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Abstract The purpose of this paper is to get strong convergence theorems for a countable family of

relatively quasi-nonexpansive mappings fSng1n¼0, a maximal monotone operator T, and a general-

ized mixed equilibrium problem in a uniformly smooth and uniformly convex Banach space lacking

condition UARC. Two examples are given to support our results. One is a countable family of

uniformly closed relatively quasi-nonexpansive mappings but not a countable family of relatively

nonexpansive mappings. Another is uniformly closed but not satisfies condition UARC. Many

recent results in this field have been unified and improved.
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1. Introduction

In an infinite-dimensional Hilbert space, Mann iterative

algorithm has only weak covergence, in general, even for non-
expansive mappings. Hence in order to have strong conver-
gence, in recent years, the hybrid iteration methods for
approximating fixed points of nonlinear mappings have been

introduced and studied by various authors [1–6].
Let E be a smooth Banach space. We denote by / the
functional on E� E defined by

/ðx; yÞ ¼ kxk2 � 2hx; JðyÞi þ kyk2; 8 x; y 2 E:

A point p 2 C is said to be an (strong) asymptotic fixed point
of T if there exists a sequence fxng1n¼0 � C such that (xn ! p)

xn * p and limn!1kxn � Txnk ¼ 0. The set of (strong) asymp-
totic fixed point is denoted by ( eFðTÞ) bFðTÞ. Let E be a smooth
Banach space, we say that a mapping T is (weak) relatively

nonexpansive (see [7–11]) if the following conditions are
satisfied:

(i) F ðT Þ–;;
(ii) /ðp; TxÞ 6 /ðp; xÞ; 8x 2 C; p 2 F ðT Þ;
(iii) (F ðT Þ ¼ eF ðT Þ) F ðT Þ ¼ bF ðT Þ.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2014.05.006&domain=pdf
mailto:suyongfu@tjpu.edu.cn
http://dx.doi.org/10.1016/j.joems.2014.05.006
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2014.05.006
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A multivalued operator T : E! 2E
�
with domain DðTÞ ¼

fz 2 E : Tz–;g is called monotone if hx1 � x2; y1 � y2iP 0
for each xi 2 DðTÞ and yi 2 Txi; i ¼ 1; 2. A monotone operator

T is called maximal if its graph GðTÞ ¼ fðx; yÞ : y 2 Txg is not
properly contained in the graph of any other monotone oper-
ator. A method for solving the inclusion 0 2 Tx is the proximal

point algorithm. This algorithm was first presented by
Martinet [12] and generally studied by Rockafellar [13] in a
Hilbert space. A mapping A : C! E� is called a-inverse-
strongly monotone, if there exists an a > 0 such that

hAx� Ay; x� yiP akAx� Ayk2; 8x; y 2 C.
It is easy to see that if A : C! E� is an a-inverse-strongly

monotone mapping, then it is 1=a-Lipschitzian. Let

T : E! 2E
�
be a maximal monotone operator in a smooth

Banach space E. We denote the resolvent of T by
Jr :¼ ðJþ rTÞ�1J for each r > 0. Then Jr : E! DðTÞ is a sin-

gle-valued mapping. Also, T�10 ¼ FðJrÞ for each r > 0, where
FðJrÞ is the set of fixed points of Jr. For each r > 0, the Yosida
approximation of T is defined by Ar ¼ ðJ� JJrÞ=r. It is known
that

Arx 2 TðJrxÞ; 8r > 0 and x 2 E:

Let u : C! R be a real-valued function and A : C! E� be
a nonlinear mapping and f : C� C! R be a bifunction. For
solving the equilibrium problem, let us assume that the bifunc-

tion f satisfies the following conditions:

(A1) f ðx; xÞ ¼ 0 for all x 2 C;

(A2) f is monotone, i.e., f ðx; yÞ þ f ðy; xÞ � 0 for all x; y 2 C;
(A3) for each x; y 2 C; limt!0f ðtzþ ð1� tÞx; yÞ 6 f ðx; yÞ;
(A4) for each x 2 C; y#f ðx; yÞ is convex and lower semi-

continuous.

