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Abstract In this paper, we provide some common fixed point results involving implicit contrac-
tions on quasi-metric spaces, and based on the recent nice paper of Jleli and Samet (2012), we show
that some common fixed point theorems involving implicit contractions on G-metric spaces can be
deduced immediately from our common fixed point theorems on quasi-metric spaces. The notion of
well-posedness of the common fixed point problem is also studied.
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1. Introduction and preliminaries

It is well known that passing from metric spaces to quasi-met-
ric spaces carries with it immediate consequences to the general
theory. The definition of a quasi-metric is given as follows:

Definition 1.1. Let X be a non-empty and let d: X x X —
[0,00) be a function which satisfies:
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(dl)d(x,y) = 0 if and only if x =y,

(d2)d(x,y) < d(x,z) + d(z,y). Then d is called a quasi-
metric and the pair (X, d) is called a quasi-metric space.

Remark 1.1. Any metric space is a quasi-metric space, but the
converse is not true in general.

Now, we give convergence and completeness on quasi-met-
ric spaces.

Definition 1.2. Let (X,d) be a quasi-metric space, {x,} be a
sequence in X, and x € X. The sequence {x,} converges to x if
and only if

limd(x,,x) = limd(x, x,) = 0. (1)

n—oo n—o0
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Definition 1.3. Let (X, d) be a quasi-metric space and {x,} be a
sequence in X. We say that {x,} is left-Cauchy if and only if
for every ¢ > 0 there exists a positive integer N = N(¢) such
that d(x,,x,,) < ¢ foralln > m > N.

Definition 1.4. Let (X, d) be a quasi-metric space and {x, } be a
sequence in X. We say that {x,} is right-Cauchy if and only if
for every ¢ > 0 there exists a positive integer N = N(¢) such
that d(x,, x,,) < ¢ forallm = n> N.

Definition 1.5. Let (X, d) be a quasi-metric space and {x,} be a
sequence in X. We say that {x,} is Cauchy if and only if for
every ¢ > 0 there exists a positive integer N = N(¢) such that
d(xy, xn) < & for all m,n > N.

Remark 1.2. A sequence {x,} in a quasi-metric space is
Cauchy if and only if it is left-Cauchy and right-Cauchy.

Definition 1.6. Let (X, d) be a quasi-metric space. We say that

(1) (X,d) is left-complete if and only if each left-Cauchy
sequence in X is convergent.

(2) (X,d) is right-complete if and only if each right-Cauchy
sequence in X is convergent.

(3) (X,d) is complete if and only if each Cauchy sequence
in X is convergent.

The following definitions and results are also needed in the
sequel.

Definition 1.7. Let fand g be self maps of a non-empty set X. If
w = fx = gx for some x € X, then x is called a coincidence
point of f'and g and w is called a point of coincidence of f'and

g.

Definition 1.8. Let f'and g be self maps of a non-empty set X. If
fand g commute at their coincidence points, then they called
weakly compatible mappings.

Lemma 1.1. [1] Let f and g be weakly compatible self mappings
of non-empty set X. If f and g have a unique point of coincidence

w=fx = gx, then w is the unique common fixed point of f

and g.

On the other hand, the study of fixed point for mappings
satisfying an implicit relation is initiated and studied by Popa
[2,3]. Tt leads to interesting known fixed points results. Follow-
ing Popa’s approach, many authors proved some fixed point,
common fixed point and coincidence point results in various
ambient spaces, see [4-7].

In the literature, there are several types of implicit contrac-
tion mappings where many nice consequences of fixed point
theorems could be derived. For instance, Popa and Patriciu
[8] introduced the following

Definition 1.9. [8] Let Iy be the set of all continuous functions
F(t,... 1) : Ri — R such that

(A1) : F is non-increasing in variable s,

(A2): There exists a certain function /; such that for all
u,v = 0, F(u,v,v,u,u+v,0) <0 implies u < hy(v),

(A3): There exists a certain function /, such that for all
t,s >0, F(t,1,0,0,1,5) <0 implies # < ha(s).

