Journal of the Egyptian Mathematical Society (2015) 23, 334-342

(= - )
RS

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems

ORIGINAL ARTICLE

Unified fixed point theorems for mappings in

@ CrossMark

fuzzy metric spaces via implicit relations

Sunny Chauhan **, Mohammad Imdad ", Wutiphol Sintunavarat ,

Yonghong Shen *

& Near Nehru Training Centre, H. No. 274, Nai Basti B-14, Bijnor 246 701, Uttar Pradesh, India
® Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India
¢ Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University Rangsit Center,

Pathumthani 12121, Thailand

4 School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, PR China

Received 28 March 2014; accepted 21 May 2014
Available online 27 June 2014

KEYWORDS

Fuzzy metric space;
Compatible mappings;
Weakly compatible map-
pings;

Common limit range prop-
erty; et al. (2011).
Fixed point

Abstract In this paper, we prove some fixed point theorems for weakly compatible mappings in
fuzzy metric spaces employing common limit range property with implicit relations. We also furnish
some illustrative examples to support our main results. As an application to our main result, we
derive a fixed point theorem for four finite families of self-mappings which can be utilized to derive
common fixed point theorems involving any finite number of mappings. Our results improve and
extend a host of previously known results including the ones contained in the paper of Gopal
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1. Introduction

In 1965, Zadeh [1] introduced the well-known concept of a
fuzzy set in his seminal paper. In the last two decades there
has been a tremendous development and growth in fuzzy
mathematics. In 1975, Kramosil and Michalek [2] introduced
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the concept of fuzzy metric space, which opened an avenue
for further development of analysis in such spaces. Further,
George and Veeramani [3] modified the concept of fuzzy met-
ric space introduced by Kramosil and Michalek [2] with a view
to obtain a Hausdoroff topology on it. Fuzzy set theory has
applications in applied sciences such as neural network theory,
stability theory, mathematical programming, modeling theory,
engineering sciences, medical sciences (medical genetics,
nervous system), image processing, control theory, and
communication.

Mishra et al. [4] extended the notion of compatible
mappings to fuzzy metric spaces and proved common fixed
point theorems in presence the of continuity of at least one
of the mappings, completeness of the underlying space and
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containment of the ranges among involved mappings. Further,
Singh and Jain [5] weakened the notion of compatibility by
using the notion of weakly compatible mappings in fuzzy met-
ric spaces and showed that every pair of compatible mappings
is weakly compatible but reverse is not true. Many mathema-
ticians used different conditions on self-mappings and proved
several fixed point theorems for contractions in fuzzy metric
spaces (see [6-16]). However, the study of common fixed points
of non-compatible mappings is also of great interest due to
Pant [17]. In 2002, Aamri and Moutawakil [18] defined a prop-
erty (E.A) for self-mappings which contained the class of non-
compatible mappings in metric spaces. In a paper of Ali and
Imdad [19], it was pointed out that property (E.A) allows
replacing the completeness requirement of the space with a
more natural condition of closedness of the range. Afterward,
Liu et al. [20] defined a new property which contains the prop-
erty (E.A) and proved some common fixed point theorems
under hybrid contractive conditions. It was observed that the
notion of common property (E.A) relatively relaxes the
required containment of the range of one mapping into the
range of other which is utilized to construct the sequence of
joint iterates. Subsequently, there are a number of results
proved for contraction mappings satisfying property (E.A)
and common property (E.A) in fuzzy metric spaces (see [21—
28]). In 2011, Sintunavarat and Kumam [29] coined the idea
of “common limit range property” (also see [30-35]) which
relaxes the condition of closedness of the underlying subspace.
Recently, Imdad et al. [36] extended the notion of common
limit range property to two pairs of self-mappings which
relaxes the requirement on closedness of the subspaces. Several
common fixed point theorems have been proved by many
researcher in framework of fuzzy metric spaces via implicit
relations (see [5,21,37]).

In fixed point theory, implicit relations are utilized to cover
several contraction conditions in one go rather than proving a
separate theorem for each contraction condition. In 2005,
Singh and Jain [5] proved common fixed point theorems for
semi-compatible mappings in fuzzy metric spaces satisfying
an implicit function. Recently, Gopal et al. [24] defined two
independent classes of implicit functions and obtained some
fixed point results for two pairs of weakly compatible map-
pings satisfying common property (E.A).