The generalized mixed equilibrium problem is to find u 2 C

[14–16] such that:

fðu; yÞ þ uðyÞ � uðuÞ þ hAu; y� uiP 0; 8 y 2 C: ð1:7Þ

Throughout this paper, we denote fðu; yÞ þ uðyÞ � uðuÞþ
hAu; y� ui by Fðx; yÞ. The set of solutions of (1.7) is denoted
by GMEPðF;uÞ, i.e.,

GMEPðF;uÞ ¼ fu 2 C : fðu; yÞ þ uðyÞ � uðuÞ þ hAu; y� ui
P 0; 8 y 2 Cg:

If A ¼ 0, then problem (1.7) is equivalent to mixed equilibrium

problem studied by many authors, which is to find u 2 C such
that

fðu; yÞ þ uðyÞ � uðuÞP 0; 8 y 2 C:

If u ¼ 0, then problem (1.7) is equivalent to generalized equi-

librium problem considered by many authors, which is to find
u 2 C such that

fðu; yÞ þ hAu; y� uiP 0; 8 y 2 C:

If u ¼ 0;A ¼ 0, then problem (1.7) is reduces to equilibrium
problem considered by many authors, which is to find u 2 C

such that fðu; yÞP 0; 8y 2 C.
The generalized mixed equilibrium problem includes fixed

point problem, optimization problem, variational inequality

problem, minimax problem, Nash equilibrium problem as spa-
cial cases [17]. Some methods have been proposed to find its
solutions. And, numerous problems in physics, optimation
and economics can be reduced to find a solution of generalized
equilibrium problem [18].

Algorithms for obtaining fixed point of relatively nonex-

pansive mappings have been studied widely. For instance,
Mann iterative method, Ishikawa-type iterative method, Halp-
ern-type iterative method, hybrid methods, and many other

modified methods. Recently, utilizing Nakajo and Takahashi’s
idea [19], Qin and Su [20] introduced one iterative algorithm
for a relatively nonexpansive mapping. By combining Kamim-

ura and Takahashi’s idea [21] with Qin and Su [20], Ceng et al.
[22] introduced a hybrid proximal-type algorithm for finding
an element of fixed point set and zero point set in a uniformly
smooth and uniformly convex Banach space. In 2011, Ceng

et al. [23] introduced and investigated one hybrid shrinking
projection method for a generalized equilibrium problem, a
maximal monotone operator and a countable family of rela-

tively nonexpansive mappings. The authors obtained strong
convergence theorems.

2. Preliminaries and lemmas

Let E be a smooth, strictly convex and reflexive real Banach
space and let C be a nonempty closed convex subset of E. It

is well known that the generalized projection PC from E onto
C is defined by

PCðxÞ ¼ argmin
y2C

/ðy; xÞ; 8 x 2 E:

The existence and uniqueness of PC follows from the property
of the functional /ðx; yÞ and strict monotonicity of the map-
ping J. And it is obvious that

ðkxk � kykÞ2 6 /ðx; yÞ 6 ðkxk þ kykÞ2; 8 x; y 2 E:

Next, we recall the notion of generalized f-projection
operator and its properties. Let G : C� E� ! R [ fþ1g be
a functional defined as following:

Gðn;uÞ ¼ knk2 � 2hn;ui þ kuk2 þ 2qfðnÞ; ð2:1Þ

where n 2 C;u 2 E�; q is a positive number and
f : C! R [ fþ1g is proper, convex and lower semi-continu-

ous. From the definitions of G and f, it is easy to see the follow-
ing properties:

(i) Gðn;uÞ is convex and continuous with respect to u when
n is fixed.

(ii) Gðn;uÞ is convex and lower semi-continuous relate to n
when u is fixed.

We can see that the functional G is a generalization of func-

tional /. That is, functional / is a special case of functional G
when f � 0.

Definition 2.1 [24]. Let E be a real Banach space with its dual
E�. Let C be a nonempty, closed and convex subset of E. We

say that Pf
C : E� ! 2C is a generalized f-projection operator if

for any u 2 E�,

Pf
Cu ¼ fu 2 C : Gðu;uÞ ¼ inf

n2C
Gðn;uÞg:

For the generalized f-projection operator, Wu and Huang
[20] proved the following basic properties:
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Lemma 2.2 [24]. Let E be a real reflexive Banach space with its

dual E�. Let C be a nonempty, closed and convex subset of E.
Then the following statements hold:

(i) Pf
C is a nonempty closed convex subset of C, 8u 2 E�.

(ii) If E is smooth, then for all u 2 E�; x 2 Pf
Cu if and only if
hx� y;u� Jxi þ qfðyÞ � qfðxÞP 0; 8 y 2 C:
(iii) If E is strictly convex and f : C ! R [ fþ1g is positive
homogeneous (i.e., f ðtxÞ ¼ tf ðxÞ for all t > 0 such that

tx 2 C where x 2 C), then Pf
C is a single valued mapping.