We denote ¥ the set of functions  :[0,00) —
satisfying:

(Y;) ¥ is non-decreasing,

() S " (1) < oo for each t € R, where " is the nth
iterate of .

[0,00)

Remark 1.3. It is easy to see that if y € P, then (¢) < ¢ for
any ¢t > 0.

We introduce the following Definition.
Definition 1.10. Let I' be the set of all continuous functions
F(t1,...,ts) : RS — R such that

(F1): F is non-increasing in variable s,

(F2): There exists h; € ¥ such that for all u,v > 0,F
(t, v, v,u,u +v,0) < 0 implies u < /1y (v),

(F3): There exists
t,s >0,F(t,1,0,0,¢,5) <0 implies ¢ <

hh €W such that for all
ha(s).

Note that in Definition 1.10, we did not take the same
hypotheses on /4, and /, as in Definition 1.9, that is, some ones
are dropped. As in [8], we give the following examples.

Example 1.1. F(z,...,t) = t; — aty — btz — cty — dts — etg,
where a,b,c,dje = 0,a+b+c+2d+e<1.

(F1): Obvious.

(F2): Let wu,v >0 and F(u,v,v,u+v,0) =u—av— by—

cu— d(u +v) < 0 which implies u < $+4y and (F2) is satis-
_ _atb+d
fied for hy (1) = 1:?61{) .
(F3): Let t,s >0 and F(z 1,0,0,t,s) =t —at—dt —es <0

which implies 7 <5 satisfied for

h2 (S) = m S.

Tergs and (F3) is

Example 1.2. F(ty,...,t) =t —kmax{ts,...,ts}, where
k€ [0,1).

(F1): Obvious.

(F2): Let u,v =0 and F(u v, v,u,u+v,0) = u — kmax
{u,v,u+v} <0. Thus, u <& v and (F2) is satisfied for
hl(l) :ﬁl.

(F3): Let t,s > 0 and F(z,1,0,0,¢,5) =t — kmax{t,s} <0.
If > s, then #(1 — k) < 0, a contradiction. Hence ¢ < s which
implies ¢ < ks and (F3) is satisfied for hy(s) = ks.

Some other examples could be derived from [§].

In this paper, we provide some common fixed point results
involving implicit contractions on quasi-metric spaces. We also
prove the posedness of the common fixed point problem.
Finally, we show that some existing fixed point results on G-
metric spaces are immediate consequences of our main pre-
sented theorems on quasi-metric spaces.
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2. Fixed point theorems

In this section we shall state and prove our main results. We
first prove the uniqueness of a common fixed point of certain
operators if it exists.

Lemma 2.1. Let (X,d) be a quasi-metric space and
g: (X,d) — (X, d) two functions such that
Fd(fx.fy), d(gx, gy), d(gx./x), d(gy.1y), d(gx.1y), d(gy. /X))

<0, Vx,ye X
2

and F satisfying property (F3). Then, f and g have at most one
point of coincidence.

Proof. We assume that fand g have two points of coincidence
u and v (u# v). In this case, there exist p,q € X such that

u=fp=gpand v = fg = gg. Then by using (2) we get

F(d(fp,fq),d(gp, 89), d(gp.[p), d(gq./9), d(gp.fq), d(gq,/P))
<0,

that is

F(d(gp,gq).d(gp,£4q).0,0,d(gp, gq), d(gq. gp)) < 0.
Since F satisfies property (F3), so

d(gp,gq) < hx(d(gq,gp))- 3)
Analogously, we obtain
d(gq.gp) < hx(d(gp, gq)). 4)

Combining (3) and (4), we get using the fact that 4, is non-
decreasing and h,(¢) <t for t > 0

0 < d(gp,2q) < ho(d(gq,gp)) < Iy (d(gp,gq) < d(gp,2q)). (5)
It is a contradiction. Hence gp = gg. Therefore u = fp = gp =
gq=Jqg=v. O

In what follows that we prove the existence of a common

fixed point of two self-mappings under certain implicit
relations.