In this paper, utilizing the implicit functions of Gopal et al.
[24], we prove fixed point theorems for two pairs of weakly
compatible mappings employing common limit range prop-
erty. In process, many known results (especially the ones con-
tained in Gopal et al. [24]) are enriched and improved. Some
related results are also derived besides furnishing illustrative
examples.

2. Preliminaries

Definition 2.1 [38]. A binary operation *: [0,1] x [0,1] —
[0,1] is a continuous t-norm if it satisfies the following
conditions:

(1) * is associative and commutative,

(2) * is continuous,

(3) ax 1 = a for every a € [0, 1],

4) axb<cxdifa<cand b<dforallab,cdec]|01l].

Three typical examples of continuous t-norms are minimum
t-norm, that is, a*b = min{a, b}, product t-norm, that is,
axb=ab and Lukasievicz t-norm, that is, a*b = max
{a+b—-1,0}.

Definition 2.2 [39]. Let X be any set. A fuzzy set in X is a
function with domain X and values in [0, 1].

Definition 2.3 [3]. A triplet (X, M,x) is a fuzzy metric space
whenever X is an arbitrary set, * is a continuous t-norm, and
M is a fuzzy set on X x X x (0,400) satisfying the following
conditions: for every x,y,z € X and s,¢> 0

(1) M(x,y,t) >0,
(2) M(x,y,t) =1 if and only if x = y,
1) =M(y,x,1),

(

(
(3) M(x,y,
(4) M(x,z,t +5) = M(x,y, 1) * M(y,z,s),
(5) M(x,y,-) : (0,400) — (0,1] is continuous.

Note that M(x,y, ) can be realized as the measure of near-
ness between x and y with respect to . It is known that
M(x,y,-) is non-decreasing for all x,y € X. Let (X, M, «) be
a fuzzy metric space. For ¢ > 0, the open ball B(x,r,t) with
center x€ X and radius 0<r<1 is defined by
B(x,r,t) ={y € X: M(x,y,t) >1—r}. Now, the collection
{B(x,r,t) : x € X,0 <r<1,t> 0} is a neighborhood system
for a topology t on X induced by the fuzzy metric M. This
topology is Hausdorff and first countable.

Definition 2.4 [3]. A sequence {x,} in X converges to x if and
only if for each ¢ > 0 and each ¢ > 0, there exists ny € N such
that M(x,,x,t) > 1 — e for all n > ny.

In the following example, we know that every metric
induces a fuzzy metric:

Example 2.1 [3]. Let (X,d) be a metric space. We define
axb=ab for all a,b€0,1] and let M, be a fuzzy set on
X? x (0, +00) defined as follows:
t

My(x,y, 1) = dxy)

Then (X, M, ) is a fuzzy metric space and the fuzzy metric
M induced by the metric d is often referred to as the standard
fuzzy metric. The fuzzy metric space (X, My, *) is complete if
and only if the metric space (X,d) is complete.

Definition 2.5 [4]. A pair (4, S) of self-mappings of a fuzzy
metric space (X, M, «) is said to be compatible if and only if
M(ASx,,SAx,,t) — 1 for all >0, whenever {x,} is a
sequence in X such that Ax,,Sx, — z for some z € X as
n— 0o.

Definition 2.6 [40]. A pair (4,S) of self-mappings of a non-
empty set X is said to be weakly compatible (or coincidentally
commuting) if they commute at their coincidence points, that
is, if Az = Sz some z € X, then ASz = SAz.

Remark 2.1 [40]. Two compatible self-mappings are weakly
compatible, but the converse is not true. Therefore the concept
of weak compatibility is more general than that of
compatibility.
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Definition 2.7 [22]. A pair (4, S) of self-mappings of a fuzzy
metric space (X, M, *) is said to satisfy the property (E.A), if
there exists a sequence {x,} in X for some z € X such that

limAx, = lim Sx,, = z,
n—oo

n—oo

for some z € X.

