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In this paper, the notion of mixed f, g monotone mapping is introduced, and the coupled
coincidence point theorem for nonlinear contractive mappings in partially ordered complete metric
spaces has been proved. Presented theorems are generalizations of the recent fixed point theorems
due to Lakshmikantham and Ciri¢ (2009) [17] and include several recent developments. Also, using
the theory of countable extension of t-norm, it has been proved that a common fixed point theorem
given in Ciri¢ (2011) [12] hold for a more general classes of t-norms in fuzzy metric spaces. Their
theorem can be used to investigate a large class of problems and has discussed the existence and
uniqueness of solution for a periodic boundary value problem.
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1. Introduction and preliminaries

The Banach contraction principle is one of the most important
fixed point theorem, end generalized in various directions. For
more results, we refer [1-25]. Boyd and Wong [4] extended the
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Banach contraction principle to the case of nonlinear contrac-
tion mappings. Ran and Reurings [23] proved a Banach contrac-
tion principle in partially ordered metric spaces. After that,
many authors have continued research (see [2,3,17,20,21]). In
a recent papers, Bhaskar and Lakshmikantham [3] and
Lakshmikantham and Ciri¢ [17] proved a coupled fixed point
results for mixed monotone and contraction mapping in par-
tially ordered metric spaces. Bhaskar and Lakshmikantham [3]
noted that their theorem can be used to investigate a large class
of problems and has discussed the existence and uniqueness of
solution for a periodic boundary value problem.

Definition 1.1. Let (X,<) be a partially ordered set and
F: X — Xis such that for x,y € X, x < y implies F(x) < F(y).
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Then, a mapping F is said to be non-decreasing. Similarly, it is
defined as a non-increasing mapping.

Lakshmikantham and Ciri¢ [17] introduced the following
notions of a mixed monotone mapping and a coupled fixed
point.

Definition 1.2 [17]. Let (X,<) be a partially ordered set,
F:XxX— X and g: X — X. We say F has the mixed
g-monotone property if F is monotone g-non-decreasing in
its first argument and is monotone g-non-increasing in its
second argument, that is, for any x,y € X,

X1, % € X, g(x1) < g(xz) implies F(x1,y) < F(xa,) (1)
and

Y.y € X, g(y) <g(y,) implies F(x,y,) = F(x,»,). (2)

Definition 1.3 [17]. An element (x,y) € X x X is called a cou-
pled coincidence point of a mapping F: X x X — X and
g: X—-Xif
Fx,y) =g(x), F(y,x)=g(y)

Definition 1.4 [17]. Let X be a non-empty set and

F:XxX—Xand g: X — X. Wesay F and g are commuta-
tive if

g(F(x,y)) = F(g(x),g(»))
for all x,y € X.

The main theoretical results of Lakshmikantham and Ciri¢
in [17] are the following coupled coincidence point theorems.

Theorem 1.5 [17]. Let (X,<) be a partially ordered set and
suppose there is a metric d on X such that (X,d) is a complete
metric space. Assume there is a function ¢ : [0,400) —|[0, +00)
with @(t) <t and lim._,@(r) <t for each t>0 and also
suppose F: X x X — X and g : X — X are such that F has the
mixed g-monotone property and

d(F(x, ), Fu,v)) < @ (d(g(x)ag(u)) ;—d(g(y)7g(v))>

3)
Sfor all x,y,u,ve X for which g(x) < g(u) and g(y) = g(v).
Suppose F(X x X) Cg(X),g is continuous and commutes with

F and also suppose either

(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x,

then x, < x for all n, (4)
(ii) if a non-increasing sequence {y,} — y,
then 'y <y, for all n. (5)

If there exists xo,y, € X such that
g(xo) < F(xo,¥9) and g(yo) = F(yg, Xo),

then there exist x,y € X such that

g(x) = F(x,y) and g(y) = F(y, x),
that is, F and g have a coupled coincidence.

Recently, coupled coincidence point results can see in
[26-29]. Inspired with Definition 1.3 we introduce in this paper
the concept of a mixed fg-monotone mapping and prove a cou-
pled coincidence fixed point theorems for nonlinear contrac-
tive mappings in partially ordered complete metric spaces.

