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Abstract In this paper, we provide some common fixed point results involving implicit contrac-

tions on quasi-metric spaces, and based on the recent nice paper of Jleli and Samet (2012), we show

that some common fixed point theorems involving implicit contractions on G-metric spaces can be

deduced immediately from our common fixed point theorems on quasi-metric spaces. The notion of

well-posedness of the common fixed point problem is also studied.
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1. Introduction and preliminaries

It is well known that passing from metric spaces to quasi-met-
ric spaces carries with it immediate consequences to the general
theory. The definition of a quasi-metric is given as follows:

Definition 1.1. Let X be a non-empty and let d : X� X!
½0;1Þ be a function which satisfies:
ðd1Þdðx; yÞ ¼ 0 if and only if x ¼ y,

ðd2Þdðx; yÞ 6 dðx; zÞ þ dðz; yÞ. Then d is called a quasi-
metric and the pair ðX; dÞ is called a quasi-metric space.

Remark 1.1. Any metric space is a quasi-metric space, but the

converse is not true in general.

Now, we give convergence and completeness on quasi-met-

ric spaces.

Definition 1.2. Let ðX; dÞ be a quasi-metric space, fxng be a
sequence in X, and x 2 X. The sequence fxng converges to x if
and only if

lim
n!1

dðxn; xÞ ¼ lim
n!1

dðx; xnÞ ¼ 0: ð1Þ
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Definition 1.3. Let ðX; dÞ be a quasi-metric space and fxng be a
sequence in X. We say that fxng is left-Cauchy if and only if
for every e > 0 there exists a positive integer N ¼ NðeÞ such
that dðxn; xmÞ < e for all n P m > N.

Definition 1.4. Let ðX; dÞ be a quasi-metric space and fxng be a
sequence in X. We say that fxng is right-Cauchy if and only if
for every e > 0 there exists a positive integer N ¼ NðeÞ such
that dðxn; xmÞ < e for all m P n > N.

Definition 1.5. Let ðX; dÞ be a quasi-metric space and fxng be a
sequence in X. We say that fxng is Cauchy if and only if for
every e > 0 there exists a positive integer N ¼ NðeÞ such that
dðxn; xmÞ < e for all m; n > N.

Remark 1.2. A sequence fxng in a quasi-metric space is
Cauchy if and only if it is left-Cauchy and right-Cauchy.

Definition 1.6. Let ðX; dÞ be a quasi-metric space. We say that

ð1Þ ðX; dÞ is left-complete if and only if each left-Cauchy
sequence in X is convergent.

ð2Þ ðX; dÞ is right-complete if and only if each right-Cauchy
sequence in X is convergent.

ð3Þ ðX; dÞ is complete if and only if each Cauchy sequence
in X is convergent.

The following definitions and results are also needed in the
sequel.

Definition 1.7. Let f and g be self maps of a non-empty set X. If

w ¼ fx ¼ gx for some x 2 X, then x is called a coincidence
point of f and g and w is called a point of coincidence of f and
g.

Definition 1.8. Let f and g be self maps of a non-empty set X. If
f and g commute at their coincidence points, then they called
weakly compatible mappings.

Lemma 1.1. [1] Let f and g be weakly compatible self mappings

of non-empty set X. If f and g have a unique point of coincidence
w ¼ fx ¼ gx, then w is the unique common fixed point of f
and g.

On the other hand, the study of fixed point for mappings
satisfying an implicit relation is initiated and studied by Popa

[2,3]. It leads to interesting known fixed points results. Follow-
ing Popa’s approach, many authors proved some fixed point,
common fixed point and coincidence point results in various

ambient spaces, see [4–7].
In the literature, there are several types of implicit contrac-

tion mappings where many nice consequences of fixed point
theorems could be derived. For instance, Popa and Patriciu

[8] introduced the following

Definition 1.9. [8] Let C0 be the set of all continuous functions
Fðt1; . . . ; t6Þ : R6

þ ! R such that

ðA1Þ : F is non-increasing in variable t5,
ðA2Þ: There exists a certain function h1 such that for all

u; v P 0;Fðu; v; v; u; uþ v; 0Þ 6 0 implies u 6 h1ðvÞ,

ðA3Þ: There exists a certain function h2 such that for all

t; s > 0;Fðt; t; 0; 0; t; sÞ 6 0 implies t 6 h2ðsÞ.