Definition 2.8 [22]. A pair (4, S) of self-mappings of a fuzzy
metric space (X, M, %) is said to be non-compatible if and only
if there exists at least one sequence {x,} in X such that
lim,,_,, Ax, = lim,_,. Sx, = z for some z € X, but for some
t > 0,lim, ., M(ASx,,SAx,,t) is either less than 1 or non-
existent.

Definition 2.9 [22]. Two pairs (4, S) and (B, T) of self-map-
pings of a fuzzy metric space (X, M, x) are said to satisfy the
common property (E.A), if there exist two sequences
{xx},{»,} in X such that

limAx, = limSx, = limBy, = lim Ty, = z,

n—oo n—o0

for some z € X.

Definition 2.10 [29]. A pair (4, S) of self-mappings of a fuzzy
metric space (X, M, x) is said to satisfy the common limit range
property with respect to mapping S (briefly, (CLRs) property),
if there exists a sequence {x,} in X such that

lim Ax, = lim Sx, = z,
n—oo

n—oo

where z € S(X).

Definition 2.11 [30]. Two pairs (4, S) and (B, T) of self-map-
pings of a fuzzy metric space (X, M, x) are said to satisfy the
common limit range property with respect to mappings S
and T (briefly, (CLRsr) property), if there exist two sequences
{xn},{»,} in X such that

lim Ax, = lim Sx, = lim By, = lim Ty, = z,

n—oo n—oo

where z € S(X) N T(X).

Definition 2.12 [41]. The pair (4,42 ... 4, 51S2...S,) of two
families of self-mappings {4;}}", and {S;};_, are said to be

i=1
pairwise commuting if
(1) A,Aj :AJA; for all l,j S {1727 .. .,m},

(2) SkS[ = S]Sk for all k,l S {1,2,, .. 7}1},
(3) AiSy = Sid; foralli € {1,2,... ,m}and k € {1,2,...,n}.

Lemma 2.1 [4]. Let (X,M,x) be a fuzzy metric space with
txt =t for all t €[0,1]. If there exists a constant k € (0,1)
such that

M(x,y,kt) = M(x,y,1),

forall x,y € X, then x = y.

3. Implicit relations

In 2005, Singh and Jain [5] defined the following class of a
implicit function.

Let @ be the set of all real continuous functions
¢ : [0, 1]4 — R, non-decreasing in first argument and satisfy:

(¢,) for u,v = 0, ¢(u,v,u,v) = 0, or ¢p(u,v,v,u) > 0 implies
that u > v,
(¢2) ¢(u,u,1,1) = 0 implies that u > 1.

Example 3.1. Define ¢ : [0,1]* — R as ¢(11, 12, 13, 14) = 151, —
13t + S5t3 — Tt4. Then, ¢ € &.

Since then, Imdad and Ali [37] introduced a new class of
implicit function.

Let ¥ denotes the family of all continuous functions
¥ : [0,1]* — R satisfying the following conditions:

(y,) for every u>0,0>0 with y(u,v,u,v) >0 or
W(u,v,0,u) = 0, we have u > v,
(Y,) Y(u,u,1,1) <0, foreach 0 < u < 1.

Example 3.2 [37]. Define y: [0,1]* = R as y(t1, 0,13, 14) =
11 — o(min{ts, 13,14 }), where ¢ : [0, 1] — [0, 1] is a continuous
function such that ¢(s) > s for 0 < s < 1. Then, € V.

Example 3.3 [37]. Define ¢ : [0,1]' = R as y(t1, 1,13, 14) =
t; —kmin{t, 15,14}, where k > 1. Then, y € V.

Example 3.4 [37]. Define ¢ : [0,1]' = R as y(t1, 02,13, 14) =
t; — kty — min{ts, t4}, where k > 0. Then, ¥ € V.

Example 3.5 [37]. Define ¢ : [0,1]' = R as y(t1, 02,13, 14) =
t| — aty — bty — cty, where a > 1 and b,¢ = 0, (b, c # 1). Then,
yeVl.

Example 3.6 [37]. Define ¢ : [0,1]' = R as y(t), 0,13, 14) =
ty —aty — b(t; + t4), where a > 1 and 0 < b < 1. Then, ¢ € V.