Fan et.al. [25] showed that the condition f is positive homo-
geneous which appeared in Lemma 2.2 can be removed.

Lemma 2.3 [25]. Let E be a real reflexive Banach space with its

dual E� and C be a nonempty, closed and convex subset of E.
Then if E is strictly convex, then Pf

C is a single valued mapping.

Recall that J is a single valued mapping when E is a smooth
Banach space. There exists a unique element u 2 E� such that
u ¼ Jx for each x 2 E. This substitution in (2.1) gives

Gðn; JxÞ ¼ knk2 � 2hn; Jxi þ kxk2 þ 2qfðnÞ:

Notice that whenever f � 0, the generalized f-projection oper-

ator is equivalent to the generalized projection operator.
Now, we consider the second generalized f-projection oper-

ator in a Banach space.

Definition 2.4 [26]. Let E be a real Banach space and C be a

nonempty, closed and convex subset of E. We say that
Pf

C : E! 2C is a generalized f-projection operator if

Pf
Cx ¼ fu 2 C : Gðu; JxÞ ¼ inf

n2C
Gðn; JxÞg; 8 x 2 E:

Obviously, the definition of relatively quasi-nonexpansive
mapping T is equivalent to

(1) F ðT Þ–;;
(2) Gðp; JTxÞ 6 Gðp; JxÞ; 8 x 2 C; p 2 F ðT Þ.
Lemma 2.5 [27]. Let E be a Banach space and
f : E! R [ fþ1g be a lower semi-continuous convex func-
tional. Then there exists x� 2 E� and a 2 R such that
fðxÞP hx; x�i þ a; 8 x 2 E:

Lemma 2.6 [28]. Let C be a nonempty, closed and convex sub-
set of a smooth and reflexive Banach space E. Then the following

statements hold:

(i) Pf
C is a nonempty closed and convex subset of C for all

x 2 E;
(ii) for all x 2 E; x̂ 2 Pf

Cx if and only if

hx̂� y; Jx� Jx̂i þ qfðyÞ � qfðxÞP 0; 8 y 2 C;

(iii) if E is strictly convex, then Pf
Cx is a single valued

mapping.
Lemma 2.7 [28]. Let C be a nonempty, closed and convex sub-

set of a smooth and reflexive Banach space E. Let x 2 E and
x 2 Pf

C. Then
/ðy; xÞ þ Gðx; JxÞ 6 Gðy; JxÞ; 8 y 2 C:

Lemma 2.8 [28]. Let E be a Banach space and y 2 E. Let

f : E! R [ f1g be a proper, convex and lower semi-continuous
mapping with convex domain DðfÞ. If fxng is a sequence in DðfÞ
such that xn * x 2 intðDðfÞÞ and limn!1Gðxn; JyÞ ¼ Gðx; JyÞ,
then limn!1kxnk ¼ kxk.

The fixed points set FðTÞ of a relatively quasi-nonexpansive

mapping is closed and convex as given in the following lemma.

Lemma 2.9 ([29,30]). Let C be a nonempty closed convex
subset of a smooth, uniformly convex Banach space E. Let T be
a closed relatively quasi-nonexpansive mapping of C into itself.

Then FðTÞ is closed and convex.

Lemma 2.10 [21]. Let C be a nonempty closed convex subset of
a smooth, uniformly convex Banach space E. Let fxng1n¼0 and

fyng
1
n¼0 be sequences in E such that either fxng1n¼0 or fyng

1
n¼0

is bounded. If limn!1/ðxn; ynÞ ¼ 0, then limn!1kxn � ynk ¼ 0.

The following result is due to Blum and Oettli [17].

Lemma 2.11 [17]. Let C be a nonempty closed convex subset of
a smooth, strictly convex and reflexive Banach space E, let f be a
bifunction from C� C to R satisfying ðA1Þ–ðA4Þ. Then for

r > 0 and x 2 E, there exists unique z such that

fðz; yÞ þ 1

r
hy� z; Jz� JxiP 0; 8 y 2 C:

Lemma 2.12 [31]. Let C be a nonempty closed convex subset of

a uniformly smooth, strictly convex and reflexive Banach space
E, and let f be a bifunction from C� C to R satisfying
ðA1Þ–ðA4Þ. For r > 0 and x 2 E, define a mapping Tr : E! C

as follows:

TrðxÞ ¼ fz 2 C : fðz; yÞ þ 1

r
hy� z; Jz� JxiP 0; 8 y 2 Cg

for all x 2 E. Then, the following statements hold.