Since the probabilistic metric spaces introduced by Menger
[30] are a natural generalization of a metric spaces, Cirié et al.
[12,13] introduced a concept of monotone-generalized contrac-
tion in partially ordered probabilistic metric space, and they
proved a common fixed point theorem. In [12] Ciri¢ et al.
introduced the concept of mixed monotone-generalized con-
traction in partially ordered probabilistic metric space, and
they proved a coupled coincidence and coupled fixed point the-
orem where they used a t-norm of H-type. Inspired with that in
this paper, we proved that the result in [12] hold for a more
general class of t-norms.

Through this paper with A*, we denoted the space of all
distribution function, ie. A" ={F:RU[0,1] = [0,1]: Fis
left continuous and non-decreasing on R, F(0) = 0 and F(+
oo) =1} and the subset D" CAT is the set D' ={F¢
A" [T F(+00) = 1}, where the [ f(x) denotes the left limit
of the function f at the point x. The space A" is partially
ordered by the usual point-wise ordering of function, i.e.
F < G if and only if F(x) < G(x) for all x € R. The maximal
element for A* in this order is the distribution function

[0 <0
foll) = 1, ift>0.

Definition 1.6. A mapping 7: [0, 1] x [0,1] — [0, 1] is called a
triangular norm (a t-norm) if the following conditions are
satisfied:

e T(a,1)=aforallac|0,1];

o T(a,b) =T(b,a) for all a,b € [0, 1];

ea>bh c>d= T(ac)>T(bd) (ab,cdecl0]l]);
o T(a,T(b,c)) = T(T(a,b),c) (a,b,ce€[0,1]).

The following are the four basic t-norms (see [31]):
T‘M(ny):min(%)/): TP(X,y)ZX'y,
TL(x7y) = max(x+y - 170)
TD(x>y) = {

min(x,y) ifmax(x,y) =1,

0 otherwise.

Some important families of t-norms are given in the following
example (see [31]):

Example 1.7.
(i) The Dombi family of t-norms (Tf)m[o_ o] which is
defined by
TD (x7 y)? /“ =0
T (x, y) = Tyu(x, y), /=00

—77, 4€(0, 00).
B (0, o0)
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(ii) The Aczél-Alsina family of t-norms (744) 160, ool which
is defined by
Tp(x, y), A=0
TH(x, ) = { Tl 2), j=oo
e(loz 4102 ) 5 e (0 o0).
(iii) Sugeno-Weber family of t-norms (75" )iel-1, o> Which is
defined by
Tp(x, y), A=-1
T (x, ) = { Tolx. ). 7 =00
max(0, Y“%f’“), A€ (-1, o0).

The following class of t-norms, that has proved itself as a
highly useful tool in the fixed point theory, was introduced
in [15].

Definition 1.8 [15]. Let T be a t-norm, and let (7)), be a
sequence of t-norms given by the following:

Ti(x)=T(x, x) and T,4,(x) = T(T,(x), x).

A t-norm T is of the H-type if T is continuous and the
sequence {T,(x)},cy i equicontinuous at x = 1.

Remark 1. The family {7,(x)},.y of t-norms is equicontinu-
ous at x =1, if for all A€ (0, 1), there exists 6(4) € (0, 1)
such that the following implication holds:

x>1-0(1)=T,(x)>1—-1 forall neN.

(see [15]). A trivial example of a t-norm of H-typeis T = Ty, A
non-trivial example can be found in [15].

An arbitrary t-norm 7 can be extended, due to the associa-
tivity, to an n-ary operation on [0, 1]" (see [31]):

T(x1, %2, .., %) = T, x; = T(TS x;,x,) and T, x; = x;.

Also, a t-norm T can be extend to a countable case as
follows:
T,.Oilx,- = limT?:lx,-,

n—0o0

where (x,),y is an arbitrary sequence from [0, 1]. The limit on
the right-hand side exists since the sequence (T/_,x;),.y, is non-
increasing and bounded from below.