Theorem 2.1. Let
g: (X, d) —

Fd(fx,f),d(gx,gy),d(gx,fx),d(gy.fy),d(gx.fy),d(gy.fx)) <0, (6)

Sorall x,y € X, where F € T'. If f(X) Cg(X) and g(X) is a com-
plete quasi metric subspace of (X,d), then f and g have a unique
point of coincidence. Moreover, if { and g are weakly compatible,
then f and g have a unique common fixed point.

(X,d) be a quasi-metric
(X, d) satisfving inequalities

space and

Proof. Let x, be an arbitrary point of X and by using
J(X) Cg(X) we can choose x; € X such that fx;, = gx,. If we
keep this up, we obtain X, such that fx, = gx,,,. Then by
(6) we have

F(d(fxnfl 7f.xn)7 d(gxnfl 9 g“‘”n)? d(gxn 17_fxn 1)
d(gxnfl xfxn)u d(gx;nfxn—l ))

that is,

(gxi]’fx")’

F(d(gx,,8%,11), d(gX,_1,8%,), d(gx,_1,8X,), d(8§X,,8%,11),
d(gx,_1,8%,11),0) < 0.

By (F1) and (d2), we have

F(d(gx,,8%,11), d(gx,-1,8,), d(gX,_1,8X,), d(8%,: §X,11)

d(gx,_1,8x,) + d(gx,,8%,.1),0) < 0. (7)

By (F2), we obtain

d(gxl17gxl1+l) h (d(gvn 1,8, )) (8)
If we go on like this, we get
d(gx,,8%,1) < Hy(d(gx0,8x1))- ©)

Thus, by using (d2), for m > n

d(gxmgxm) < d(gx/z7gxn+l) + d(gxix+1 ’gxn+2) +oeet d(gxm—l 7gxm)

T -

<o (d(gxg,8x1)),

(10)
which implies that d(gx,, gx,) — 0 as, n,m — oo. It follows
that {gx,} is a right-Cauchy sequence.

Similarly, by (6) we have

F(d(fxmf:xn—l )a d(gxnagxn—l )a d(ﬁxn—l » 8Xn—1 )7 d(fxm gx,,),
d(fxmgxn—l)v d(fxn—l ,gx,,)) < 07
that is,

F(d(gxn+l7gxn)7 d(gxm gxn71)7 d(gxm gxnfl)7 d(gxn+l7gxn)a
d(gxn+l7gxn—l)70) < 0.

Using (F1) and (d2)
F(d(ganrl 7gxn)7 d(gxm gxn—l )a d(gxna gxn—l )a d(gxlr+l 7gxn)’

d(8X,11,8%,) + d(gX,,8%,-1),0) < 0. (11)
By (F2) we obtain
d(8x,11,8%,) < hi(d(gx,,8x, 1)) (12)
If we go on like this, we get

d(gx,1,8x,) < Hy(d(gx,,8x,))- (13)

Thus, by using (d2), for n > m

d(gxmgxm) < d(gxnvgxn 1) +d(gxn 1 7gxn—2) +oot d(gxn1+l 7gxm)
(BT b7 1) (d(831,8%)

n
hy

< (d(gx1,8%)),

(14)

which implies that d(gx,, gx,) — 0 as, n,m — oo. It follows
that {gx,} is a left-Cauchy sequence.

Thus, {gx,} is a Cauchy sequence. Since g(X) is quasi-
complete, there exists a point ¢ =gp in g(X) such that
gx, — q = gp as n — oo. We shall prove that fp = gp.

By (6), we have successively

F(d(fxn—l 7,fp)7 d(gxn—l ) gp)7 d(gvn 1 ’fx_n l) (gpvfp)v
d(gxn—l 7.fp)’ d(gpv.fxn—l ))
that is,
F(d(gxnv.fp)v d(gxn—l ’ gp)a d(gxn—l ’ g-xn)a d(gpvfp)v d(gxn—l 7fp)7

d(gp,gx,)) < 0.
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Letting n tend to infinity, we have

F(d(gp,/p),0,0,d(gp,fp),d(gp,fp),0) < 0.