We denote W the set of functions w : ½0;1Þ ! ½0;1Þ
satisfying:
ðw1Þ w is non-decreasing,
ðw2Þ

P1
n¼1w

nðtÞ <1 for each t 2 Rþ, where wn is the nth

iterate of w.

Remark 1.3. It is easy to see that if w 2 W, then wðtÞ < t for
any t > 0.

We introduce the following Definition.

Definition 1.10. Let C be the set of all continuous functions
Fðt1; . . . ; t6Þ : R6

þ ! R such that

ðF1Þ: F is non-increasing in variable t5,

ðF2Þ: There exists h1 2 W such that for all u; v P 0;F
ðu; v; v; u; uþ v; 0Þ � 0 implies u 6 h1ðvÞ,

ðF3Þ: There exists h2 2 W such that for all
t; s > 0;Fðt; t; 0; 0; t; sÞ 6 0 implies t 6 h2ðsÞ.

Note that in Definition 1.10, we did not take the same
hypotheses on h1 and h2 as in Definition 1.9, that is, some ones

are dropped. As in [8], we give the following examples.

Example 1.1. Fðt1; . . . ; t6Þ ¼ t1 � at2 � bt3 � ct4 � dt5 � et6,
where a; b; c; d; e P 0; aþ bþ cþ 2dþ e < 1.

ðF1Þ: Obvious.

ðF2Þ: Let u; v P 0 and Fðu; v; v; uþ v; 0Þ ¼ u� av� bv�
cu� dðuþ vÞ 6 0 which implies u 6 aþbþd

1�c�d v and ðF2Þ is satis-

fied for h1ðtÞ ¼ aþbþd
1�ðcþdÞ t.

ðF3Þ: Let t; s > 0 and Fðt; t; 0; 0; t; sÞ ¼ t� at� dt� es 6 0
which implies t 6 e

1�ðaþdÞ s and ðF3Þ is satisfied for

h2ðsÞ ¼ e
1�ðaþdÞ s.

Example 1.2. Fðt1; . . . ; t6Þ ¼ t1 � kmaxft2; . . . ; t6g, where
k 2 0; 1

2

� �
.

ðF1Þ: Obvious.

ðF2Þ: Let u; v P 0 and Fðu; v; v; u; uþ v; 0Þ ¼ u� kmax
fu; v; uþ vg � 0. Thus, u 6 k

1�k v and ðF2Þ is satisfied for
h1ðtÞ ¼ k

1�k t.

ðF3Þ: Let t; s > 0 and Fðt; t; 0; 0; t; sÞ ¼ t� kmaxft; sg � 0.
If t > s, then tð1� kÞ 6 0, a contradiction. Hence t 6 s which

implies t 6 ks and ðF3Þ is satisfied for h2ðsÞ ¼ ks.

Some other examples could be derived from [8].

In this paper, we provide some common fixed point results
involving implicit contractions on quasi-metric spaces. We also
prove the posedness of the common fixed point problem.
Finally, we show that some existing fixed point results on G-

metric spaces are immediate consequences of our main pre-
sented theorems on quasi-metric spaces.
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2. Fixed point theorems

In this section we shall state and prove our main results. We
first prove the uniqueness of a common fixed point of certain

operators if it exists.

Lemma 2.1. Let ðX; dÞ be a quasi-metric space and
f; g : ðX; dÞ ! ðX; dÞ two functions such that
Fðdðfx; fyÞ; dðgx; gyÞ; dðgx; fxÞ; dðgy; fyÞ; dðgx; fyÞ; dðgy; fxÞÞ
6 0; 8x; y 2 X

ð2Þ

and F satisfying property ðF3Þ. Then, f and g have at most one

point of coincidence.

