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Abstract In this paper, we consider two mixed vector equilibrium problems i.e., a weak mixed vec-

tor equilibrium problem and a strong mixed vector equilibrium problem which are combinations of

a vector equilibrium problem and a vector variational inequality problem. We prove existence

results for both the problems in non-compact setting.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 47J20; 49J40; 90C33

ª 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.
1. Introduction

Many problems of practical interest in optimization, econom-

ics and engineering involve equilibrium in their description.
The equilibrium problem was first introduced and studied by
Blum and Oettli [1] as a generalization of variational inequality

problem. It has been shown that the equilibrium problem pro-
vides a natural, novel and unified framework to study a wide
class of problems arising in nonlinear analysis, optimization,
economics, finance and game theory. The equilibrium problem

includes many mathematical problems as particular cases such
as mathematical programming problems, complementarity
problems, variational inequality problems, fixed point
problems, minimax inequality problems, and Nash equilibrium
problems in noncooperative games. see [1–4].

Let X be a Hausdorff topological vector space, K be a sub-

set of X, and f : K� K! R be a mapping with f ðx; xÞ ¼ 0.
The classical, scalar-valued equilibrium problem deals with
the existence of �x 2 K such that

fð�x; yÞP 0; 8y 2 K:

Moreover, in the case of vector valued mappings, let Y be a
another Hausdorff topological vector space, C � Y a cone.
Given a vector mapping f : K� K! Y, then the problem of

finding �x 2 K such that

fð�x; yÞ R �intC; 8y 2 K;

is called weak equilibrium problem and the point �x 2 K is
called weak equilibrium point, where intC denotes the interior

of the cone C in Y.
In this paper, we consider two types of mixed vector equi-

librium problems which are combinations of a vector equilib-
rium problem and a vector variational inequality problem.

Let X and Y be two Hausdorff topological vector spaces. Let
K be a nonempty convex closed subset of X and C#Y a
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pointed closed convex cone with nonempty interior i.e.,
intC – £. The partial order ‘‘�C’’ on Y induced by C is
defined by x �C y if and only if y� x 2 C. Let f : K� K! Y

and T : K! LðX;YÞ be two mappings, where LðX;YÞ is the
space of all linear continuous mappings from X to Y. Here
hTðxÞ; yi denotes the evaluation of the linear mapping TðxÞ
at y. Now, we consider the following two problems:

Find �x 2 K such that

fð�x; yÞ þ hTð�xÞ; y� �xi R �intC; 8y 2 K: ð1:1Þ

and

fð�x; yÞ þ hTð�xÞ; y� �xi R �C n f0g; 8y 2 K: ð1:2Þ

We call problem (1.1) as weak mixed vector equilibrium prob-
lem and problem (1.2) as strong mixed vector equilibrium
problem. Problems (1.1) and (1.2) are unified models of several

known problems used in applied sciences, for instance, vector
variational inequality problem, vector complementarity prob-
lem, vector optimization problem and vector saddle point
problem, see e.g. [3,5–9] and references therein. For a more

comprehensive bibliography on vector equilibrium problems,
vector variational inequality problems and their generaliza-
tions, we refer to volume edited by Giannessi [3]. Our results

generalize the results obtained by Blum and Oettli [1] and
therefore the results of Fan [10] for vector valued mappings.
For more details, we refer to [5,11,12]. As the underlying set

K is non-compact, therefore we use only a very weak coercivity
condition i.e., coercing family.

2. Preliminaries

The following definitions and results are needed in the sequel.

Definition 2.1. Let g : K! Y be a mapping. Then g is said to
be C-convex, if for all x; y 2 K and k 2 ½0; 1�

gðkxþ ð1� kÞyÞ �C kgðxÞ þ ð1� kÞgðyÞ;

which implies that

gðkxþ ð1� kÞyÞ 2 kgðxÞ þ ð1� kÞgðyÞ � C:

Definition 2.2. A mapping g : K! Y is said to be

(i) lower semicontinuous with respect to C at a point
x0 2 K, if for any neighborhood V of gðx0Þ in Y, there

exists a neighborhood U of x0 in X such that
gðU \ KÞ#Vþ C;
(ii) upper semicontinuous with respect to C at a point
x0 2 K, if
gðU \ KÞ#V� C;
(iii) continuous with respect to C at a point x0 2 K, if it is
lower semicontinuous and upper semicontinuous with
respect to C at that point.

Remark 2.1. If g is lower semicontinuous, upper semicontinu-
ous and continuous with respect to C at any point of K, then g
is lower semicontinuous, upper semicontinuous and continu-

ous with respect to C on K, respectively.
Definition 2.3. A mapping f : K� K! Y is said to be

C-monotone, if for all x; y 2 K

fðx; yÞ þ fðy; xÞ 2 �C:

Lemma 2.1 [9]. If g is a lower semicontinuous mapping with
respect to C, then the set fx 2 K : gðxÞ R intCg is closed in K.