Example 3.7 [37]. Define ¢ : 0,1 = R as (1,0, 6,4) =
£ — kiy 314, where k > 1. Then, ¢ € P.

In [37], it is also showed that the above mentioned classes of
functions ¢ and y are independent.

4. Main results

We begin with the following observation.

Lemma 4.1. Let A, B, S and T be four self~-mappings of a fuzzy
metric space (X, M, x). Suppose that

(1) The pair (A4,S) satisfies the (CLRg) property (or (B,T)
satisfies the (CLRy) property),

(2) A(X) C T(X) (or B(X) C S(X)),

(3) T(X) (or S(X)) is a closed subset of X,
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(4) B(y,) converges for every sequence {y,} in X whenever
T(y,) converges (or A(x,) converges for every sequence
{x,} in X whenever S(x,) converges),

(5) there exists y € W such that

lp(M(Ax7 By? Z)? M(Sx7 Ty? [)7 M(Ax7 Sx? t)? M(B.y7 T.y7 [)) > 0
4.1)
for all x,y € X and t > 0.

Then the pairs (A, S) and (B, T) enjoy the (CLRst) property.

Proof. Suppose that the pair (4, S) enjoys the (CLRs) prop-
erty, there exists a sequence {x,} in X such that

lim Ax, = lim Sx,, = z,

where z € S(X). Since A(X) C T(X), for each sequence {x,}
there exists a sequence {y,} in X such that Ax, = Ty,. There-
fore, due to the closedness of T(X),

lim 7y, = limAx, = z,

where z € S(X) N T(X). Thus, we have Ax, — z, Sx, — z and
Ty, — z as n — oo. By (4), the sequence {By,} converges
and in all we need to show that By, — z as n — oco. On the
contrary, By, — I( # z) as n — oo. On using inequality (4.1)
with x = x,,y = y,, we have (for ¢ > 0)

IP(M(AX,” Bym [)3 M(Sxfl’ Tyn’ t)7 M(Axlh Sxﬂ7 [)7
M(Bym Tym [)) > 0

Taking the limit as n — oo, we have

Y(M(z,1,0), M(z,z2,1), M(z,z,1), M(l,z,1)) > 0,
or, equivalently,
lp(M(Z7 l’ [)7 17 17M(I?Z7 t)) 2 07

yielding thereby, M(z,/,t) > 1, a contradiction (due to (y,)).
Then we get, z = I. Therefore, the pairs (4, S) and (B, T) enjoy
the (CLRsr) property.

In case of (B, T) satisfies the (CLRr) property is similar to
previous case. Then, in order to avoid repetition, the details are
omitted. O

Remark 4.1. The converse of Lemma 4.1 is not true in general.
For a counter example, we refer to Example 4.1.

Theorem 4.1. Let A, B, S and T be four self-mappings of a fuzzy
metric space (X, M, x) satisfying inequality (4.1). Suppose that
the pairs (A,S) and (B, T) satisfy the (CLRsr) property, then
the pairs (A, S) and (B, T) have a coincidence point each. More-
over, A,B,S and T have a unique common fixed point provided
that both the pairs (A,S) and (B, T) are weakly compatible.

Proof. If the pairs (4, S) and (B, T) satisfy the (CLRgr) prop-
erty, then there exist two sequences {x,} and {y,} in X such
that

lim Ax, = lim Sx, = lim By, = lim Ty, =z,
n—-+00 n—+o0o n—+o00 n—-+00

where z € S(X) N T(X). Since z € S(X), there exists a point
u € X such that Su=z. We show that Au = Su. Suppose
not, then putting x =u and y =y, in (4.1), we get

W(M(Au, By, t), M(Su, Ty, t), M(Au, Su, t),

M(By,, Ty,,1)) = 0

which on making n — oo, reduces to
V(M(Au,z,t), M (z,z,t), M(Au, z,t), M(z,z,t)) = 0,
and so,

W(M(Au,z,1),1, M(Au,z,1),1) = 0.

In view of (y,), we get M(Au,z,t) > 1, a contradiction.
Hence, Au = z = Su which shows that u is a coincidence point
of the pair (4, S).

Also z € T(X), there exists a point v € X such that 7Tv = z.