By (F2), it follows that d(gp,fp) =0 which implies gp = fp.
Hence w = fp = gp is a point of coincidence of f and g. By
using Lemma 2.1, w is the unique point of coincidence.
Moreover, since fand g are weakly compatible, so by Lemma
1.1, w is the unique common fixed point of fand g. O

In the sequel, we present the following corollaries as conse-
quences of Theorem 2.1.

Corollary 2.1. Let (X,d) be a complete quasi-metric space.
Suppose that

F(d(fx fy),d(x,y),d(x,fx),d(y,fp),d(x.fy),d(y,fx)) <O (15)

holds for all x,y € X where F € I'. Then f has a unique fixed
point.

Proof. If we choose g the identity function, then by Theorem
2.1, it is easy that f has a unique fixed point. O

The following corollary is a Ciri¢ contraction type [9].

Corollary 2.2. Let (X,d) be a quasi-metric space and
1.g: (X,d) — (X,d) satisfying

d(fx.fy) < kmax{d(gx, gy), d(gx,fx),d(gy,.fy), d(gx.[»),
d(gy.fx)}, (16)

for all x,y € X, where k € [0,1). If fIX)Cg(X) and g(X) is a
complete quasi metric subspace of (X,d), then f and g have a
unique point of coincidence. Moreover, if f and g are weakly
compatible, then f and g have a unique common fixed point.

Proof. It suffices to take F as given in Example 1.2, that is,
F(ty,...,t6) =ty —kmax{t,...,ts}, where k€ [0,1). Then,
we apply Theorem 2.1. O

Remark 2.1. Theorem 2.1 (resp. Corollary 2.1) is an extension
of Theorem 1 (Corollary 1) of Berinde and Vetro [10] to quasi-
metric spaces.

3. Well posedness problem of fixed point for two mappings in
quasi metric spaces

The notion of well-posedness of a fixed point has evoked
much interest to several mathematicians, as example see
[11-13]. We start to characterize the concept of the well-
posedness in the context of quasi-metric spaces in the
following way.

Definition 3.1. Let (X,d) be a quasi-metric space and
f:(X,d) — (X,d) be a given mapping. The fixed point
problem f'is said to be well posed if

(1) f has a unique fixed point x, € X,

(2) for any sequence {x,} CX with lim,_..d(x,,fx,) =
lim,_..d(fx,,x,) =0, then we have lim,_..d(x,,x0) =
lim,_.d(xp,x,) = 0.

We also need the following definition.

Definition 3.2. A function F: Ri — R has property (F)) if for
u,v,w = 0and F(u,v,0,w,u,v) <0, there exists p € (0, 1) such
that u < pmax{v, w}.

We introduce the notion well-posedness of a common fixed
point problem on quasi-metric spaces as follows.

Definition 3.3. Let (X,d) be a quasi-metric space and
fig: (X,d) — (X,d). The common fixed problem of f and g
is said to be well posed if

(1) fand g have a unique common fixed point,
(2) for any sequence {x,} CX with
limd(x,, fx,) = limd(fx,,x,) = 0 and
n—0oo n—oo (]7)

limd(x,, gx,) = limd(gx,, x,) =0,

then lim,_..d(x, x,) = lim,_,.d(x,,x) = 0.

Our second main result is

Theorem 3.1. Let (X,d) be a quasi-metric space. Assume that
fig: (X,d) — (X,d) satisfy hypotheses of Theorem 2.1 and F
has property (Fy). Then, the common fixed point problem of f
and g is well posed.

Proof. By Theorem 2.1, f and g have a unique common fixed
point x. Let {x,} be a sequence in (X, d) such that

limd(x,, fx,) = limd(fx,, x,) = 0 and

e 18
limd(x,, gx,) = limd(gx,, x,) = 0. (18)

By (6), we have

Fd(fx./x,), d(gx, gx,), d(gx.fx), d(gx,.[x,), d(gx,/X,),
d(fx,gx,)) <0,

s

Fd(x,[x,),d(x,gx,),0,d(gx,, fx,), d(x,/x,), d(x,gx,)) < 0.

