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The purpose of this paper is to get strong convergence theorems for a countable family of
relatively quasi-nonexpansive mappings {S,},-,, a maximal monotone operator 7, and a general-
ized mixed equilibrium problem in a uniformly smooth and uniformly convex Banach space lacking
condition UARC. Two examples are given to support our results. One is a countable family of
uniformly closed relatively quasi-nonexpansive mappings but not a countable family of relatively
nonexpansive mappings. Another is uniformly closed but not satisfies condition UARC. Many

recent results in this field have been unified and improved.
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1. Introduction

In an infinite-dimensional Hilbert space, Mann iterative
algorithm has only weak covergence, in general, even for non-
expansive mappings. Hence in order to have strong conver-
gence, in recent years, the hybrid iteration methods for
approximating fixed points of nonlinear mappings have been
introduced and studied by various authors [1-6].
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Let E be a smooth Banach space. We denote by ¢ the
functional on E x E defined by

b(x,5) = (e, J0)) + I

A point p € C is said to be an (strong) asymptotic fixed point
of T if there exists a sequence {x,},-, C C such that (x, — p)
x, — p and lim, . ||x, —
totic fixed point is denoted by (F(T)) F(T). Let E be a smooth
Banach space, we say that a mapping 7T is (weak) relatively
nonexpansive (see [7-11]) if the following conditions are
satisfied:

Vx,y€E

(i) F(T)#0;
(i) ¢(p, Tx) <
(i) (F(T) =

P(p,x), V. , PE

K F(T);
F(T)) F(T ):F( )-
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A multivalued operator T': E — 2% with domain D(T) =
{z € E: Tz#(} is called monotone if (x; —x3,y, —¥,) =0
for each x; € D(T) and y; € Tx;,i = 1,2. A monotone operator
T is called maximal if its graph G(T) = {(x,y) : y € Tx} is not
properly contained in the graph of any other monotone oper-
ator. A method for solving the inclusion 0 € Tx is the proximal
point algorithm. This algorithm was first presented by
Martinet [12] and generally studied by Rockafellar [13] in a
Hilbert space. A mapping A4 :C — E* is called a-inverse-
strongly monotone, if there exists an o >0 such that
(Ax — Ay, x — y) = o]|dx — Ay|*, Vx,y € C.

It is easy to see that if 4 : C — E* is an a-inverse-strongly
monotone mapping, then it is 1/a-Lipschitzian. Let
T:E— 2% be a maximal monotone operator in a smooth
Banach space E. We denote the resolvent of 7T by
J, == (J+rT)"'J for each r > 0. Then J, : E — D(T) is a sin-
gle-valued mapping. Also, T°'0 = F(J,) for each r > 0, where
F(J,) is the set of fixed points of J,. For each r > 0, the Yosida
approximation of 7'is defined by 4, = (J — JJ,)/r. It is known
that

AxeT(Jx), ¥Yr>0 and x€E.

Let ¢ : C — R be a real-valued function and 4 : C — E" be
a nonlinear mapping and f: C x C — R be a bifunction. For
solving the equilibrium problem, let us assume that the bifunc-
tion f satisfies the following conditions:

(A1) f(x,x) =0 for allx € C;

(A2) fis monotone, i.e., f(x,y) + f(y,x) <0 for all x,y € C;

(A3) for each x,y € C,lim,_of (z+ (1 — t)x,y) < f(x,»);

(A4) for each x € C,y—f(x,y) is convex and lower semi-
continuous.

The generalized mixed equilibrium problem is to find u € C
[14-16] such that:
S, 9) + @) — @(u) + (Au,y —u) = 0,
Throughout this paper, we denote f(u,y)+ ¢@(y) — @(u)+
(Au,y — u) by F(x,y). The set of solutions of (1.7) is denoted
by GMEP(F, ¢), i.e.,
GMEP(F,¢) ={u € C: flu,y) + o(y) — o(u) + (Au,y — u)

>0, VyecC).

VyecC. (1.7)

If A =0, then problem (1.7) is equivalent to mixed equilibrium
problem studied by many authors, which is to find u € C such
that

S, y) +o(y) — o) = 0,

If ¢ = 0, then problem (1.7) is equivalent to generalized equi-
librium problem considered by many authors, which is to find
u € C such that

f(uay)+<Au7y_u> = 07

If ¢ =0,4 =0, then problem (1.7) is reduces to equilibrium
problem considered by many authors, which is to find u € C
such that f(u,y) > 0, Yy € C.