Proof. We assume that f and g have two points of coincidence
u and v (u – v). In this case, there exist p; q 2 X such that

u ¼ fp ¼ gp and v ¼ fq ¼ gq. Then by using (2) we get

Fðdðfp; fqÞ; dðgp; gqÞ; dðgp; fpÞ; dðgq; fqÞ; dðgp; fqÞ; dðgq; fpÞÞ
6 0;

that is

Fðdðgp; gqÞ; dðgp; gqÞ; 0; 0; dðgp; gqÞ; dðgq; gpÞÞ 6 0:

Since F satisfies property ðF3Þ, so
dðgp; gqÞ 6 h2ðdðgq; gpÞÞ: ð3Þ

Analogously, we obtain

dðgq; gpÞ 6 h2ðdðgp; gqÞÞ: ð4Þ

Combining (3) and (4), we get using the fact that h2 is non-
decreasing and h2ðtÞ < t for t > 0

0 < dðgp; gqÞ 6 h2ðdðgq; gpÞÞ 6 h22ðdðgp; gqÞ < dðgp; gqÞÞ: ð5Þ

It is a contradiction. Hence gp ¼ gq. Therefore u ¼ fp ¼ gp ¼
gq ¼ fq ¼ v. h

In what follows that we prove the existence of a common

fixed point of two self-mappings under certain implicit
relations.

Theorem 2.1. Let ðX; dÞ be a quasi-metric space and
f; g : ðX; dÞ ! ðX; dÞ satisfying inequalities
Fðdðfx;fyÞ;dðgx;gyÞ;dðgx; fxÞ;dðgy;fyÞ;dðgx;fyÞ;dðgy;fxÞÞ6 0; ð6Þ

for all x; y 2 X, where F 2 C. If fðXÞ# gðXÞ and gðXÞ is a com-
plete quasi metric subspace of ðX; dÞ, then f and g have a unique
point of coincidence. Moreover, if f and g are weakly compatible,

then f and g have a unique common fixed point.

Proof. Let x0 be an arbitrary point of X and by using
fðXÞ# gðXÞ we can choose x1 2 X such that fx0 ¼ gx1. If we
keep this up, we obtain xnþ1 such that fxn ¼ gxnþ1. Then by

(6) we have

Fðdðfxn�1; fxnÞ; dðgxn�1; gxnÞ; dðgxn�1; fxn�1Þ; dðgxn; fxnÞ;
dðgxn�1; fxnÞ; dðgxn; fxn�1ÞÞ 6 0;

that is,
Fðdðgxn; gxnþ1Þ; dðgxn�1; gxnÞ; dðgxn�1; gxnÞ; dðgxn; gxnþ1Þ;
dðgxn�1; gxnþ1Þ; 0Þ 6 0:

By ðF1Þ and ðd2Þ, we have

Fðdðgxn; gxnþ1Þ; dðgxn�1; gxnÞ; dðgxn�1; gxnÞ; dðgxn; gxnþ1Þ;
dðgxn�1; gxnÞ þ dðgxn; gxnþ1Þ; 0Þ 6 0: ð7Þ

By ðF2Þ, we obtain

dðgxn; gxnþ1Þ 6 h1ðdðgxn�1; gxnÞÞ: ð8Þ

If we go on like this, we get

dðgxn; gxnþ1Þ 6 hn1ðdðgx0; gx1ÞÞ: ð9Þ

Thus, by using ðd2Þ, for m > n

dðgxn;gxmÞ 6 dðgxn;gxnþ1Þþdðgxnþ1;gxnþ2Þþ �� �þdðgxm�1;gxmÞ
6 ðhn1þhnþ11 þ�� �þhm�11 Þðdðgx0;gx1ÞÞ
6

hn1
1�h1 ðdðgx0;gx1ÞÞ;

ð10Þ

which implies that dðgxn; gxmÞ ! 0 as, n;m!1. It follows

that fgxng is a right-Cauchy sequence.
Similarly, by (6) we have

Fðdðfxn; fxn�1Þ; dðgxn; gxn�1Þ; dðfxn�1; gxn�1Þ; dðfxn; gxnÞ;
dðfxn; gxn�1Þ; dðfxn�1; gxnÞÞ 6 0;

that is,

Fðdðgxnþ1; gxnÞ; dðgxn; gxn�1Þ; dðgxn; gxn�1Þ; dðgxnþ1; gxnÞ;
dðgxnþ1; gxn�1Þ; 0Þ 6 0:

Using ðF1Þ and ðd2Þ

Fðdðgxnþ1; gxnÞ; dðgxn; gxn�1Þ; dðgxn; gxn�1Þ; dðgxnþ1; gxnÞ;
dðgxnþ1; gxnÞ þ dðgxn; gxn�1Þ; 0Þ 6 0: ð11Þ