Next, we show that Bv = Tv. If not, then using (4.1) with
x =u,y = v, we have (for ¢t > 0)

W(M(Au, By, t), M(Su, Tv,t), M(Au, Su,t), M(Bv, Tv,t)) > 0,

or, equivalently,

W(M(z,Bv,t),M(z,z,t), M(z,z,t), M(Bv,z,t)) = 0,
and so

Y(M(z,Bv,1),1,1, M(Bv,z,1)) = 0,

implying thereby, M(z, Bv,t) > 1, a contradiction (due to
(). Hence By = Tv which shows that v is a coincidence point
of the pair (B, T).

Since the pair (4, S) is weakly compatible and Au = Su,
hence Az = ASu = SAu = Sz. We assert that 4z = z. Suppose
that Az # z, then putting x =z and y = v in (4.1), we get (for
t>0)

W(M(Az, Bv,t), M(Sz, Tv,t), M(Az, Sz,t), M(Bv, Tv, 1)) = 0,

or, equivalently,
lp(M(AZ7 Z7 t)7 M(AZ7 Z7 t)7 17 1) > 07

which contradicts (y,). Then we have Az =z = Sz which
shows that z is a common fixed point of the pair (4, ).

Also the pair (B, T) is weakly compatible and Bv = Tv, then
Bz = BTv = TBv = Tz. Now we show that Bz = z. If not, then
using (4.1) with x = u,y = z, we have

V(M (Au, Bz, t), M(Su, Tz, t), M(Au, Su, t), M(Bz, Tz,t)) = 0,

and so
lp(M(Z7 BZ7 t)7 M(Z7 BZ7 [)7 17 1) > 07

a contradiction (due to (1,)). Hence, Bz = z = Tz which shows
that z is a common fixed point of the pair (B, T). Therefore, z is
a common fixed point of the mappings 4, B,S and T. The
uniqueness is a direct consequence of the inequality (4.1). This
concludes the proof. O

Remark 4.2. Theorem 4.1 improves the corresponding results
contained in Gopal et al. [24, Theorem 3.9]as closedness of
the underlying subspaces is not required.
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Theorem 4.2. Let A, B, S and T be four self-mappings of a fuzzy
metric space (X, M,x) satisfying all the hypotheses of Lemma
4.1. Then the pairs (A,S) and (B, T) have a coincidence point
each. Moreover, A, B, S and T have a unique common fixed point
provided that both the pairs (A,S) and (B,T) are weakly
compatible.

Proof. In view of Lemma 4.1, the pairs (4, S) and (B, T) enjoy
the (CLRgy) property, there exist two sequences {x,} and {y,}
in X such that

lim Ax, = lim Sx, = lim By, = hm Tyn =z,

n—oo n—oo n—o0

where z € S(X) N T(X). The rest of the proof runs on the lines
of the proof of Theorem 4.1. [J

Example 4.1. Let (X, M,*) be a fuzzy metric space, where
= [2,19], with continuous t-norm x* is defined by a* b = ab
for all a,b € [0, 1] and

‘ [x=yl
M(x,y, 1) = (m)

for all x,y € X. Define the self-mappings 4, B, S and T by

{ if x € {2} U (3,19);

3, ifxe(2,3]

2, ifxe{2}U(3,19];
2.5, ifxe(2,3].

2, if x=2;

10, ifxe (23]
T x € (3, 19].

40

2, if x =2;

13, ifxe(2,3);
T(x) = :

14, ifx=3;

=TT x e (3,19).

40 >
Also, define implicit function v : [0 l]4 — Rasy(t, i, t3,14) =

ti — @(min{zy, 13, t4}), where @(s) = /s.
It is noted that

A(X) ={2,3} ¢ [2,2.4]U{13,14} = T(X)
and
B(X)={2,2.5} ¢ [2,2.4] U {10} = S(X)

Theorem 4.2 is not applicable to this example as
and B(X) Z S(X).