The generalized mixed equilibrium problem includes fixed
point problem, optimization problem, variational inequality
problem, minimax problem, Nash equilibrium problem as spa-
cial cases [17]. Some methods have been proposed to find its
solutions. And, numerous problems in physics, optimation

vVyeC.

VyeC.

and economics can be reduced to find a solution of generalized
equilibrium problem [18§].

Algorithms for obtaining fixed point of relatively nonex-
pansive mappings have been studied widely. For instance,
Mann iterative method, Ishikawa-type iterative method, Halp-
ern-type iterative method, hybrid methods, and many other
modified methods. Recently, utilizing Nakajo and Takahashi’s
idea [19], Qin and Su [20] introduced one iterative algorithm
for a relatively nonexpansive mapping. By combining Kamim-
ura and Takahashi’s idea [21] with Qin and Su [20], Ceng et al.
[22] introduced a hybrid proximal-type algorithm for finding
an element of fixed point set and zero point set in a uniformly
smooth and uniformly convex Banach space. In 2011, Ceng
et al. [23] introduced and investigated one hybrid shrinking
projection method for a generalized equilibrium problem, a
maximal monotone operator and a countable family of rela-
tively nonexpansive mappings. The authors obtained strong
convergence theorems.

2. Preliminaries and lemmas

Let E be a smooth, strictly convex and reflexive real Banach
space and let C be a nonempty closed convex subset of E. It
is well known that the generalized projection I1- from E onto
C is defined by

Ic(x) = arg mi(r;gb(y7 x), Vxe€E
ye
The existence and uniqueness of I1- follows from the property

of the functional ¢(x,y) and strict monotonicity of the map-
ping J. And it is obvious that

(1l = 1v1)* < (e w) < (Il + v,

Next, we recall the notion of generalized f-projection
operator and its properties. Let G: C x E* — RU {400} be
a functional defined as following:

G, 0) = |IE]” = 2(&, 0) + lo]” +20/(8), (2.1)
(eCoeE,p is a

vV x,y€E.

where positive number and

f:C— RU{+o0} is proper, convex and lower semi-continu-

ous. From the definitions of G and £, it is easy to see the follow-
ing properties:

(i) G(&, ) is convex and continuous with respect to ¢ when
& is fixed.

(if) G(&, @) is convex and lower semi-continuous relate to &
when ¢ is fixed.

We can see that the functional G is a generalization of func-
tional ¢. That is, functional ¢ is a special case of functional G
when /= 0.

Definition 2.1 [24]. Let E be a real Banach space with its dual
E*. Let C be a nonempty, closed and convex subset of E. We
say that Hé : E* — 2% is a generalized f-projection operator if
for any ¢ € E,

Mg = {ue C: Gu,p) = inf G(& ).

For the generalized f-projection operator, Wu and Huang
[20] proved the following basic properties:
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Lemma 2.2 [24]. Let E be a real reflexive Banach space with its
dual E*. Let C be a nonempty, closed and convex subset of E.
Then the following statements hold:

(1) I'IfC is a nonempty closed convex subset of C, Vo € E*.
(it) If E is smooth, then for all ¢ € E*,x € Hé(p if and only if

(x=y,0=Jx) +pfly) —pflx) 20, VyeC
(iii) If E is strictly convex and f: C — RU {+oo} is positive

homogeneous (i.e., f(tx) =tf(x) for all t >0 such that
tx € C where x € C), then Hé is a single valued mapping.

Fan et.al. [25] showed that the condition f'is positive homo-
geneous which appeared in Lemma 2.2 can be removed.

Lemma 2.3 [25]. Let E be a real reflexive Banach space with its
dual E* and C be a nonempty, closed and convex subset of E.
Then if E is strictly convex, then ch is a single valued mapping.

Recall that J is a single valued mapping when E is a smooth
Banach space. There exists a unique element ¢ € E* such that
¢ = Jx for each x € E. This substitution in (2.1) gives

G(&,Jx) = ||€]> = 2(&,Jx) + ||x]* + 20/(8).

Notice that whenever f'= 0, the generalized f~projection oper-
ator is equivalent to the generalized projection operator.

Now, we consider the second generalized f-projection oper-
ator in a Banach space.