By ðF2Þ we obtain

dðgxnþ1; gxnÞ 6 h1ðdðgxn; gxn�1ÞÞ: ð12Þ

If we go on like this, we get

dðgxnþ1; gxnÞ 6 hn1ðdðgx1; gx0ÞÞ: ð13Þ

Thus, by using ðd2Þ, for n > m

dðgxn;gxmÞ 6 dðgxn;gxn�1Þþdðgxn�1;gxn�2Þþ � � �þdðgxmþ1;gxmÞ
6 hn�11 þhn�21 þ���þhm1
� �

ðdðgx1;gx0ÞÞ
6

hm1
1�h1 ðdðgx1;gx0ÞÞ;

ð14Þ

which implies that dðgxn; gxmÞ ! 0 as, n;m!1. It follows
that fgxng is a left-Cauchy sequence.

Thus, fgxng is a Cauchy sequence. Since gðXÞ is quasi-
complete, there exists a point q ¼ gp in gðXÞ such that

gxn ! q ¼ gp as n!1. We shall prove that fp ¼ gp.

By (6), we have successively

Fðdðfxn�1; fpÞ; dðgxn�1; gpÞ; dðgxn�1; fxn�1Þ; dðgp; fpÞ;
dðgxn�1; fpÞ; dðgp; fxn�1ÞÞ 6 0;

that is,

Fðdðgxn; fpÞ; dðgxn�1; gpÞ; dðgxn�1; gxnÞ; dðgp; fpÞ; dðgxn�1; fpÞ;
dðgp; gxnÞÞ 6 0:
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Letting n tend to infinity, we have

Fðdðgp; fpÞ; 0; 0; dðgp; fpÞ; dðgp; fpÞ; 0Þ 6 0:

By ðF2Þ, it follows that dðgp; fpÞ ¼ 0 which implies gp ¼ fp.
Hence w ¼ fp ¼ gp is a point of coincidence of f and g. By
using Lemma 2.1, w is the unique point of coincidence.

Moreover, since f and g are weakly compatible, so by Lemma
1.1, w is the unique common fixed point of f and g. h

In the sequel, we present the following corollaries as conse-
quences of Theorem 2.1.

Corollary 2.1. Let ðX; dÞ be a complete quasi-metric space.
Suppose that

Fðdðfx; fyÞ;dðx;yÞ;dðx; fxÞ;dðy; fyÞ;dðx; fyÞ;dðy; fxÞÞ6 0 ð15Þ

holds for all x; y 2 X where F 2 C. Then f has a unique fixed
point.

Proof. If we choose g the identity function, then by Theorem
2.1, it is easy that f has a unique fixed point. h

The following corollary is a Ćirić contraction type [9].

Corollary 2.2. Let ðX; dÞ be a quasi-metric space and
f; g : ðX; dÞ ! ðX; dÞ satisfying

dðfx; fyÞ 6 kmaxfdðgx; gyÞ; dðgx; fxÞ; dðgy; fyÞ; dðgx; fyÞ;
dðgy; fxÞg; ð16Þ

for all x; y 2 X, where k 2 0; 1
2

� �
. If fðXÞ# gðXÞ and gðXÞ is a

complete quasi metric subspace of ðX; dÞ, then f and g have a
unique point of coincidence. Moreover, if f and g are weakly

compatible, then f and g have a unique common fixed point.

Proof. It suffices to take F as given in Example 1.2, that is,
Fðt1; . . . ; t6Þ ¼ t1 � kmaxft2; . . . ; t6g, where k 2 ½0; 1

2
Þ. Then,

we apply Theorem 2.1. h

Remark 2.1. Theorem 2.1 (resp. Corollary 2.1) is an extension
of Theorem 1 (Corollary 1) of Berinde and Vetro [10] to quasi-
metric spaces.
3. Well posedness problem of fixed point for two mappings in

quasi metric spaces

The notion of well-posedness of a fixed point has evoked
much interest to several mathematicians, as example see

[11–13]. We start to characterize the concept of the well-
posedness in the context of quasi-metric spaces in the
following way.