(i) T r is single-valued.

(ii) T r is a firmly nonexpansive-type mapping, i.e., for all
x; y 2 E,

hTrx� Try; JTrx� JTryi 6 hTrx� Try; Jx� Jyi:

(iii) F ðT rÞ ¼ bF ðT rÞ ¼ EPðf Þ.
(iv) EPðf Þ is closed and convex.

Using Lemma 2.12, one has the following result.

Lemma 2.13 [31]. Let C be a nonempty closed convex subset of
a smooth, strictly convex and reflexive Banach space E, let f be a

bifunction from C� C to R satisfying ðA1Þ–ðA4Þ, and let r > 0.
Then, for x 2 E and q 2 FðTrÞ,

/ðq;TrxÞ þ /ðTrx; xÞ 6 /ðq; xÞ:
Utilizing Lemmas 2.11 and 2.12, Yekini Shehu [32] derived
the following results.
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Proposition 2.14 [32]. Let C be a nonempty, closed and convex

subset of a smooth, strictly convex and reflexive Banach space E.
Assume that f : C� C! R satisfies (A1)–(A4), let
A : C! E� be a continuous and monotone mapping and

u : C! R be a lower semi-continuous and convex functional.
Furthermore, define a mapping Kr : E! C as follows:

KrðxÞ ¼ fu 2 C

: fðu; yÞ þ uðyÞ � uðuÞ þ hAu; y� ui þ 1

r
hy� u; Ju� Jxi

P 0; 8 y 2 Cg; 8 x 2 E;

then the following properties hold.

(i) Kr is single-valued,

(ii) Kr is a firmly nonexpansive-type mapping, i.e., for any
x; y 2 E,

hKrx� Kry; JKrx� JKryi 6 hKrx� Kry; Jx� Jyi;

(iii) F ðKrÞ ¼ GMEPðF ;uÞ,
(iv) GMEPðF ;uÞ is a closed and convex.

Since Fðx; yÞ ¼ fðu; yÞ þ uðyÞ � uðuÞ þ hAu; y� ui satisfies
conditions (A1)–(A4) (see [26]). We can easily get the following
lemma.

Lemma 2.15. Let C be a nonempty closed convex subset of a
smooth, strictly convex and reflexive Banach space E, let F be a
bifunction from C� C to R satisfying ðA1Þ–ðA4Þ, and let r > 0.
Then, for x 2 E and p 2 FðKrÞ,

/ðp;KrxÞ þ /ðKrx; xÞ 6 /ðp; xÞ:

Moreover, the inequality will be

Gðp; JKrxÞ þ /ðKrx; xÞ 6 Gðp; JxÞ

in the sense of functional G.

Lemma 2.16 [33]. Let E be a reflexive, strictly convex, and
smooth Banach space and let T : E! 2E

�
be a multivalued

operator. For all r > 0, then the following statements hold.

(i) T�10 is closed and convex if T is maximal monotone such
that T�10–;.

(ii) T is maximal monotone if and only if T is monotone with
RðJ þ rT Þ ¼ E�.
Lemma 2.17 [34]. Let E be a reflexive, strictly convex, and
smooth Banach space, and let T : E! 2E

�
be a maximal mono-

tone operator with T�10–;. Then the following statements hold.

(I) /ðz; JrxÞ þ /ðJrx; xÞ 6 /ðz; xÞ for all r > 0; z 2 T�10 and
x 2 E.

(II) J r : E! DðT Þ is a relatively nonexpansive map.

Definition 2.18. Let E be a Banach space, and C be a non-
empty closed convex subset of E. Let fSng1n¼0 : C! E be a

sequence of mappings of C into E such that \1n¼0FðSnÞ is non-
empty. fSng1n¼0 is said to be uniformly closed, if p 2 \1n¼0FðSnÞ,
whenever fxng ! p and kxn � Snxnk ! 0 as n!1.
3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a
uniformly convex and uniformly smooth Banach space E. Let
fSng1n¼0 be a countable family of relatively quasi-nonexpansive

self-mapping on C which are also uniformly closed mappings.
Let f : E! R [ f1g be a proper, convex and lower semi-
continuous mapping with convex domain DðfÞ and
C � intðDðfÞÞ. Assume that T : E! 2E

�
is a maximal monotone

operator, A : C! E� is a continuous and monotone mapping,
and u : C! R is a lower semi-continuous and convex func-
tional. Let f : C� C! R be a bifunction satisfying