Definition 2.4 [26]. Let E be a real Banach space and C be a
nonempty, closed and convex subset of E. We say that
H/; : E — 2C is a generalized f-projection operator if

I.x={ueC:Gu,Jx) = in(fG(é,Jx)}, Vx€ekE.
<<

Obviously, the definition of relatively quasi-nonexpansive
mapping 7 is equivalent to

(1) F(T)#0;
) G(p,JIx) < G(p,Jx), Vx e C,p e F(T).

Lemma 2.5 [27]. Let E be a Banach space and
f:E— RU{+o0} be a lower semi-continuous convex func-
tional. Then there exists x* € E* and o € R such that

Sx) = (x,x")+0o, VxeE.

Lemma 2.6 [28]. Let C be a nonempty, closed and convex sub-
set of a smooth and reflexive Banach space E. Then the following
statements hold.:

(1) ch is a nonempty closed and convex subset of C for all
x€eE; )
(i) for all x € E, % € IT-x if and only if

<)2_y7']x_'])%>+pf(y) _pf(x) = 07

(iii) if" E is strictly convex, then Héx is a single valued
mapping.

VyecG

Lemma 2.7 [28]. Let C be a nonempty, closed and convex sub-
set of a smooth and reflexive Banach space E. Let x € E and
x € IT,.. Then

o(r,x) + G(x,Jx) < G(y,Jx), VyeC.

Lemma 2.8 [28]. Let E be a Banach space and y € E. Let
S+ E— RU{oo} be a proper, convex and lower semi-continuous
mapping with convex domain D(f). If {x,} is a sequence in D(f)
such that x, — x € int(D(f)) and lim,_G(x,,Jy) = G(x,Jy),
then lim,_||x,|| = ||x

The fixed points set F(7) of a relatively quasi-nonexpansive
mapping is closed and convex as given in the following lemma.

Lemma 2.9 (/29,30]). Let C be a nonempty closed convex
subset of a smooth, uniformly convex Banach space E. Let T be
a closed relatively quasi-nonexpansive mapping of C into itself.
Then F(T) is closed and convex.

Lemma 2.10 [21]. Let C be a nonempty closed convex subset of
a smooth, uniformly convex Banach space E. Let {x,},”, and
{ya ey be sequences in E such that either {x,},—, or {y,}rey
is bounded. If lim,_o.¢(x,,y,) = 0, then lim,_||x, — y,|| = 0.

The following result is due to Blum and Oettli [17].

Lemma 2.11 [17]. Let C be a nonempty closed convex subset of
a smooth, strictly convex and reflexive Banach space E, let f be a
bifunction from C x C to R satisfying (A1)—(A4). Then for
r> 0 and x € E, there exists unique z such that

|
Ny)+ =y =20z = Jx) 2 0,

VyeC.

Lemma 2.12 [31]. Let C be a nonempty closed convex subset of
a uniformly smooth, strictly convex and reflexive Banach space
E, and let f be a bifunction from Cx C to R satisfying
(A1)—(A4). For r > 0 and x € E, define a mapping T, : E — C
as follows:

T.(x) = {z € C: flz,p) + (v — 2, J2 = Jx) > 0,

r

vV yecC}
for all x € E. Then, the following statements hold.

(1) T, is single-valued.
(it) T, is a firmly nonexpansive-type mapping, i.e., for all
X, y€E,
(T,-X - T’-}’JT,-X - JT;J’) < <T,X - Try7 Jx — Jy>
(ili) F(T,) = F(T,) = EP(f).
(iv) EP(f) is closed and convex.

Using Lemma 2.12, one has the following result.

Lemma 2.13 [31]. Let C be a nonempty closed convex subset of
a smooth, strictly convex and reflexive Banach space E, let f be a
bifunction from C x C to R satisfying (A1)—(A4), and let r > 0.
Then, for x € E and q € F(T,),

d(q, Trx) + ¢(Tx, x) < P(g, x).

Utilizing Lemmas 2.11 and 2.12, Yekini Shehu [32] derived
the following results.
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Proposition 2.14 [32]. Let C be a nonempty, closed and convex
subset of a smooth, strictly convex and reflexive Banach space E.
Assume  that f:Cx C— R satisfies (Al)—(A4), let
A:C— E" be a continuous and monotone mapping and
@ : C— R be a lower semi-continuous and convex functional.
Furthermore, define a mapping K, : E — C as follows:

K(x)={ueC

J3) + 0(0) — 9) + (A — 1) -y — . Ju— )

=0, VyeC}, VXx€EE,

then the following properties hold.