Using (F,) property, we have

d(x.fx,) < pmax{d(x,gx,),d(gx,./x,)}

< pld(x, gx,) + d(gx,, /x,))-

Then by (d2), we get

(20)

d(x7 X”l) < d(x7fxn) + d(fxm Xn)
< p(d(x7gxn) + d(gxmfxn)) + d(fxm xi’l)
< pld(x,x,) + d(x,, 8x,) + d(gx,,, X,) + d(x0, /X))
+d(ﬁxn7 xn)~
Thus
e, x0) < (s 2,) + (g, ) + o )
1
+ qd(fxm Xn)- (21)

Taking limit as n — oo in (21) we obtain lim,_.d(x, x,) = 0.
Similarly, by (6)
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Fd(fx,,fx), d(gx,, gx), d(fx, gx), d(fx,, &x,),
d(fx,, gx), d(gx,,fx)) < 0, (22)

SO
F(d(fxn7 x)’ d(gx"’ x)7 07 d(fx"’ gx")? d(f:x‘"’ x)? d(gxn7 x)) < 0’
Using (F,) property, we have

d(fsyex) < pmax{d(gs, x).d(f, gx,)} o
< pld(gx,, x) + d(fx,, x,)).

Then by (d2), we get

d(x,,x)  <d(x,,fx,)+d(fx,,x)
S s f3,) + ple(g, ) + (v, %) o0
< d(x, fx,)+p(d(gx,, x0)+d(xn, )+ d(fX,, X0)
+d(x,,gx,))-

Thus

d(x,,x) < 1"%17 (d(gx,,x,) + d(fx,, x,) + d(x,, gx,))
+ ﬁd(xn,fxn) (25)

Taking limit as n — oo in (25), we obtain lim,_.d(x,,x) = 0.
Therefore, the proof is completed, i.e, the common fixed
point problem of fand g is well posed. O

4. Consequences

In this section, we give some consequences of our main results.
For this purpose, we first recollect the basic concepts on
G-metric spaces.

Definition 4.1 (See [14]). Let X be a non-empty set,
G:Xx XxX— R be a function satisfying the following
properties:

(GD) G(x,y,z) =0ifx=y =z,
(G2) 0 < G(x,x,y) for all x,y € X with x # y,
(G3) G(x,x,y) < G(x,y,z) for all x,y,z € X with y # z,

(G4) G(X,y, Z) = G(X727y) = G(y7 Z, X) = '(Symmetry in
all three variables),

(G5) G(x,y,z) < G(x,a,a) + G(a,y,z) (rectangle inequal-
ity) for all x,y,z,a € X.

Then the function G is called a generalized metric, or, more
specifically, a G-metric on X, and the pair (X,G) is called a
G-metric space.

Definition 4.2 (See [14]). A G-metric space (X, G) is said to be
symmetric if G(x,y,y) = G(y,x,x) for all x,y € X.

For a better understanding of the subject we give the fol-
lowing examples of G-metrics:

Example 4.1 (See [14]). Let (X,d) be a metric space. The
function G : X x X x X — [0, +00), defined by

G(xvy, Z) = max{d(xvy)v d(y7 2)7 d(Zv x)}:

for all x,y,z € X, is a G-metric on X.

Example 4.2 (See [l14]). Let X =[0,00). The function

G:XxXxX—][0,400), defined by
G(x,y,2) = |x =yl + |y —z[ + ]z — ],
for all x,y,z € X, is a G-metric on X.

In their initial paper, Mustafa and Sims [14] also defined the
basic topological concepts in G-metric spaces as follows:

Definition 4.3 (See [14]). Let (X, G) be a G-metric space, and
let {x,} be a sequence of points of X. We say that {x,} is
G-convergent to x € X if

llm G(x7 xmxm) = 07

n,m—-+00

that is, for any &> 0, there exists N &€ N such that
G(x,x,,x,) < ¢, for all nym = N. We call x the limit of the
sequence and write x, — x or lim,_, X, = X.