Lemma 2.2 [13]. Let ðY;CÞ be an ordered topological vector

space with a pointed closed convex cone C. Then for all
x; y 2 Y, we have

(i) y � x 2 intC and y R intC imply x R intC;
(ii) y � x 2 C and y R intC imply x R intC;
(iii) y � x 2 �intC and y R �intC imply x R �intC;
(iv) y � x 2 �C and y R �intC imply x R �intC.
Definition 2.4 [14]. Consider a subset K of a topological vector
space and a topological space Y. A family fðCi;ZiÞgi2I of pair
of sets is said to be coercing for a mapping F : K! 2Y if and
only if

(i) for each i 2 I;Ci is contained in a compact convex sub-
set of K and Zi is a compact subset of Y;

(ii) for each i; j 2 I , there exists k 2 I such that Ci [ Cj # Ck ;

(iii) for each i 2 I , there exists k 2 I with
T

x2Ck

F ðxÞ# Zi.

Definition 2.5. Let K be a nonempty convex subset of a topo-
logical vector space X. A multivalued mapping G : K! 2X is

said to be KKMmapping, if for every finite subset fxigi2I of K,

Cofxi : i 2 Ig#
[
i2I
FðxiÞ;

where Cofxi : i 2 Ig denotes the convex hull of fxigi2I.

Theorem 2.1 [14]. Let X be a Hausdorff topological vector
space, Y a convex subset of X; K a nonempty subset of Y and
F : K! 2Y a KKM mapping with compactly closed values in

Y ði.e., for all x 2 K; FðxÞ \ Z is closed for every compact set
Z of YÞ. If F admits a coercing family, then

\
x2K

FðxÞ– £:

ConditionðCÞ: We say that the cone C satisfies ConditionðCÞ, if
there is a pointed convex closed cone eC such that C n f0g
# int eC.
3. Existence results

In this section, we prove the following existence results for
weak and strong mixed vector equilibrium problems (1.1)

and (1.2) for non-compact domain.

Theorem 3.1. Let K be a nonempty closed convex subset of a
Hausdorff topological vector space X; Y a Hausdorff topolog-

ical vector space and C a closed convex pointed cone in Y with
intC – £. Let f : K� K! Y and T : K! LðX;YÞ be two
mappings satisfying the following conditions:
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(i) f is C-monotone;

(ii) f ðx; xÞ ¼ 0, for all x 2 K;
(iii) for any fixed x; y 2 K; t 2 ½0; 1�# f ðty þ ð1� tÞx; yÞ 2 Y

is upper semicontinuous with respect to C at t ¼ 0;

(iv) for any fixed x 2 K; f ðx; �Þ : K ! Y is C-convex, lower
semicontinuous with respect to C on K;

(v) T is upper semicontinuous with respect to C with non-
empty closed values;

(vi) there exists a family fðCi; ZiÞgi2I satisfying conditions ðiÞ
and ðiiÞ of Definition 2.4 and the following condition: For
each i 2 I , there exists k 2 I such that

x 2 K : fðy; xÞ � hTðxÞ; y� xi R intC; 8y 2 Ckf g � Zi:

Then, there exists a point �x 2 K such that

fð�x; yÞ þ hTð�xÞ; y� �xi R �intC; 8y 2 K:

For the proof of Theorem 3.1, we need the following prop-

osition, for which the assumptions remain same as in Theorem
3.1.

Proposition 3.1. The following two problems are equivalent:

(i) Find �x 2 K such that f ðy;�xÞ � hT ð�xÞ; y � �xi R intC;
8y 2 K;

(ii) Find �x 2 K such that f ð�x; yÞ þ hT ð�xÞ; y � �xi R �intC;
8y 2 K.

Proof. Suppose (I) holds. Then for fixed y 2 K, set

xt ¼ tyþ ð1� tÞ�x, for t 2 ½0; 1�. It is clear that xt 2 K, for all
t 2 ½0; 1� and hence

fðxt; �xÞ � hTð�xÞ; xt � �xi R intC: ð3:1Þ

Since fðx; xÞ ¼ 0 and fðx; �Þ is C-convex, we have

0 ¼ fðxt; xtÞ �C tfðxt; yÞ þ ð1� tÞfðxt; �xÞ
) tfðxt; yÞ þ ð1� tÞfðxt; �xÞ 2 C: ð3:2Þ

Also,

hTð�xÞ; xt � �xi ¼ thTð�xÞ; y� �xi ) ð1� tÞthTð�xÞ; y� �xi
� ð1� tÞhTð�xÞ; xt � �xi ¼ 0: ð3:3Þ

Combining (3.2) and (3.3), we obtain

tfðxt;yÞþð1� tÞ fðxt; �xÞ�hTð�xÞ;xt� �xif gþð1� tÞthTð�xÞ;y� �xi 2C; ð3:4Þ

for all t 2 ½0; 1�.
Using (3.1) and (3.4) and (ii) of Lemma 2.2, we have

tfðxt;yÞþð1� tÞthTð�xÞ;y� �xi R �intC
) fðxt;yÞþð1� tÞhTð�xÞ;y� �xi R �intC;8t2 ð0;1�: ð3:5Þ

By condition (iii) of Theorem 3.1 as t # fðtyþ ð1� tÞx; yÞ is
upper semicontinuous with respect to C at t ¼ 0, therefore
from (3.5) we have

fð�x; yÞ þ hTð�xÞ; y� �xi R �intC;

and hence (II) holds.
Conversely, Assume that (II) holds for all y 2 K. In order to

prove (I), on contrary suppose that there exists a point �y 2 K
such that
fð�y; �xÞ � hTð�xÞ; �y� �xi 2 intC ) fð�y; �xÞ
¼ hTð�xÞ; �y� �xi þ w; ð3:6Þ

for some w 2 intC.