Taking {x,} = {3 +%}7{yn} ={2} or {x:}={2},{»,} =
{3 +1}. 1t obtain that

A(X) € T(X)

lim Ax, = lim Sx, = limBy, = hm Tyn =2¢e€ SX)NT(X).

which shows that the pairs (4,S) and (B,7) enjoy the
(CLRgs7) property.
Next, we show that the following inequality holds:

M(Ax, By, 1) = v/min{M(Sx, Ty,1), M(Ax,Sx,1), M(By, Ty, 1)}

(4.2)

for all x,y € X and ¢ > 0. Define

(H: x=2 @): y=2
(In: xe(2,3) and (i) : ye(2,3)
(i : x=3 (i) : y=3
(Iv): xe (3,19 (iv): y€(3,19]

There are 16 possibilities which are (1,i), (1, i), (1, iii), (1,iv),
(IT,4), (I1, ii), (IT, iii), (11, iv), (I11, ), (11, ii), (111, iii), (I11, iv),
(IV, i), (IV, ii), (IV,iii) and (IV,iv).

Case (1) If (,i) holds, we have the inequality (4.2) holds.
Case (2) If (,ii) holds, we have

t 0.5
M(Ax,By,t) = (H——l)
t 55
2 -
t+1
11
e

M(Sx,Ty,t)

~

> \/min{M(Sx, Ty, 1), M(Ax,Sx,1), M(By, Ty,1)}.

Case (3) If (Z,iii) holds, we have

t 0.5
M(Ax,By,t)= (t+1)

i)
)

M(Sx,Ty,t)
> /min{M(Sx, Ty,1),

~

M(Ax,Sx,t), M(By,Ty,1)}.

Case (4) If (,iv) holds, we have the inequality (4.2) holds.
Case (5) If (11,i) holds, we have

t

t

H—l

F

Sx Ty
> \/mm{M (Sx,Ty,t),M

(Ax7 Sx? t)7M(By7 T.}” t)}'

Case (6) If (11,ii) holds, we have

¢ 0.5
M(Ax,By,t) = <t+71)

PR
> —
t+1

M(Sx,Ty,t)
> /min{M(Sx, Ty,1),

M(Ax,Sx,1), M(By, Ty, 1)}
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Case (7) If (11,iii) holds, we have
0.5

t
]V[(AX7 By,[) = ﬁ

t
> —
(7

M(Sx,Ty,1)

N——

2

N———

~

> /min{M(Sx, Ty,1), M(Ax, Sx,1), M(By, Ty,1)}.

Case (8) If (/1,iv) holds, we have

1
t
M(AX7 By7 l) = (H—l)

M(Ax,Sx,1)

> +/min{M(Sx, Ty, 1), M(Ax, Sx,1),

Case (9) This case corresponding to (/I/,i) is as to Case 5.
Case (10) This case corresponding to ({11, i) is as to Case 6.
Case (11) This case corresponding to (ZI1, iii) is as to Case 7.
Case (12) If (11,iv) holds, we have

0.5
M(Ax,By,t) = (ﬁ)

()
F

/M (Ax,Sx,1)

~

M(By,Ty,1)}.

> \/mm{M (Sx,Ty,t), M(Ax,Sx,t), M(By, Ty,t)}.

Case (13) If (IV,i) holds, we have the inequality (4.2) holds.
Case (14) If (1V,ii) holds, we have

t 0.5
M(Ax,By,1) = <t+71)
( t )5.25
>(—
t
t 10.5
t+1

M(By, Ty, 1)
> v/min{M(Sx, Ty,1),

—_—

M(Ax,Sx,1),
Case (15) If (1V,iii) holds, we have
0.5
M(Ax, By,f) = (;1)

t+

£\
2 N
t+1

=/ M(By,Ty,1)

> /min{M(Sx, Ty,t), M(Ax,Sx, ), M(By, Ty,1)}.

M(By,Ty,1)}.

Case (16) If (IV,iv) holds, we have the inequality (4.2)
holds.

Therefore, inequality (4.2) holds for all x,y € X.

Also, the pairs (4,S) and (B,T) commute at 2 which is
their common coincidence point. Thus all the conditions of
Theorem 4.1 are satisfied and 2 is the unique common fixed
point of the pairs (4, S) and (B, T) which also remains a point
of coincidence as well. Also, notice that some mappings in this
example are even discontinuous at their unique common fixed
point 2.