Proposition 4.1 (See [14]). Let (X, G) be a G-metric space. The

following are equivalent:

(1) {x,} is G-convergent to x,

2) G(x,,x,,x) — 0 as n — +o0,
(3) G(xp,x,x) — 0 as n — +o0,

4 G(xy,x,x) — 0 as n,m — +o0.

Definition 4.4 (See [14]). Let (X,G) be a G-metric space. A
sequence {x,} is called a G-Cauchy sequence if, for any
¢ >0, there exists N € N such that G(x,,x,,x;) < ¢ for all
m,n,l = N, that is, G(x,, X, x;) — 0 as n,m,l — +oco.

Proposition 4.2 (See [14]). Let (X,G) be a G-metric space.
Then the followings are equivalent:

(1) the sequence {x,} is G-Cauchy,
(2) for any &>0, there exists
G(Xy, Xy Xp) < &, for all myn = N.

N eN  such that

Definition 4.5 (See [14]). A G-metric space (X, G) is called G-
complete if every G-Cauchy sequence is G-convergent in
(X,G).

Notice that any G-metric space (X, G) induces a metric dg
on X defined by

dg(x,y) = G(x,y,y) + G(y,x,x), forall x,y € X. (26)

Furthermore, (X,G) is G-complete if and only if (X,dg) is
complete.
Recently, Jleli and Samet [15] gave the following theorems.

Theorem 4.1 (See [15]). Let (X,G) be a G-metric space. Let
d: XxX—1[0,00) be the function defined by d(x,y)=
G(x,y,v). Then

(1) (X,d) is a quasi-metric space;

(2) {x,} C X is G-convergent to x € X if and only if {x,} is
convergent to x in (X,d);

3) {x,} C X is G-Cauchy if and only if {x,} is Cauchy in
(X.d);
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4 (X,G) is G-complete if and only if (X,d) is complete.

Every quasi-metric induces a metric, that is, if (X,d) is a
quasi-metric space, then the function 6:X x X — [0,00)
defined by

5(X,y) = max{d(x,y),d(y, X)} (27)

is a metric on X [15].

Theorem 4.2 (See [15]). Let (X,G) be a G-metric space. Let
0: X x X —[0,00) be the function defined by 6(x,y) = max
{G(x,3,5),G(y,x,x)}. Then

(1) (X,0) is a metric space;

(2) {x,} C X is G-convergent to x € X if and only if {x,} is
convergent to x in (X,90);

(3) {x.} CX is G-Cauchy if and only if {x,} is Cauchy in
(X,0);

4 (X,G) is G-complete if and only if (X,0) is complete.

Now, we can give the following two corollaries on G-metric
spaces. The first one is analogous to Theorem 4.4 of Popa and
Patriciu [8].

Corollary 4.1. Let (X,G) be a
1,8 (X,G) = (X, G) satisfying

G-metric  space and

F(G(fx,f.fv), G(gx, gy, gy), G(gx,/x,/x), G(gy.[v.f>),
G(gx,/9,/9), G(gy, fx,/x)) <0, (28)

Sor all x,y € X, where FeT. If f(X)Cg(X) and g(X) is a
G-complete metric subspace of (X, G), then f and g have a unique
point of coincidence. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point.

Proof. Consider the quasi-metric d(x,y) = G(x,y,y) for all
x,y € X. We rewrite (28) as

F(d(fx.f),d(gx,gy),d(gx./x),d(gy.fy),d(gx.1),d(gy.fx)) <0.  (29)

By Theorem 4.1, we also have that the quasi-metric space
(g(X),d) is complete. Then the result follows from Theorem
21. O

The notion of posedness of a common fixed point problem
on G-metric spaces was introduced by Popa and Patriciu [8] as
follows

Definition 4.6. Let (X,G) be a G-metric space and
f,g:(X,G) = (X,G). The common fixed point problem of [
and g is said to be well posed if

(1) fand g have a unique common fixed point,
(2) for any sequence {x,} in X with

hm G(xmfxmfxn) = 0 (30)
and
lim G(x,, gx,, gx,) = 0, (31)

then
lim G(x, x,, x,) = 0. (32)

n—o0

The following result is analogous to Theorem 5.5 of Popa
and Patriciu [8].