In [16] the following equivalences and proposition proved
and that will be used further:

o If T=T; or T=Tp, then

mTE,x =1 <= (1 - x) < oo.
n—oo i—1

i=

o If (77),c0, o) 18 the Dombi family of t-norms or the
Aczél-Alsina family of t-norms and if (x,),. is a
sequence of elements from (0, 1] such that lim,_..x, =

1, then

lim (T7)7, 5 = 1 <= (1 -x)" < oc. (6)
i=1

n—oo

o If (75"),,  is the Sugeno-Weber family of t-norms
and (x,),cy 18 @ sequence of elements from (0, 1] such
that lim,_,..x, = 1, then

lim (T3") %, = 1 <= > (1=x) < oo (7)
i=1

Proposition 1.9 [16]. Let (x,),cn be a sequence of numbers
from [0, 1] such that lim,_..x, =1 and t-norm T is of the
H-type. Then,

T 00 T 00
Iim T, x; = ,}LTOT":”X”*" =1.

n—oo

Definition 1.10. The ordered triple (X,F,T) is said to be a
Menger probabilistic metric space if X is a non-empty set
and F:XxX— A" (F(u,v) written by F,, for every
(u,v) € X x X) satisfies the following conditions:

o Fyy(x)=1foreveryx>0=u=v (u,v€X).

e F,,=F,, for every u,v € X.

o Fuo(x+y) = T(Fuu(x),F\,,(»)) for every u,v,w € X
and every x > 0,y > 0.

Definition 1.11. Let (X, F, T) be a Menger probabilistic metric
space.

o A sequence {x,},., in X is said to be convergent to x in X if
for every ¢ >0 and A > 0 there exists N € N such that
F, (¢) > 1 — 1 whenever n > N.

e A sequence {x,},. in X is a Cauchy sequence if and only if
for every ¢ > 0 and A € (0, 1) there exists ny(e, 1) € N such
that F,, . (e) >1— 4 for every n > ng(e, A) and every
peN.

e If a Menger probabilistic metric space (X, F,T) is such
that every Cauchy sequence {x,},. in X converges in X,
then (X, F,T) is a complete space.

Definition 1.12. The (¢, 1)— topology in Menger probabilistic

metric spaces (X, F,T) is introduced by the family of neigh-

bourhoods U = {U,(€, )}, jjcxxm, x01)» Where Uy(e, 1) =

{u; F,,(¢) >1—4}. If a t-norm 7 is such that sup T(x,x) =
x<1

1, then S is in the (e,4) topology a metrizable topological

space.

In [12] Ciri¢ et al. proved the following coupled coincidence
point theorems.

Theorem 1.13. Let (X, <) be a partially ordered set and
(X,F,T) be a complete Menger probabilistic metric space
under a t-norm T of H-type. Suppose A: X x X — X and
f:X— X are two mappings such that A has the f-mixed
monotone property on X and for some k € (0,1),

Foaey) Ay (k1) = min{ Fpo 1 (1), Fro (), Froacen (1),
(8)
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Fryan (0); Fpiaon (1), Froaea ()}

for every x,y € X for which f(x) < flu) and f(y) = f(v) and
every t > 0.
Suppose also that A(X x X) CAX),f(X) is closed and

(1) if {f(x,)} C X is a non-decreasing sequence with {f(x,)}
— f(x), then f(xy) < f(x) for all n,

(i) if {f(y,)} C X is a non-increasing sequence
with {f(5)} — 1) then f(3) < f(r,) for all n.

If there exists xo,y, € X such that

S(x0) < A(x0,30) and f{yy) = A(yo, Xo)-
Then there exist p,q € X such that

fp) = A(p,q) and flgq) = A(q,p),

that is, A and f have a coupled coincidence.

Theorem 1.14. Let (X,<) be a partially ordered set and
(X, F, T) be a complete Menger probabilistic metric space under
a t-norm T of H-type. Suppose A : X x X - X and f: X — X
are two continuous mappings such that A has the f~-mixed mono-
tone property on X and f commutes with A. Suppose that for
some k € (0,1), condition (8) hold for every x,y € X for which
S(x) < flu) and f(y) = f(v) and every t > 0.

If there exists xo,y, € X such that

flxo) < A(x0,3,) and f(vy) = A(vy, Xo)-
Then there exist p,q € X such that

fp) = A(p,q) and flg) = A(q,p),

that is, A and f have a coupled coincidence.

Now, we prove our main results.

2. Main results

Definition 2.1. Let (X,<) be a partially ordered set and
F: XxX—-X,f:X— X and g: X— X. We say F has the
mixed fg-monotone property if F is monotone f~non-decreas-
ing in its first argument and is monotone f-non-increasing in
second argument, and also F is monotone g-non-decreasing in
its first argument and is monotone g-non-increasing in second
argument, that is, for any x,y € X,

)C],XQEX, f(x|)<Af(x2) 1mplles F(x|7y)<F(x27y)7 (9)
y17y2€Xa f(yl) <f(y2) lmphes F(x7y1) >F(x7y2)v (10)
and

x,x €X, g(x)

g(xy) implies F(x;,y) < F(x2,¥),  (11)
yuy X, gly) = F

g(y,) implies F(x, y;) (,32)- (12)

NN

Definition 2.2. An element (x,y) € X x X is called a coupled
coincidence point of a mapping F: X x X — X and f, g: X
— X if

F(x,y) = f{x) = g(x), Fy,x) =) =¢g0). (13)

Note that if f'= g, then Definition 2.2 reduces to Definition
1.3.