ðA1Þ � ðA4Þ. Let fxng be a sequence generated in the following
way:

x0 2 C0 arbitrarily;

zn ¼ J�1ðanJxn þ ð1� anÞJSnxnÞ;

yn ¼ J�1ðbnJxn þ ð1� bnÞJJrnznÞ;

un 2 C such that fðun; yÞ þ uðyÞ

�uðunÞ þ hAun; y� uni

þ 1

rn
hy� un; Jun � JyniP 0; 8 y 2 C;

Cnþ1 ¼ fv 2 Cn : Gðv; JunÞ 6 bnGðv; JxnÞ þ ð1� bnÞGðv; JznÞ
6 Gðv; JxnÞg;

xnþ1 ¼ Pf
Cnþ1

x0; n ¼ 0; 1; 2; . . . ð3:1Þ

where C0 ¼ C; frng1n¼0 is a sequence in ð0;1Þ. And
fang1n¼0fbng

1
n¼0 are the sequences in ½0; 1� which satisfy

lim inf
n!1

rn > 0; lim sup
n!1

an < 1; lim sup
n!1

bn < 1:

Let C :¼ GMEPðF;uÞ \ T�10 \ ð
T1

n¼0FðSnÞÞ–;, then the
sequence fxng generated above converges strongly to Pf

Cx0.

Proof. First, let us show that Cn is a closed and convex subset
of C for all n P 0. Indeed, observe that

Gðv; JunÞ 6 bnGðv; JxnÞ þ ð1� bnÞGðv; JznÞ

() 2hv; ð1� bnÞJzn þ bnJxn � Juni

6 ð1� bnÞkznk
2 � kunk2 þ bnkxnk2

and

bnGðv; JxnÞ þ ð1� bnÞGðv; JznÞ 6 Gðv; JxnÞ

() 2hv; Jxn � Jzni 6 kxnk2 � kznk2:

Obviously, Cn is closed and convex for each n P 0.
Second, we show that C � Cn for each n P 0. Indeed, it is

clear that C � C0 ¼ C. Suppose that C � Cn for some n 2 N.
Take w 2 C arbitrarily. Then w 2 GMEPðF;uÞ;w 2 T�10 and

w 2
T1

n¼0FðSnÞ. Since un ¼ Krnyn, applying (3.1) and Proposi-
tion 2.14 we have
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Gðw;JunÞ ¼ Gðw;JKrnynÞ6 Gðw;JynÞ
¼ Gðw;bnJxn þ ð1� bnÞJJrn znÞ
¼ kwk2 � 2hðw;bnJxn þ ð1� bnÞJJrnznÞi
þ kðbnJxn þ ð1� bnÞJJrnznÞk

2 þ 2qfðwÞ
6 kwk2 � 2bnhw;Jxni � 2ð1� bnÞhw;JJrnzni
þ bnkxnk2 þ ð1� bnÞkJrnznk

2 þ 2qfðwÞ
¼ bnGðw;JxnÞ þ ð1� bnÞGðw;JJrnznÞ
6 bnGðw;JxnÞ þ ð1� bnÞGðw;JznÞ
¼ bnGðw;JxnÞ þ ð1� bnÞGðw;anJxn þ ð1� anÞJSnxnÞ
¼ bnGðw;JxnÞ þ ð1� bnÞ½kwk

2

� 2hw;anJxn þ ð1� anÞJSnxni þ kanJxn

þ ð1� anÞJSnxnk2 þ 2qfðwÞ�6 bnGðw;JxnÞ
þ ð1� bnÞ½kwk

2 � 2anhw;Jxni � 2ð1� anÞhw;JSnxni
þ ankxnk2 þ ð1� anÞkSnxnk2 þ 2qfðwÞ�
¼ bnGðw;JxnÞ þ ð1� bnÞ½anGðw;JxnÞ
þ ð1� anÞGðw;JSnxnÞ�6 bnGðw;JxnÞ
þ ð1� bnÞ½anGðw;JxnÞ þ ð1� anÞGðw;JxnÞ�
¼ Gðw;JxnÞ:

This implies that w 2 Cnþ1. Therefore, C � Cn for all n P 0. It
means that xnþ1 ¼ Pf

Cnþ1
x0 is well defined. Then, by induction,

the sequence fxng generated above is well defined for each inte-
ger n P 0.