Example 4.2. In the setting of Example 4.1, replace the self-
mappings A4, B,S and T by the following besides retaining
the rest:

14, if x € (2,3);

= if x e (3,19).

{2 if x e {2} U (3,19];
3, ifxe (2,3
B {2 if x e {2} U(3,19];
-4, ifxe(2,3].
{; if x = 2;

2, if x=2;
T(x) =< 11+x, ifxe (23]
al if x € (3,19].

Also, define implicit function y : [0, 1]4 —Rasy(t, n,t3,14) =

t1 — @(min{t, 13, 44 }), where @(s) = /s.
It is noted that

A(X) = {2,3} C [2,10] U (13,14] = T(X)
and
B(X) = {2,4} C [2,10] U {14} = S(X).

Taking {X,,} = {3 +%}7 {yn} = {2} or {xn} = {2}7 {yn} =
{3+1}. It obtain that

lim By, —hmTy =2¢e T(X).

n—00

which shows that the pair (B, T) enjoy the (CLRy) property.

Similar to Example 4.1, one can easily verify the inequality
(4.1). Also, the pairs (4,S) and (B, T) commute at 2 which is
their common coincidence point. Thus all the conditions of
Theorem 4.2 are satisfied and 2 is the unique common fixed
point of the pairs (4, S) and (B, T) which also remains a point
of coincidence as well. Also, notice that some mappings in this
example are even discontinuous at their unique common fixed
point 2.

Corollary 4.1. The conclusions of Lemma 4.1, Theorems 4.1 and
4.2 remain true if inequality (4.1) is replaced by one of the fol-
lowing contraction conditions: For all x,y € X and t > 0

M(Ax, By, 1) > p(min{M(Sx, Ty, 1), M(Ax, Sx, 1),

M(By, Ty, 1)}), (4.3)

where ¢ :[0,1] — [0,1] is a continuous function such that
o(s) > s for 0 <s<1.
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M(Ax, By,1) > k(min{ M(Sx, Ty, 1), M(Ax, Sx,1), M(By, Ty, 1)}),

(4.4)
where k > 1.
M(Ax,By,t) = kM(Sx, Ty, 1)
+ min{M(Ax, Sx,t), M(By, Ty, 1)}, (4.5)
where k > 0.
M(Ax,By,t) = aM(Sx,Ty,t) + bM(Ax, Sx, 1)
+ cM(By, Ty, 1), (4.6)
where a > 1 and b,c = 0(b,c # 1).
M(Ax,By,t) = aM(Sx, Ty,t) + b|M(Ax, Sx, 1)
+ M(By, Ty, 1)], 4.7)
where a > 1 and 0 < b < 1.
M(Ax,By,t) = kM(Sx, Ty, t)M(Ax, Sx,t)M(By, Ty, 1),
(4.8)

where k > 1.

Proof. The proof of each inequality (4.3)(4.8) easily follows
from Theorem 4.1 in view of Examples 3.2, 3.3, 3.4, 3.7. O

Now we state our next theorem by using an implicit func-
tion due to Singh and Jain [5].

Theorem 4.3. Let A, B, S and T be four self-mappings of a fuzzy
metric space (X, M, ) satisfying

¢(M(Ax, By, kt), M(Sx, Ty, 1), M(Ax, Sx, 1),

M(By, Ty, kt)) = 0, (4.9)
¢(M(Ax, By, kt), M(Sx, Ty, t), M(Ax, Sx, kt),
M(By, Ty, 1)) = 0. (4.10)

for all x,ye X,p € ®,ke(0,1) and t > 0. Suppose that the
pairs (A, S) and (B, T) satisfy the (CLRsr) property, then the
pairs (A, S) and (B, T) have a coincidence point each. Further,
A,B,S and T have a unique common fixed point provided that
both the pairs (A, S) and (B, T) are weakly compatible.

Proof. The proof of this theorem can be completed on the
lines of the proof of Theorem 4.1 (in view of Lemma 2.1).
Due to paucity of the space, we omitted the details. [

By putting 4, B, S and T suitably in earlier proved results,
one can drive a multitude of common fixed point theorems
for a pair or triod of mappings. As a sample, we get the follow-
ing natural result for a pair of self-mappings.