Definition 3.1. Let ðX; dÞ be a quasi-metric space and
f : ðX; dÞ ! ðX; dÞ be a given mapping. The fixed point
problem f is said to be well posed if

(1) f has a unique fixed point x0 2 X ,
(2) for any sequence fxng# X with limn!1dðxn; fxnÞ ¼

limn!1dðfxn; xnÞ ¼ 0, then we have limn!1dðxn; x0Þ ¼
limn!1dðx0; xnÞ ¼ 0.
We also need the following definition.

Definition 3.2. A function F : R6
þ ! R has property ðFpÞ if for

u; v;w P 0 and Fðu; v; 0;w; u; vÞ � 0, there exists p 2 ð0; 1Þ such
that u 6 pmaxfv;wg.

We introduce the notion well-posedness of a common fixed

point problem on quasi-metric spaces as follows.

Definition 3.3. Let ðX; dÞ be a quasi-metric space and
f; g : ðX; dÞ ! ðX; dÞ. The common fixed problem of f and g
is said to be well posed if

(1) f and g have a unique common fixed point,
(2) for any sequence fxng# X with
lim
n!1

dðxn; fxnÞ ¼ lim
n!1

dðfxn; xnÞ ¼ 0 and

lim
n!1

dðxn; gxnÞ ¼ lim
n!1

dðgxn; xnÞ ¼ 0;
ð17Þ
then limn!1dðx; xnÞ ¼ limn!1dðxn; xÞ ¼ 0.

Our second main result is

Theorem 3.1. Let ðX; dÞ be a quasi-metric space. Assume that
f; g : ðX; dÞ ! ðX; dÞ satisfy hypotheses of Theorem 2.1 and F
has property ðFpÞ. Then, the common fixed point problem of f

and g is well posed.

Proof. By Theorem 2.1, f and g have a unique common fixed
point x. Let fxng be a sequence in ðX; dÞ such that

lim
n!1

dðxn; fxnÞ ¼ lim
n!1

dðfxn; xnÞ ¼ 0 and

lim
n!1

dðxn; gxnÞ ¼ lim
n!1

dðgxn; xnÞ ¼ 0:
ð18Þ

By (6), we have

Fðdðfx; fxnÞ; dðgx; gxnÞ; dðgx; fxÞ; dðgxn; fxnÞ; dðgx; fxnÞ;
dðfx; gxnÞÞ 6 0;

so

Fðdðx; fxnÞ; dðx; gxnÞ; 0; dðgxn; fxnÞ; dðx; fxnÞ; dðx; gxnÞÞ 6 0:

Using ðFpÞ property, we have

dðx; fxnÞ 6 pmaxfdðx; gxnÞ; dðgxn; fxnÞg
6 pðdðx; gxnÞ þ dðgxn; fxnÞÞ:

ð20Þ

Then by ðd2Þ, we get

dðx; xnÞ 6 dðx; fxnÞ þ dðfxn; xnÞ
6 pðdðx; gxnÞ þ dðgxn; fxnÞÞ þ dðfxn; xnÞ
6 pðdðx; xnÞ þ dðxn; gxnÞ þ dðgxn; xnÞ þ dðxn; fxnÞÞ
þdðfxn; xnÞ:

Thus

dðx; xnÞ 6
p

1� p
ðdðxn; gxnÞ þ dðgxn; xnÞ þ dðxn; fxnÞÞ

þ 1

1� p
dðfxn; xnÞ: ð21Þ

Taking limit as n!1 in (21) we obtain limn!1dðx; xnÞ ¼ 0.
Similarly, by (6)



360 H. Aydi et al.
Fðdðfxn; fxÞ; dðgxn; gxÞ; dðfx; gxÞ; dðfxn; gxnÞ;
dðfxn; gxÞ; dðgxn; fxÞÞ 6 0; ð22Þ

so

Fðdðfxn; xÞ; dðgxn; xÞ; 0; dðfxn; gxnÞ; dðfxn; xÞ; dðgxn; xÞÞ 6 0:

Using ðFpÞ property, we have

dðfxn; xÞ 6 pmaxfdðgxn; xÞ; dðfxn; gxnÞg
6 pðdðgxn; xÞ þ dðfxn; gxnÞÞ:

ð23Þ

Then by ðd2Þ, we get

dðxn;xÞ 6 dðxn; fxnÞþ dðfxn;xÞ
6 dðxn; fxnÞþ pðdðgxn;xÞþ dðfxn;gxnÞÞ
6 dðxn; fxnÞþpðdðgxn;xnÞþdðxn;xÞþdðfxn;xnÞ
þdðxn;gxnÞÞ:

ð24Þ

Thus

dðxn; xÞ 6
p

1� p
ðdðgxn; xnÞ þ dðfxn; xnÞ þ dðxn; gxnÞÞ

þ 1

1� p
dðxn; fxnÞ: ð25Þ

Taking limit as n!1 in (25), we obtain limn!1dðxn; xÞ ¼ 0.
Therefore, the proof is completed, i.e, the common fixed

point problem of f and g is well posed. h
4. Consequences

In this section, we give some consequences of our main results.
For this purpose, we first recollect the basic concepts on
G-metric spaces.

Definition 4.1 (See [14]). Let X be a non-empty set,

G : X� X� X! Rþ be a function satisfying the following
properties:

(G1) Gðx; y; zÞ ¼ 0 if x ¼ y ¼ z,

(G2) 0 < Gðx; x; yÞ for all x; y 2 X with x – y,

(G3) Gðx; x; yÞ 6 Gðx; y; zÞ for all x; y; z 2 X with y – z,

(G4) Gðx; y; zÞ ¼ Gðx; z; yÞ ¼ Gðy; z; xÞ ¼ � � �(symmetry in

all three variables),

(G5) Gðx; y; zÞ 6 Gðx; a; aÞ þ Gða; y; zÞ (rectangle inequal-
ity) for all x; y; z; a 2 X.

Then the function G is called a generalized metric, or, more

specifically, a G-metric on X, and the pair ðX;GÞ is called a
G-metric space.

Definition 4.2 (See [14]). A G-metric space ðX;GÞ is said to be

symmetric if Gðx; y; yÞ ¼ Gðy; x; xÞ for all x; y 2 X.

For a better understanding of the subject we give the fol-

lowing examples of G-metrics:

Example 4.1 (See [14]). Let ðX; dÞ be a metric space. The
function G : X� X� X! ½0;þ1Þ, defined by

Gðx; y; zÞ ¼ maxfdðx; yÞ; dðy; zÞ; dðz; xÞg;

for all x; y; z 2 X, is a G-metric on X.
Example 4.2 (See [14]). Let X ¼ ½0;1Þ. The function

G : X� X� X! ½0;þ1Þ, defined by

Gðx; y; zÞ ¼ jx� yj þ jy� zj þ jz� xj;

for all x; y; z 2 X, is a G-metric on X.

In their initial paper, Mustafa and Sims [14] also defined the
basic topological concepts in G-metric spaces as follows:

Definition 4.3 (See [14]). Let ðX;GÞ be a G-metric space, and
let fxng be a sequence of points of X. We say that fxng is
G-convergent to x 2 X if

lim
n;m!þ1

Gðx; xn; xmÞ ¼ 0;

that is, for any e > 0, there exists N 2 N such that

Gðx; xn; xmÞ < e, for all n;m P N. We call x the limit of the
sequence and write xn ! x or limn!þ1xn ¼ x.

Proposition 4.1 (See [14]). Let ðX;GÞ be a G-metric space. The

following are equivalent:

(1) fxng is G-convergent to x,
(2) Gðxn; xn; xÞ ! 0 as n! þ1,

(3) Gðxn; x; xÞ ! 0 as n! þ1,
(4) Gðxn; xm; xÞ ! 0 as n;m! þ1.

Definition 4.4 (See [14] ). Let ðX;GÞ be a G-metric space. A
sequence fxng is called a G-Cauchy sequence if, for any
e > 0, there exists N 2 N such that Gðxn; xm; xlÞ < e for all
m; n; l P N, that is, Gðxn; xm; xlÞ ! 0 as n;m; l! þ1.

Proposition 4.2 (See [14]). Let ðX;GÞ be a G-metric space.
Then the followings are equivalent:

(1) the sequence fxng is G-Cauchy,
(2) for any e > 0, there exists N 2 N such that

Gðxn; xm; xmÞ < e, for all m; n P N .

Definition 4.5 (See [14]). A G-metric space ðX;GÞ is called G-
complete if every G-Cauchy sequence is G-convergent in
ðX;GÞ.