(1) K, is single-valued,
(i) K, is a firmly nonexpansive-type mapping, i.e., for any
x,y€E,

(K.x — K.y, JK,x — JK,y) < (Kyx — K.y, Jx — Jy),

(ii) F(K,) = GMEP(F, ¢),
(iv) GMEP(F, @) is a closed and convex.

Since F(x,y) = flu,y) + @(¥) — ¢(u) + (Au,y — u) satisfies
conditions (A1)—(A4) (see [26]). We can easily get the following
lemma.

Lemma 2.15. Let C be a nonempty closed convex subset of a
smooth, strictly convex and reflexive Banach space E, let F be a
bifunction from C x C to R satisfying (A1)—(A44), and let r > 0.
Then, for x € E and p € F(K,),

b(p, Kix) + ¢(Kx, x) < $(p, X).
Moreover, the inequality will be
G(p,JK,x) + ¢(K,x,x) < G(p, Jx)

in the sense of functional G.

Lemma 2.16 [33]. Let E be a reflexive, strictly convex, and
smooth Banach space and let T:E — 25 be a multivalued
operator. For all r > 0, then the following statements hold.

() T7'0 is closed and convex if T is maximal monotone such
that T~'07#0.

(1) T is maximal monotone if and only if T is monotone with
R(J +rT)=E".

Lemma 2.17 [34]. Let E be a reflexive, strictly convex, and
smooth Banach space, and let T : E — 2% be a maximal mono-
tone operator with T-'07#40. Then the following statements hold.

D) ¢(z,J,.x) + ¢(J,x,x) < ¢(z,x) for all ¥ > 0,z € T~'0 and
x€E.
(A1) J, : E — D(T) is a relatively nonexpansive map.

Definition 2.18. Let £ be a Banach space, and C be a non-
empty closed convex subset of E. Let {S,}°,:C — E be a
sequence of mappings of C into E such that N F(S,) is non-
empty. {S,},—, is said to be uniformly closed, if p € N F(S,),
whenever {x,} — p and ||x, — S,x,|| — 0 as n — oc.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a
uniformly convex and uniformly smooth Banach space E. Let
{Su}neo be a countable family of relatively quasi-nonexpansive
self-mapping on C which are also uniformly closed mappings.
Let f: E— RU{cc} be a proper, convex and lower semi-
continuous  mapping with convex domain D(f) and
C C int(D(f)). Assume that T : E — 25 is a maximal monotone
operator, A : C — E* is a continuous and monotone mapping,
and ¢ : C — R is a lower semi-continuous and convex func-
tional. Let f:CxC— R be a bifunction satisfying
(A1) — (A4). Let {xn} be a sequence generated in the following
way:

xo € Cy arbitrarily,

zp = J (0%, + (1 = 0,)JS,x,),
Vu =T (BIxa+ (1= B,)J,,2,),
u, € C such that f(u,,y) + ¢(»)

_(P(u,,) + <Aun7y - un>

1
+—y —uy, Ju, — Jy,) =0,
rn

VyedC,

Co1={veC,:Gv,Ju,) < B,G(v,Jx,) + (1 — B,)G(v,Jz,)

< G(v,Jx,)},
Xot = 1T xo, n=0,1,2,... (3.1)
where Co = C,{r,},°y is a sequence in (0,00). And

{0} e odBa o, are the sequences in [0, 1] which satisfy

limsupa, < 1, limsupp, < 1.

n—oo n—o0

Let T :=GMEP(F,0)NT 0N (2 F(S,)#0, then the
sequence {x,} generated above converges strongly to IT}.x,.

liminfr, > 0,

n—00

Proof. First, let us show that C, is a closed and convex subset
of C for all n > 0. Indeed, observe that

G(V7 ‘]u") < ﬂ"G(V7JXn) + (1 - ﬂn)G(V7 ‘IZ")

200, (1 = B,)Jzu + B xu — Jutn)

< U= Blzall® = lleal* + Bl

and

B,G(v,Jx,) + (1 = B,)G(v,Jz,) < G(v,Jx,)

= 200, Jxy — Iz} < |2l = ||zl

Obviously, C, is closed and convex for each n > 0.