Corollary 4.2. Let A and S be two self-mappings of a fuzzy
metric space (X, M, x). Suppose the following:

(1) the pair (4,S) enjoys the (CLRs) property,
(2) there exists Yy € W such that
Y(M(Ax, By,1), M(Sx, Ty, 1), M(Ax, Sx, 1),

M(By, Ty, 1)) = 0, (4.11)

for all x,y € X and t > 0. Then A and S have a coincidence
point. Further, A and S have a unique common fixed point pro-
vided that the pair (A, S) is weakly compatible.

As an application of Theorem 4.2, we have the following
result involving four finite families of self-mappings.

Theorem 4.4. Let {A;:}; ), {B,},_y, {Sk}i_) and {T,}i_, be four
self-mappings of a fuzzy metric space (X,M,x) such that
A:A1A2...Am,B:B1B2...Bn,S:S]Sz...Sp and
T=TT,...T, which satisfy the inequality (4.1). If the pairs
(A,S) and (B, T) enjoy the (CLRsr) property, then (A,S) and
(B,T) have a coincidence point each. Moreover,
(A AB Y Z Sk oy and {Tg}i_, have a unique common
fixed point provided the pairs (A1As...Aw,S1S:...S,) and
(BiBy...By, T\ T, ... Tq) commute pairwise.

Proof. The proof of this theorem is similar to that of Theo-
rem 4.1 contained in Imdad et al. [41], hence details are omit-
ted. O

The importance of Theorem 4.4 is that it can be utilized to
derive common fixed point theorems for any finite number of
mappings. As a sample for five mappings, we can derive the
following by setting one family of two members while the
remaining three of single members:

Corollary 4.3. Let A,B,R,S and T be five self-mappings of a
fuzzy metric space (X, M, x). Suppose that

(1) the pairs (A,SR) and (B,T) satisfy the (CLRsgyr))
property,
(2) there exists y € W such that
l//(M(Axv By7 l)a M(SR)C, T)% t)7 M(AX, SRX, t)v

M(By, Ty,t)) = 0, (4.12)

forallx,y € X and t > 0. Then the pairs (4,SR) and (B, T) have
a coincidence point each. Moreover, A,B,R,S and T have a
unique common fixed point provided the pairs (A,SR) and
(B,T) commute pairwise (ie., AS =SA,AR = RA,SR = RS
and BT = 1B).

Similarly, we can derive a common fixed point theorem for
six self-mappings by setting two families of two members while
the rest two of single members:

Corollary 4.4. Let A,B,S, R, T and H be six self-mappings of a
Sfuzzy metric space (X, M, *). Suppose that

(1) the pairs (A,SR) and (B,TH) satisfy the (CLRsgy))
property,
(2) there exists Yy € ¥ such that
Y(M(Ax, By, 1), M(SRx, THy, 1), M(Ax, SRx. 1),

M(By, THy,t)) = 0, (4.13)

Sor all x,y € X and t > 0. Then the pairs (A,SR) and (B,TH)
have a coincidence point each. Further, A,B,R,S,H and T have
a unique common fixed point provided the pairs (4,SR) and
(B,TH) commute pairwise (i.e., AS =SA,AR = RA,SR = RS,
BT = TB,BH = HB and TH = HT ).
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By setting Al:AZZ"':AW,:/LBIZBZZ"':
B, =B S =8=--=S=Sand T'=T,=---=T,=T
in Theorem 4.4, we deduce the following:

Corollary 4.5. Let A,B,S and T be four self-mappings of a
Sfuzzy metric space (X, M,*) such that the pairs (A™,S’) and
(B", T%) (wherein m,n,p,q are fixed positive integers) satisfy
the (CLRg 1v) property. Suppose that there exists y € ¥ such
that

Y(M(A"x,B"y, t), M(S"x, Ty, t), M(A"x, S"x, 1),

M(B"y, Ty, 1)) = 0, (4.14)
Sforall x,y € X and t > 0. Then the pairs (A,S) and (B, T) have
a coincidence point each. Further, A, B, S and T have a unique
common fixed point provided both the pairs (A™,S") and
(B", T%) commute pairwise.
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