Definition 2.3. Let X be a non-empty set, F: X x X — X and
f,g: X — X. We say F commute with fand g if

Je(F(x,y)) = F(fg(x),/g(»))
for all x,y € X.

Theorem 2.4. Let (X, <) be a partially ordered set and suppose
there is a metric d on X such that (X,d) is a complete metric
space. Assume there is a function ¢ : [0,400) —[0,+00) with
(1) <t and lim,_,. @(r) < t for each t > 0 and also suppose
F:XxX— X and f,g: X — X are such that fg = gf, F has
the mixed fg-monotone property and

), ) < o (MEDLD LU

for all x,y,u,v € X for which g(x) < g(u) and f(y) = f(v), and

o) Flas)) < 0 (d(f(X)J(u)) : d<g<y>,g<v)>)

(15)
Sforall x,y,u,v € X for which f(x) < f(u) and g(y) = g(v). Sup-
pose F(X x X) Cf(X)Ng(X),g,f are continuous and increasing

Sfunctions and gf commutes with F and also suppose either

(a) F is continuous or
(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x , then

X, < x for all n, (16)
(ii) if a non-increasing sequence {y,} — y ,then
y <y, for all n. (17)

If there exists xy,y, € X such that
g(xo) < Flxo,9) = f(x0) and f{yg) = F(yy, x0) = &(vg), (18)
then there exist fx,gy € X such that
12 (x) = gf(x) = F(f(x),g()) and &*(y) = fg(»)
= Fg(»),/(x)), (19)

that is, F and f, g have a coupled coincidence.

Proof. Let xg,y, € X be such that g(xy) < F(xq,y,) = f(x0)
and f(y,) = F(y,,X0) = g(yp). Since F(X x X) Cf(X) Ng(X),
we can choose xi,y; € X such that g(x,) = F(xo,¥,) = /(x0)

and f(y,) = F(y, %) = g(y). Again from F(X x X) Cf(X)
g(X) we can choose x3,y, € X such that g(x;) = F(x,y,) =
f(x1) and f(»,) = F(y,,x1) = g(»,). Continuing this process
we can construct sequences {x,} and {y,} in X such that

()

g(xn+1) :f(xn) = F(xmyn) and.f(ynJrl) = g(yn)
= F(y,,x,) for all n > 0. (20)

We shall show that

g(xn) < g(xlz+1)7 .f(xn) gf‘(xwrl) for all n > 07 (21)
and
f(yn) = f(yn+l)7 g(yn) = g(yVHrl) for all n = 0. (22)
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We shall use the mathematical induction. Let n = 0. Since

g(xo) < F(x0,39) and f(yy) = F(yg,X0), and as g(x) =
F(x07y()) andf(yl) = F(y():xO)’ we have

g(xo) < g(x1) (23)
and
So) = fn)- (24)

Based on (10), (11), (23) and (24) we have

Sxo) = Flxo,9) < F(x1,3) and flx1) = F(x1,31) = F(x1, ),
(25)

which implies that
Sxo) < fTx1). (26)
Analogous, using (9), (12), (23) and (24) we have
go) = Flyg, x0) = Flyy,x0) and g(y,) = F(y;, x1)

< F(yy, xo). (27)
ie.
go) = g0n)- (28)

Thus (21) and (22) hold for n = 0.