Second, we show that I' C C, for each n > 0. Indeed, it is
clear that I C Cy = C. Suppose that I' C C, for some n € N.
Take w € I' arbitrarily. Then w € GMEP(F,¢),w € T~'0 and
w € oo oF(Sy). Since u, = K,,y,, applying (3.1) and Proposi-
tion 2.14 we have
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G(w,Ju,) = G(w,JK,,y,) < G(w,Jy,)
=G(w, B, Jx,+ (1= B,)JJ,,z,)
= [wll* =2{(w, B,Jxs + (1 = B,)J,,2,))
B0+ (1= B 20) P+ 2pf(0)
< Il =28, w,Jxa) = 2(1 = B,)(w, 1), 2,)

+ Bl + (1= Bzl + 201 (w)
=B,G(w,Jx,) + (1 = B,)G(w,JJ,,z,)
< ﬁnG(W’Jx”) (1 ﬁn) (W7JZU)
=B,G(w,Jx,) + (1 = B,)G(w, 0, Jx, + (1 — 0,) IS, x,,)
= B,G(w,Jx,) + (1= B,)[|[wll*
= 2(w, oI X + (1 — 04,) JSuX) + || otnd X
+ (1= ) ISux 1”4+ 20/(w)] < B,G(w, Jx,)
+(1— [3,,)[||w||2 — 20, {w, Jx,) — 2(1 — o,) (W, JS,x,)
+ O‘n”anz + (1 - O‘n)”Snxn”2 + 2pf(W)]
=B,G(w,Jx,) + (1 = B,)[0.G(w,Jx,)
+ (1 = a,)G(w, JS,x,)] < B,G(w,Jx,)
+ (1= B)[0aG(w,Jx,) + (1 — ) G(w, Ix,,)]
=G(w,Jx,).
This implies that w € C,. Therefore, I C C, for alln > 0. It
means that x,, | = H/C”+I Xo is well defined. Then, by induction,
the sequence {x,} generated above is well defined for each inte-
gern = 0.
For showing that {x,} is a Cauchy sequence, we should first
show that ||x,|| and G(x,,Jxo) are bounded. From the
definition of G and Lemma 2.5, we have

G(XWJXO) = HXHHZ - 2<xm']x0> + HxOHZ + 2Pf(X;;)

= ||xalI” = 2030, Ix0) + ||x0]1 + 20 (%0, X*) + 2p0t
= [lall” = 20, o = px°) + %o |” + 22
> ol = 2051 5x0 = x| + [1x0]* + 22
= ([Ixll = 19x0 = px"[1)* + |0 I
— |[Jx0 — px7||* + 2pa. (3.2)

Since x, = H/C'”xo, it follows from (3.2) that
G(Q7Jx0) = G(XVUJXO)
= (Ixall =1%o —
+ 2pa

for each ¢ e () F(S,). This implies that {x,},~, and
{G(xy,Jx¢)},-, are bounded. Note that C,i1 C Cy, Xuy1 =
H/C” 41Xo. Utilizing Lemma 2.7, we can get

G(Xny1, %) + G (X, IX0) < G(Xp11,IX).

Since O(Xni1,Xn) in nonnegative, we have
G(x,,Jx0) < G(Xy41,Jx0). This shows that lim,_..G(x,, Jx))
exists.  Similarly, we  have  d(xpim, Xn) + G(x,, IX0)
< G(Xpym, Jx0). Then, we can derive lim, o @(X,1m,X,) = 0.
Combining with Lemma 2.10, we get lim, o ||Xy1m — x| = 0,
ie., {x,} is a Cauchy sequence. Without loss of generality,
we may assume that lim,_..x, = p.

Now, we claim that |z
1imn~>oo|‘xlz - Snan =0.

%112
1)+ ol = [1x0 — o]l

—Jnzn|| =0 and

Indeed, from the definition of C,,; we have

G(x)H»l»Jun) < G(anrlaan)v V n > 07
and
G(XIHMJZH) < G(xn+lvjxn)7 Vinz 07

which are equivalent to

¢(xn+l>un) < ¢(xn+17x")7 V n 2 07
and
¢(xn+l>zn) < ¢(x"+17x")7 Vn = 0.

