞ ¼
yð1þ y=2þ y2=3þ y3=4þ � � �Þ ¼ y½1þ y

P1
s¼0y

s=ðsþ 2Þ�. Hence,

we obtain

½� logð1� yÞ�d�1 ¼ yd�1 1þ y
X1
s¼0

ys

sþ 2

" #d�1

; d > 0:

We have that the binomial expansion ð1þ zÞd�1 ¼P1
m¼0

d� 1
m

� �
zm is convergent if and only if jxj < 1; that is,

the expansion

1þ y
X1
s¼0

ys

sþ 2

" #d�1

¼
X1
m¼0

d� 1

m

� �
ym

X1
s¼0

ys

sþ 2

 !m

;

which was used in [27], will be convergent if and only if

0 < y
X1
s¼0

ys

sþ 2
< 1 ð8Þ

for all values of y 2 ð0; 1Þ, since 0 < y ¼ e�axb
< 1 for x > 0.

However, the inequality (8) is not satisfied for all values of

y 2 ð0; 1Þ. This can be proved noting that

y�1½� logð1� yÞ� � 1 ¼ y
P1

s¼0y
s=ðsþ 2Þ. So, we have to show

that the inequality 0 < y�1½� logð1� yÞ� � 1 < 1 is not valid
for all values of y 2 ð0; 1Þ. After some algebra, we have that

e�y > 1� y and 1� y > e�2y, and the solution for these system
of equations is in the interval 0 < y < K, where K is the solu-

tion of the equation 1� y ¼ e�2y and it is given by
K � 0:7968121. It implies that the inequality (8) is not validy

for all values of 0 < y ¼ e�axb
< 1 (for x > 0) and therefore

the expansion derived in [27] for the C2-EW pdf is not valid
(convergent) for all values of y 2 ð0; 1Þ.
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