Suppose now that (21) and (22) hold for some fixed n > 0.
Then, since f(xy—1) = g(xn) < g(xp1) =f(xa) and g(y,) =
S0ui) <A0) =g, 1), and as F has the mixed g.f
monotone property, from (20) and (5),

f(xn) = g(anrl) = F(xmyn) < F(anrl:yn) andf(xn+l)
= g(x"+2) = F(xn+17y)1+1) = F(xn+17yn)’ (29)
and from (20), (21) and (22)

80 =fWni1) = Fy Xn) = F(y,, Xasr), and g(y,,1)
=SWni2) = FGpirs Xns1) < FW Xni1)- (30)

Now from (29) and (30) we get

g(xu1) < g(xuiz),  flxa) < f(Xus1)

and

SWni) 2 fWaia)s 800) 2 20

Thus by the mathematical induction we conclude that (21) and
(22) hold for all n > 0.
Denote

0, = d(g(xn), g(xns1)) + d(f(0,) s/ Wus1))
= d(f(x’lfl)vf(x")) + d(g(yn—l)vg(yn))'
We show that

S5, < 2¢<5"—;>. (31)

Since g(x,-1) < g(x,) and f(y,_,) = f(»,), from (14) and (20)
we have
A ton) St K
( (Xn 1) ( ) +d(f(y,, 1 571 1
A e R P R
Similarly, from (15)

and (20), as fy,) <f(y,.,) and
g(xn) 2 g(-xn—l)a

A1) S0)) = AW, %), F 315 %0-1))

<o (d(f(yn—] )./ ,)) J;d(g(xnfl)&(xn)))

= w(é";), (33)

Adding (32) and (33) we obtain (31).

From (31), since ¢(f) <t for >0, it follows that a
sequence {J,} is monotone decreasing. Therefore, there is
some § > 0 such that

limé, =0 +.

We show that 6 = 0. Suppose, to the contrary, that 6 > 0.
Then, taking the limit as d, — 0+ of the both sides of (31)
and have in mind that we assume that lim,_.,. ¢(r) < ¢ for all
t > 0, we have

é=limJ, < 21imgo(6'gl> = 2(3 limé q)((s"z 1) < 23 d,
n—oo n—oo n—1—0+

a contradiction. Thus é = 0, that is,

tim [d(g(%,),¢(s1)) + d(0), S0, 0))]
= lim [d(f13%,1),f05)) + (3, 1), 80))] = 0. (34)

Now, we prove that {g(x,)} = {/(x,1)} and {/(y,)} =
{g(y,_1)} are Cauchy sequences. Suppose, to the contrary, that
at least one of {g(x,)} or {f(»,)} is not a Cauchy sequence.
Then there exist an ¢ > 0 and two subsequences of integers

{1k}, {m(k)}, m(k) > I(k) = k with

rie = d(g(x)) €(Xmy)) + d(f(vig). SVny)) = € for k
e{1,2,...}. (35)

We may also assume

1)) + d i) S P

by choosing m(k) to be the smallest number exceeding /(k) for
which (35) holds. From (35) and (36) and by the triangle
inequality,
€< g < d(g(-x/ k)) g(-xm k)—l)) + d( (-xm k)— ) (-xm ))
+d( i) S Viny-1)) + AF Va1 5 S V)
= d(g(xiw)); 8(xm-1)) + AU Wie)) S Wiy 1)) + i1
<€+ 5771(/{)—1 .

d(g(xuk) ) &(Xmr)- 1)) <€ (36)

Taking the limit as kK — oo we get, by (34),
Jimry =€+ (37)
By the triangle inequality
re = d(g(xiw), &(Xmw)) + AW S Wmw)))
d(g(xiw)), 8(Xik+1)) + d(g(Xrr+1), 8 (Xmiio+1))
+ d(g(Xm)+1), &(Xmw) ) + A i) S Wiy 1))
+d(f Wiy s1)s S Wy +1)) + ATy 1) S V)
= [d(g(xuw)), g(xi1)) + A Wiy ) S Wiy 1))
+ (g (X)) 8 Xmwy 1)) + A Wmit)) S Wimiry+1))]
+ [d(g(xXiwy+1)s €(Xmery11)) + A Wiy 1) S Vg1

N
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Hence
e < Oy + Oty + d(g(Xuwy+1), 8 Xty +1))
+ d(/(yl(k)+l)7f(ym(k)+l ))- (38)
Since from (21) and (22) we have g(xx)
S) Z fWmg)> from (14) and (20)
d(g(Xiw)+1), &(Xmry+1)) = dF(Xiwys Vi) s FXmih)s Yy )
< q)<d(g(xl(k))>g(xm ) + d(f(yl(k))vf(ym(k)))> _ (p(ﬁ>,

< g(Xmy) and

2 2
(39)

Also from (15) and (20), as f(ym(,()) <f(yl(k)) and g(x,p) =

g(xz(k)),

d(f(ym(k)+l) f(J’z(/c 1)) = d(F(ym(k X)) F(J’/ 1))

<d(g(x/<k) :&(Xmw)) + AT i) S Wiy ))) _ (r_k>
2 bl

<@ >

Inserting (38) and (39) in (40) we obtain
Iy
i < Oyky + Oy + 20 (%)
Letting £ — oo and using (37) and (40) we get

c<tmo(3) 2pmo(3) <25 - )

rp—et+

a contradiction. Thus, our supposition was wrong. Therefore,

we proved that {g(x,)} = {f(x,-1)} and {f(y,)} = {g(r, 1)}
are Cauchy sequences.