Corollary 4.2. Let (X, G) be a G-metric space. Suppose that the
mappings f,g : (X,G) — (X, G) satisfy the hypotheses of Cor-
ollary 4.1. Assume also that F has the property (F,). Then the
common fixed point problem of f and g is well posed.

Proof. Similarly, by considering the quasi-metric d(x,y) =
G(x,y,y) for all x,y € X, the result follows easily from Theo-
rems 3.1 and 4.1. O

Acknowledgment

The authors thank the referee for a careful reading of the
paper.

References

[1] M. Abbas, B.E. Rhoades, Common fixed point results for
noncommuting mappings without continuity in generalized
metric spaces, Appl. Math. Comput. 215 (2009) 262-269.

[2] V. Popa, Fixed point theorems for implicit contractive
mappings, Stud. Cerc. St. Ser. Mat. Univ. Bacau 7 (1997) 129—
133.

[3] V. Popa, Some fixed point theorems for compatible mappings
satisfying an implicit relation, Demonstratio. Math. 32 (1999)
157-163.

[4] A. Aliouche, V. Popa, General common fixed point theorems for
occasionally weakly compatible hybrid mappings and
applications, Novi. Sad. J. Math. 39 (1) (2009) 89-109.

[5] V. Berinde, Approximating fixed points of implicit almost
contractions, J. Math. Stat. 41 (1) (2012) 93-102.

[6] M. Imdad, S. Kumar, M.S. Khan, Remarks on some fixed point
theorems satisfying implicit relations, Radovi. Math. 1 (2002)
35-143.

[71 V. Popa, A general fixed point theorem for four weakly
compatible mappings satisfying an implicit relation, Filomat
19 (2005) 45-51.

[8] V. Popa, A.M. Patriciu, A general fixed point theorem for pairs
of weakly compatible mappings in G-metric spaces, J. Nonlinear
Sci. Appl. 5 (2012) 151-160.

[9] L.B. Cirié, A generalization of Banach’s contraction principle,
Proc. Am. Math. Soc. 45 (2) (1974) 267-273.

[10] V. Berinde, F. Vetro, Common fixed points of mappings
satisfying implicit contractive conditions, Fixed Point Theory
Appl. 2012 (2012) 105.

[11] E. Karapinar, Fixed point theory for cyclic weak ¢-contraction,
Appl. Math. Lett. 24 (2011) 822-825.

[12] M. Pacurar, I.LA. Rus, Fixed point theory for cyclic ¢-
contractions, Nonlinear Anal. 72 (2010) 1181-1187.

[13] S. Reich, A.J. Zaslawski, Well-posedness of fixed point
problems, Far East J. Math. Sci. Special volume (Part III)
(2001) 393-401.

[14] Z. Mustafa, B. Sims, A new approach to generalized metric
spaces, J. Nonlinear Convex Anal. 7 (2006) 289-297.

[15] M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point
theorems, Fixed Point Theory Appl. 2012 (2012) 210.


http://refhub.elsevier.com/S1110-256X(14)00079-0/h0005
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0005
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0005
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0010
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0010
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0010
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0015
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0015
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0015
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0020
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0020
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0020
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0025
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0025
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0030
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0030
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0030
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0035
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0035
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0035
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0040
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0040
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0040
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0045
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0045
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0050
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0050
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0050
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0055
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0055
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0055
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0060
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0060
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0060
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0065
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0065
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0065
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0070
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0070
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0075
http://refhub.elsevier.com/S1110-256X(14)00079-0/h0075

	Common fixed point results from  quasi-metric spaces to G-metric spaces
	1 Introduction and preliminaries
	2 Fixed point theorems
	3 Well posedness problem of fixed point for two mappings in quasi metric spaces
	4 Consequences
	Acknowledgment
	References