Notice that any G-metric space ðX;GÞ induces a metric dG
on X defined by

dGðx; yÞ ¼ Gðx; y; yÞ þ Gðy; x; xÞ; for all x; y 2 X: ð26Þ

Furthermore, ðX;GÞ is G-complete if and only if ðX; dGÞ is
complete.

Recently, Jleli and Samet [15] gave the following theorems.

Theorem 4.1 (See [15]). Let ðX;GÞ be a G-metric space. Let

d : X� X! ½0;1Þ be the function defined by dðx; yÞ ¼
Gðx; y; yÞ. Then

(1) ðX ; dÞ is a quasi-metric space;
(2) fxng � X is G-convergent to x 2 X if and only if fxng is

convergent to x in ðX ; dÞ;
(3) fxng � X is G-Cauchy if and only if fxng is Cauchy in
ðX ; dÞ;
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(4) ðX ;GÞ is G-complete if and only if ðX ; dÞ is complete.
Every quasi-metric induces a metric, that is, if ðX; dÞ is a
quasi-metric space, then the function d : X� X! ½0;1Þ
defined by

dðx; yÞ ¼ maxfdðx; yÞ; dðy; xÞg ð27Þ

is a metric on X [15].

Theorem 4.2 (See [15]). Let ðX;GÞ be a G-metric space. Let
d : X� X! ½0;1Þ be the function defined by dðx; yÞ ¼ max

fGðx; y; yÞ;Gðy; x; xÞg. Then

(1) ðX ; dÞ is a metric space;

(2) fxng � X is G-convergent to x 2 X if and only if fxng is
convergent to x in ðX ; dÞ;

(3) fxng � X is G-Cauchy if and only if fxng is Cauchy in
ðX ; dÞ;

(4) ðX ;GÞ is G-complete if and only if ðX ; dÞ is complete.

Now, we can give the following two corollaries on G-metric
spaces. The first one is analogous to Theorem 4.4 of Popa and
Patriciu [8].

Corollary 4.1. Let ðX;GÞ be a G-metric space and
f; g : ðX;GÞ ! ðX;GÞ satisfying

FðGðfx; fy; fyÞ;Gðgx; gy; gyÞ;Gðgx; fx; fxÞ;Gðgy; fy; fyÞ;
Gðgx; fy; fyÞ;Gðgy; fx; fxÞÞ 6 0; ð28Þ

for all x; y 2 X, where F 2 C. If fðXÞ# gðXÞ and gðXÞ is a
G-complete metric subspace of ðX;GÞ, then f and g have a unique
point of coincidence. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point.

Proof. Consider the quasi-metric dðx; yÞ ¼ Gðx; y; yÞ for all
x; y 2 X. We rewrite (28) as

Fðdðfx;fyÞ;dðgx;gyÞ;dðgx;fxÞ;dðgy; fyÞ;dðgx;fyÞ;dðgy;fxÞÞ6 0: ð29Þ

By Theorem 4.1, we also have that the quasi-metric space
ðgðXÞ; dÞ is complete. Then the result follows from Theorem
2.1. h

The notion of posedness of a common fixed point problem
on G-metric spaces was introduced by Popa and Patriciu [8] as

follows

Definition 4.6. Let ðX;GÞ be a G-metric space and
f; g : ðX;GÞ ! ðX;GÞ. The common fixed point problem of f
and g is said to be well posed if

(1) f and g have a unique common fixed point,
(2) for any sequence fxng in X with
lim
n!1

Gðxn; fxn; fxnÞ ¼ 0 ð30Þ
and
lim
n!1

Gðxn; gxn; gxnÞ ¼ 0; ð31Þ
then

lim
n!1

Gðx; xn; xnÞ ¼ 0: ð32Þ

The following result is analogous to Theorem 5.5 of Popa

and Patriciu [8].

Corollary 4.2. Let ðX;GÞ be a G-metric space. Suppose that the
mappings f; g : ðX;GÞ ! ðX;GÞ satisfy the hypotheses of Cor-
ollary 4.1. Assume also that F has the property ðFpÞ. Then the

common fixed point problem of f and g is well posed.

Proof. Similarly, by considering the quasi-metric dðx; yÞ ¼
Gðx; y; yÞ for all x; y 2 X, the result follows easily from Theo-

rems 3.1 and 4.1. h
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