Since X complete, there exist x,y € X such that

limg(x,) = limf(x, 1) = x and limf(y,) = limg(y, ) = .
| @)
From (42) and continuity of g, f,
lim(g(x,)) = limf>(x,) = f(x) and limg(f(y,))
= limg*(y,) = g(»). (43)

From (20) and commutativity of F and gf,

S8(g(xni1)) = f8(F(xn, y,)) = F(fg(x2),

18(,) = F(fg(xn), &), (44)
(&(xus1)) = 18(fxus1)) = f8(F(Xns1, ¥11)) = F(f8(Xni1),

180ui)) (45)

= F(fg(xu11), 8 Wi1))-

We now show that f2(x) = fg(x) = F(fx, gy). Suppose that the

assumption (a) holds. Taking the limit as n — oo in (44) and
using the continuity of F we get

fe(x) = lim/e(g(x,.1)) = lim FUfg(x,), /00,)
= F(limfg(x,), limgf(y,)) = F(f,gv).

Similarly, taking the limit as » — oo in (45) and using the con-
tinuity of F we get

fz(x) = F(fx7gy).

Also, from (20) and commutativity of F and gf, we have

g unr)) = & FW,, X)) = Flgf(,), &f(xa))
= F(gf(y,)./g(xn))- (46)

and

& (1) = &f(8(01)) = &NF W1, %n1))

F(gf(yn+l)vgf(xl1+l)) (47)

= F(gf(ynﬂ )5 J8(Xni1))-

Analogous, if condition (a) hold, from (46) and (47) we have
that

g/y) = &*(y) = Flgy./x).
Suppose now that (b) holds. Since f'and g are increasing

mappings we have f2(x, ;) =fg(x,) <f(x) and g*(y, ;) =
gf(y,) = g(y) for all n.

Then by the triangle inequality, (15), (43) and (44) we get

d(fg(x), F(fx, gy)) < d(fg(x),/g(8(xns+1))) + d(fg(g(xns1)),
F(fx>gy)) d(fg(x)vfg(g(’cnﬂ)) +d(F(fg Xn fg(yn))
F(fx,gy)) < d(fg(x)./fg(g(xus1)))
(

( (f2(g(xn)),/8(x)) + d(flgf (y,,))7fg(y)))‘
2

So letting n— oo yields 0. Hence

Jfe(x) = F(fx,gy).
Also,

d(fg(x), F(fx,gv)) <

d(f*(x), F(fx,gy)) < d(f*(x),/7(g(xn))) + d(f*(g(xn)),
F(fx, gy)=d(f*(x), /> (g(x4)))+d(f2(fx,), F(fx,gy)) <
12(g(xn))) + d(fg(F(xa, 3,)), F(fx, gv)) < d(f*(x),

(d(fz(g(xn)),fz(X))+d(g2(fyn),gz(y))) neN
2 ’ o

d(f*(x),

£ (g(x)+o

Letting n — oo we have d(f*(x), F(fx,gy)) <
F(fx, gv).

Similarly one can show that g?(y) = gf(y) = F(gy,fx). Thus
we proved that Fand g, f'have a coupled coincidence point. [

0. Hence f?(x) =

Example 2.5. Let (X, d) be a metric space where X = [1, +00).
We endow X with the natural ordering of real numbers. Let
f,g: X — X be defined as f(x) = x?,g(x) = /x for all x € X.
Let F: X X X — X be defined as

ifx<y

1,

Flx,y) = {wi—@ if x> y.
Let ¢ : [0,+00) — [0, +00) be defined as ¢(z) = 5. Obviously,
the mapping F has the mixed fg—monotone property, f and
g are commuting mappings and F commute with f and g.
Now we will show that the mappings F,f and g satisfy the
inequality (14). Let x,y,u,v € X be such that g(x) < g(u)
and f(y) = f(v). We have considered the following cases.