On the other hand, since f is C-monotone, we have

fð�x; �yÞ þ fð�y; �xÞ 2 �C ) fð�y; �xÞ ¼ �fð�x; �yÞ � v; ð3:7Þ

for some v 2 C.
Combining (3.6) and (3.7), we have

fð�x; �yÞ þ hTð�xÞ; �y� �xi ¼ �w� v 2 �intC;

which contradicts assumption (II). Therefore (I) holds. h

Proof of Theorem 3.1. For each y 2 K, consider the set

FðyÞ ¼ x 2 K : fðy; xÞ � hTðxÞ; y� xi R intCf g:

By Lemma 2.1, FðyÞ is closed in K and hence F has compactly
closed values in K.

Now, we show that F is a KKM map. For this, let

fyi : i 2 Ig be a finite subset of K and u 2 Cofyi : i 2 Ig.
We claim that

Cofyi : i 2 Ig#
[
i2I
FðyiÞ:

In contrary, suppose that u R
S
i2I

FðyiÞ. As u 2 Cofyi : i 2 Ig,
we have u ¼

P
i2Ikiyi with ki P 0 and

P
i2Iki ¼ 1.

This follows that

fðyi; uÞ � hTðuÞ; yi � ui 2 intC:

Since intC in convex, thereforeX
i2I

ki fðyi; uÞ � hTðuÞ; yi � uif g 2 intC: ð3:8Þ

Since fðx; �Þ is C-convex and C-monotone, we haveX
i2I

kifðyi; uÞ �C

X
i;j2I

kikjfðyi; yjÞ

¼ 1

2

X
i;j2I

kikj fðyi; yjÞ þ fðyj; yiÞ
� �

�C 0: ð3:9Þ

Furthermore,

0 ¼ hTðuÞ; u� ui ¼
�
TðuÞ;

X
i2I

kiyi �
X
i2I

kiu

�

¼
�
TðuÞ;

X
i2I

kiðyi � uÞ
�
¼
X
i2I

ki TðuÞ; yi � uh i: ð3:10Þ

Combining (3.9) and (3.10), we haveX
i2I

ki TðuÞ; yi � uh i �
X
i2I

kifðyi; uÞ 2 C

)
X
i2I

ki fðyi; uÞ � hTðuÞ; yi � uif g 2 �C: ð3:11Þ

From (3.8) and (3.11), we conclude thatX
i2I

ki fðyi; uÞ � hTðuÞ; yi � uif g 2 intC \ ð�CÞ ¼£;

which is a contradiction. This follows that u 2
S
i2I

FðyiÞ and
hence Cofyi : i 2 Ig#

S
i2I

FðyiÞ. Thus, F is a KKM mapping.

From the assumption ðviÞ, we can see that the family

fðCi;ZiÞgi2I satisfies the condition which is for all i 2 I,
there exists k 2 I such that
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\
y2Ck

FðyÞ � Zi;

and therefore it is a coercing family for F.

We deduce that F satisfies all the hypothesis of Theorem
2.1. Therefore, we have\
y2K

FðyÞ – £:

Hence, there exists �x 2 K such that for any y 2 K

fðy; �xÞ � hTð�x; y� �xÞi R intC:

Now applying Proposition 3.1, we obtain that there exists
�x 2 K such that for all y 2 K

fð�x; yÞ þ hTð�x; y� �xÞi R �intC:

Hence problem (1.1) admits a solution. This completes the
proof. h

Corollary 3.1. Let K; C; fðCi;ZiÞgi2I; f and T satisfy all the

assumptions of Theorem 3.1. In addition, if C satisfies
ConditionðCÞ, then the problem (1.2) is solvable i.e., there
exists �x 2 K such that for any y 2 K
fð�x; yÞ þ hTð�xÞ; y� �xi R �ðC n f0gÞ:

Proof. Let us suppose that C satisfies ConditionðCÞ. Then

there is a pointed convex and closed cone eC in Y such that

C n f0g# int eC:
Therefore we can easily see that K; C; fðCi;ZiÞgi2I; f and T

satisfy all the assumptions of Theorem 3.1. Therefore by The-
orem 3.1, we get

fð�x; yÞ þ hTð�xÞ; y� �xi R �int eC; 8y 2 K: ð3:12Þ

Since �ðC n f0gÞ# � int eC, it follows from (3.12) that there
exists �x 2 K such that

fð�x; yÞ þ hTð�xÞ; y� �xi R �ðC n f0gÞ; 8y 2 K:

Hence problem (1.2) admits a solution. This completes the
proof. h
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