Since ¢(x,41,%,) — 0, it follows that ¢(x,.1,u,) — 0 and
¢(Xp41,2,) — 0. Utilizing Lemma 2.10, we conclude that

lim [|X,1 — X, || = lim [|x,41 — ]| = lim |3, — z,]| = 0,

n—oo n—00 n—o0

and so

fim ||, — wy]| = Tim||x, — 2| = lim [ju, — z.]| = 0, (3.3)
n—00 n—00 n—oo

Again since u,
can derive that

POw, un) < G(w,,) < P(w, X,),

Together with Lemma 2.15, we have

= K, y,, as in the proof of the second step, we

Vwelrl.

¢(un7yn) = d)(K"nymyn) < G(W7‘Iyn) - G(W7‘]Kl‘nyn)
< Gw,Jx,) — Gw,JK,, p,) = d(w,x,) — d(w,u,)
= Hxn”z - ””nHZ = 2{w, Jx, — Juy,)
< ([l = Noaa D CUlxall + otall) + 2[wll |0 — Jun|
(3.4)

Since ||x, — u,|| — 0 and J is uniformly norm-to-norm contin-
uous on bounded subsets of E, it follows that ||Jx, — Ju,|| — 0
and so ¢(u,,y,) — 0. Since E is smooth and uniformly convex,
from Lemma 2.10 and (3.4), we have

l[ttn = y,ll = 0, and so ||, — y,[| — 0. (3:5)

Note that E is uniformly smooth and uniformly convex. Thus
J and J!' are uniformly norm-to-norm continuous on
bounded subsets of £ and E”, respectively. Hence from (3.1)
and (3.5) we can get

(1 = BT, 20 — Ixall = [|I, — Ixa|l — O,

and so ||J,,z, — x,|| — 0. This together with |x, —z,|| — 0
which implies that

lim||z, — J,,z,| = lim||Jz, — JJ,,z,| = 0. (3.6)
Again from (3.1) and (3.3) we have
(1 - O(VI)HJSHXH

This implies that ||JS,x,

—Jx,|| = Iz — Ix

— Jx,|| — 0, and so

nlim I, — Sux,|| = 0.

Since {S,} -, is a countable family of uniformly closed rela-

tively quasi-nonexpansive mappings, we have p € (-, F(S,).
Next, let us show that p € 77'0. Since x, — p, from (3.3)

and (3.5) it follows that z, — p, and J,,z, — p. Also, from (3.6)

and liminf,_r, > 0, we derive

. .1
lim||4,,z,|| = lim —||Jz, — JJ,,z,|| = 0.
n—oo n—oo rn
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Let z* € Tz, then it follows from (1.1) and the monotonicity of
the operator 7 that

(z—J, z,) = 0.

n

z,Z2— A

Letting n — oo, we obtain (z — p, z*) > 0. Then the maximal-
ity of the operator T yields p € T°'0.

Now we shall show that p € GMEP(F, ). Since J is
uniformly norm-to-norm continuous on bounded subsets of
E, from (3.5) we have lim,_|Ju, —Jy,||=0. From
liminf,_ ., > 0, it follows that

fim 128 = Iall _ (3.7)

n—o0 rn

By the definition of u, := K,,y,, we have

1
F(uy,y) +—y — thy, Ju, — Jy,) =0, VyeC, (3.8)
p

where

Fup, y) = fln, ) + () — () + (Autn, y — ).
We have from (A2) that

1

r_<y_un7‘]un _Jyn> = _F(umy) = F(y7un)>

VyeC.

Since y—f(x,y) + o(y) — @(u,) + (Ax,y — x) is convex and
lower semi-continuous. Letting n — oo in the last inequality,
from (3.7) and (A4) we have

F(y,p) <0, VyeC.

For ¢, with 0 <t < 1, and y € C, let y, = ty + (1 — t)p. Since
y € Cand p € C, then y, € C and hence F(y,,p) < 0. So, from
(Al)  we have OZF(ynyr) ng(yny)'i'(l —t)F(y,,p)
< tF(y,,y). Dividing by ¢, we have F(y,,y) = 0, Vy € C. Let-
ting r — 0, from (A3) we can get F(p,y) = 0, Vy € C. So,
p € GMEP(F, ¢). Therefore, we obtain that p € I'.