Case l: x > y.Sincex<uwehaveu =>x >y >,
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d(F(x,y),F(u,v))
< \x/}*\/ﬁlﬂﬁfﬁl . \ﬁ*ﬁ\+}ﬁ*ﬁ||\/ﬁ+ﬁ\ly+ﬂ
= 4 = 4

_ o (ME(0).800) +d (1) 1)
o TR

Case 2. x < y,u = vand x > v,

), Pl ) = |1 - Y= W
< Wi = VA + VE =V
= 4
e R VARl
S 4
< \\/ﬁ—\/?cl4+ > =
d(g(x),8(u)) + d(f(y).f(v))
oM L),
Case 3: x < y,u = vand x <,
d(F(x,y),F(u,v)):‘l— A4 :If;ﬁl
W= Vit - VA
= 4
W= A+ Ivr = Wl
= 4
o <d<g<x>, ) + d(f(y),ﬂv))) |

Case 4: x < y,u <,

d(F(X,y),F(% V)) =0<9¢o

(d(g(X)»g(u)) + d(f(y),f(V)))
5 .

Analogy shows that inequality (15) holds for every x,y,u,
v € X for which f{x) < f(u) and g(y) > g(v). Then, there exists
a couple coincidence point (1, 1) for mappings F,f and g.

Now, we prove our main theorem in probabilistic metric
spaces.

Theorem 2.6. Let (X, <) be a partially ordered set and (X, F,T)
be a complete Menger probabilistic metric space, t-norm T is
continuous. Suppose A: X x X — X and f: X — X are two
mappings such that A has the f-mixed monotone property on X
and for some k € (0,1),

Faeyyatun (kt) Z min{Fpo 10 (1), Fro o (0); Fpoace (1),

(48)
Fruy,an (0); Froyao.0(0), Froyapa (1)}
Sfor every x,y € X for which f(x) <f(y) and f(y) = flv) and

every t > 0.
Suppose also that A(X x X) Cf(X), and (a) or (b) satisfied

(@) f(X) is closed and

(i) if a non-decreasing sequence {f(x,)} — f(x) ,then

S(xy) < f(x) for all n, (49)
(ii) if a non-increasing sequence {f(y,)} — f(y) ,then

JW) <AWw,) for all n. (50)

(b) A and f are continuous mappings and f commutes with A.

Let pe (k1) such that t-norm T satisfies the following
condition

1 1
JimT;Z, min {F/rm Alvo.10) ( ﬂ) Frtvg) %) (;)} =1L

If there exists xo,y, € X such that

f(x0) < A(x0,30) and flyy) = A(¥o, %),
then there exist p,q € X such that

fp) = A(p,q) and flg) = A(q,p),

that is, A and f have a coupled coincidence.

Proof. Following the proof of Theorem 7. and Theorem 8. in[12]
we can construct two sequences {x,} and {y,},n € N such that

f(anrl)
and

Sxo) < flx1) <
So) = fn) = ...

Also, following the proof in [12] we have

= A(xmyn)7 f(y:1+l) = A(ymxn) (51)

.. gf(x,ﬁ,l) <

2 fWat) =

min { Frre, ) 00) (0 Bty )0 (0 }

) &

for all > 0 and n € N. Letting n — oo in (52) we obtain

> min {Ff(xoL

limF/(x”%/(xM)(t) = 1, > 07 (53)
and
lim Fyy,) iy, () = 1, 1> 0. (54)

It remains to be proved that the sequence {f{x,)}, and
{f(¥,)},en, are Cauchy sequences in X.

Let ¢ = £ Since 0 < ¢ < 1 the series Y.°,a' is convergent
and there exists ny € N such that ) o' < 1. Hence for every
n > ny and every m € N

nt+m—1

t>tZJ >IZ

i=ng i=n

which implies that

n+m—1
Fpttumfen (1) 2 Fpe i) (’ Z U’)

> T(T(...T(Fy
W—/
m—times

Fityon ) o) (10" 2) o Fgy ) i) (£67))

le 1 to.n}mfl
T(T(... T(min < Fyy,) /tn)(kw 1) F/I.“o)J()’H(W)}’

m—times

Glm— 2 to.erm—Z
min {F/(\o )ofx1) (kzz+nz 2 > F fo)flv1) <kn+m—z ) }’
) 6" 16"
“'mm{F/(\‘n)J(n (k) Frony s (k_>}
t t
D ()
(N’) f0)Sr1) T
. ' !
TZ,min § Fiig) ) @ ) oo\ ) g

EARY S (22t

)

A\

\%

n+m—1 :
T2 min {Frm./m)

A\
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It is obvious that lim, . T, min{Fy) v (#),F/(yn)ﬂyl) (i)}
=1 implies lim, .o T, min{F) ) (57 fft;n)ﬂy»(ﬁ)l‘ =1
for every ¢ > 0, and now for every ¢ > 0 and every A € (0, 1)
there exists n;(¢, 4) such that Fy., ). (f) > 1 — A for every
n = nl(t, 1) and every m € N. This means that the sequence
{f(x4)},en 18 @ Cauchy, and since the space is complete there
exists p € X such that lim,_..f(x,) = f(p).

An the same way we can prove that the sequence f{y,,),cy 1S
a Cauchy sequence, and hence there exists ¢ € X such that
lim,,—.f(y,) = f(q). The rest of the proof is as in [12]. O

Remark 2. Let (X, <) be a partially ordered set and (X, F, T)
be a complete Menger probabilistic metric space, t-norm 7 is
continuous. Let 4: X x X — X and f: X — X. Suppose that
all conditions of Theorem 2.6 are satisfied. If t-norm 7 is of
H-type, then the conclusions of Theorem 2.6 still holds. By
Proposition 1.9, all the conditions of the Theorem 2.6 are sat-
isfied. This is in fact result in [12].

Corollary 1. Let (X,<) be a partially ordered set and
(X, F,T?) for some 7. >0 be a complete Menger probabilistic
metric space. Suppose that all conditions of Theorem 2.6 are sat-
isfied. If there exists xo,y, € X such that

Sx0) < A(x0, 1) and f(yy) = A(yg, %o)-
and p € (k, 1) such that

. . 1 N
}LI?C E (1 — min {Ff(«\‘o)ﬂ(xw}’n) (E) ) Ff()’n)«/‘(}’o‘xu) <E) }) <0
i=n

then the conclusions of Theorem 2.6 still holds.

Proof. From equivalence (6) we have

> (1 —min {Ff(xo)~A(xo~."o) (*) s F030).4(v.%0) (*) }) <o
i=1 H n

1 1
. D o0 .
= lim (77),_, min {Ff(xo)-fi(xod’o) (E) 1 Frts).atr0.50) (E) } =L O

Corollary 2. Let (X,<) be a partially ordered set and
(X, F, Ti*) for some . > 0 be a complete Menger probabilistic
metric space. Suppose that all conditions of Theorem 2.6 are sat-
isfied. If there exists xo,y, € X such that

f(X()) < A(X07y0) andf(y()) = A(y()7x0)'
and p € (k, 1) such that

L& . 1 1 g
,}ljglcz <1 — min {Fr(w,A(xn,yo) <E) » Ffiyg) (v x0) <ﬁ) }> <0

then the conclusions of Theorem 2.6 still holds.

Proof. From equivalence (6) we have

; (1 —min {Fr(xo).A(xo.yo) (E) s F30).A(.%0) (E) }) <oo

. o0 . 1 1
= lim (7).Z, min {F/(-*n)e/‘i(-m«}‘o) (E)  Efs0).t.30) (E) } =10

n—00

Corollary 3. Let (X,<) be a partially ordered set and
(X, F, TfW) for some A > —1 be a complete Menger probabilis-
tic metric space. Suppose that all conditions of Theorem 2.6 are
satisfied. If there exists xo,y, € X such that

J(x0) < A(x0,3) and f(y) = A(vo, Xo)-
and p € (k, 1) such that

e . 1 1
lim <1 — min {F/(m,A(xo,yo) <;> +Ffts0).at0.30) (ﬁ) }> <00

then the conclusions of Theorem 2.6 still holds.

Proof. From equivalence (7) we have

o0 , 1 1
> (1 —min {F/(Xu)~A(XU~.V0) (T) 7). 400.%0) (*) }) <00
= p I

. o0 . 1 1
= lim (7;"),, min {F/(Xo)vA(X0=)'o) (;) s Erg) Ao (;) } =10

n—00

3. Conclusion

In this paper, we generalized two coupled coincidence point
theorems in partially ordered metric spaces and Menger prob-
abilistic metric spaces. An illustrative example in partially
ordered metric spaces is given.
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