Finally, we prove that p = Hfrxo. In fact, put x = H?xo.
From X, = HwaxO and xeIl'CC,,, we have
G(xpt1,Jx0) < G(X,Jx0),Vn = 0. We know that G(¢, @) is
convex and lower semi-continuous with respect to & when ¢ is
fixed. This implies that

G(p,Jxo) < liminf G(x,.1,Jx0) < limsup G(x,.1, Jxp)

n—o00

< G()_C, JX()).
Since X = H’}xo, so p = X. Hence, x,, — Hf;xo. O
4. Examples

In this section, two examples are given to support our results.

Example 1. Let £ = /, where
12 = {é: (517627633"'a§n7"') : Z'xﬂ|2 < OO},
n=I1

1

00 2
1€l = (Zéﬂ) , Véer,
n=1

Gm=> cm, Ve={&} n={n}eF, nen
n=l1

It is well known that, 2 is a Hilbert space, so that (P)" = .

Let {x,} C E be a sequence defined by

xo = (1,0,0,0,...), x;=(1,1,0,0,...)

x2:(1707170707~-~)7 x3:(1,070,1,0,0,...)

’ in,k> o )

......................... , Xy = (6”‘1,5”‘2,6,1‘3,‘..

where for alln > 1,

A 17
gn,k = 07

Define a countable family of mappings S, : E — E as fol-
lows, for all n > 0,

sy = {F 13 =x)

—X, if x#x,.

ifhk=1,ntl;
if k=1, k#n + 1.

Conclusion 4.1. S, has a unique fixed point 0, that is
F(S,) ={0}#0,vn = 0.

Proof. The conclusion is obvious. [J

Conclusion 4.2. {S,}~, is a countable family of relatively
quasi-nonexpansive mappings in the sense of functional G.

Proof. We only need to show that G(0,JS,x) < G(0,Jx),
Vx € E. Note that E=/* is a Hilbert space, for any n > 0
we can derive

G(0,JS,x) < G(0,Jx) Vx e E, <= ¢(0,S.x) < ¢(0,x),

= 0-SxlP <0 —xP =[Sl < lxI

This imply that Conclusion 4.4 holds. [

Conclusion 4.3. {S,}., is not a countable family of relatively
nonexpansive mappings in the sense of functional G.

Proof. Obviously, {x,} converges weakly to xy, and

;= Spxall = |l

Xp — Xy | = 7“"’.)1” - 07

_n
n+1
as n— oo, S0 X is an asymptotic fixed point of {S,} <.
Joining with Conclusion 4.3, we can obtain (0,2,F(S,)#
F({Su},20)- O

Conclusion 4.4. {S,}, is a countable family of uniformly
closed relatively quasi-nonexpansive mappings.

Proof. In fact, for any strong convergent sequence {z,} C E
such that z, — zy and ||z, — S,z,|| — 0 as n — oo, there exists
sufficiently large nature number N such that z,#x,,, for any
n,m > N (since x, is not a Cauchy sequence, then it cannot
converges to any element in E). Then S,z, = —z, for n > N,
it follows from |z, — S,z,|| — 0 that 2z, — 0 and hence
z, — z9 = 0.
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Above all, we prove that {S,},°, is a countable family of
uniformly closed relatively quasi-nonexpansive mappings but
not a countable family of relatively nonexpansive mappings in
the sense of functional G. [

Now, we give an example which is a countable family of
uniformly closed quasi-nonexpansive mappings but not satis-
fied condition UARC.

Example 2. Let X = R2. For any complex number
x=re € X, define a countable family of nonexpansive
mappings as follows,

A .
T, :re® — re("8)  peN.

Proof. It is easy to see that ()<, F(7,) = {0}.

We first prove that 7, is uniformly closed. In fact, for any
strong convergent sequence {x,} C X such that x, — xo and
|y — Tyuxy|| — Oasn — oo, there must be xg = 0 € (| F(T).
Otherwise, if x, — xo#0, and ||xan+1 — Tant1Xans1]] — O,
since 7| is continuous, we have ||xa+1 — Tans1Xant1] =
[IX4n11 — TiXans1]|| = ||xo — T1x0||70. This is a contradiction.
Therefore, T, is uniformly closed.

Besides, take a sequence x, = r,e’. For any given m, by
the definition of T, we have

|Tx, — Tuxal| = {0, n=4km, k=0,£1,£2,...5r,, n

=dkm+ 1,4km+ 3; 2r,, n=4km+2.}

So, for any x,—0, we have ||T,x, — T,x,||-~0, as n— cc.
That is to say 7T, does not satisfied condition UARC. [
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