For showing that fxng is a Cauchy sequence, we should first

show that kxnk and Gðxn; Jx0Þ are bounded. From the
definition of G and Lemma 2.5, we have

Gðxn; Jx0Þ ¼ kxnk2 � 2hxn; Jx0i þ kx0k2 þ 2qfðxnÞ
P kxnk2 � 2hxn; Jx0i þ kx0k2 þ 2qhxn; x

�i þ 2qa

¼ kxnk2 � 2hxn; Jx0 � qx�i þ kx0k2 þ 2qa

P kxnk2 � 2kxnkkJx0 � qx�k þ kx0k2 þ 2qa

¼ ðkxnk � kJx0 � qx�kÞ2 þ kx0k2

� kJx0 � qx�k2 þ 2qa: ð3:2Þ

Since xn ¼ Pf
Cn
x0, it follows from (3.2) that

Gðq; Jx0ÞP Gðxn; Jx0Þ

P ðkxnk � kJx0 � qx�kÞ2 þ kx0k2 � kJx0 � qx�k2

þ 2qa

for each q 2
T1

n¼0FðSnÞ. This implies that fxng1n¼0 and
fGðxn; Jx0Þg1n¼0 are bounded. Note that Cnþ1 � Cn; xnþ1 ¼
Pf

Cnþ1x0. Utilizing Lemma 2.7, we can get

/ðxnþ1; xnÞ þ Gðxn; Jx0Þ 6 Gðxnþ1; Jx0Þ:

Since /ðxnþ1; xnÞ in nonnegative, we have
Gðxn; Jx0Þ 6 Gðxnþ1; Jx0Þ. This shows that limn!1Gðxn; Jx0Þ
exists. Similarly, we have /ðxnþm; xnÞ þ Gðxn; Jx0Þ
6 Gðxnþm; Jx0Þ. Then, we can derive limn!1/ðxnþm; xnÞ ¼ 0.

Combining with Lemma 2.10, we get limn!1kxnþm � xnk ¼ 0,
i.e., fxng is a Cauchy sequence. Without loss of generality,
we may assume that limn!1xn ¼ p.

Now, we claim that kzn � Jrnznk ! 0 and
limn!1kxn � Snxnk ¼ 0.

Indeed, from the definition of Cnþ1 we have
Gðxnþ1; JunÞ 6 Gðxnþ1; JxnÞ; 8 n P 0;

and

Gðxnþ1; JznÞ 6 Gðxnþ1; JxnÞ; 8 n P 0;

which are equivalent to

/ðxnþ1; unÞ 6 /ðxnþ1; xnÞ; 8 n P 0;

and

/ðxnþ1; znÞ 6 /ðxnþ1; xnÞ; 8 n P 0:

Since /ðxnþ1; xnÞ ! 0, it follows that /ðxnþ1; unÞ ! 0 and
/ðxnþ1; znÞ ! 0. Utilizing Lemma 2.10, we conclude that

lim
n!1
kxnþ1 � xnk ¼ lim

n!1
kxnþ1 � unk ¼ lim

n!1
kxnþ1 � znk ¼ 0;

and so

lim
n!1
kxn � unk ¼ lim

n!1
kxn � znk ¼ lim

n!1
kun � znk ¼ 0; ð3:3Þ

Again since un ¼ Krnyn, as in the proof of the second step, we

can derive that

/ðw; unÞ 6 /ðw; ynÞ 6 /ðw; xnÞ; 8 w 2 C:

Together with Lemma 2.15, we have

/ðun; ynÞ ¼ /ðKrnyn; ynÞ 6 Gðw; JynÞ � Gðw; JKrnynÞ
6 Gðw; JxnÞ � Gðw; JKrnynÞ ¼ /ðw; xnÞ � /ðw; unÞ
¼ kxnk2 � kunk2 � 2hw; Jxn � Juni
6 ðkxnk � kunkÞðkxnk þ kunkÞ þ 2kwkkJxn � Junk

ð3:4Þ

Since kxn � unk ! 0 and J is uniformly norm-to-norm contin-
uous on bounded subsets of E, it follows that kJxn � Junk ! 0
and so /ðun; ynÞ ! 0. Since E is smooth and uniformly convex,

from Lemma 2.10 and (3.4), we have

kun � ynk ! 0; and so kxn � ynk ! 0: ð3:5Þ

Note that E is uniformly smooth and uniformly convex. Thus
J and J�1 are uniformly norm-to-norm continuous on

bounded subsets of E and E�, respectively. Hence from (3.1)
and (3.5) we can get

ð1� bnÞkJJrnzn � Jxnk ¼ kJyn � Jxnk ! 0;

and so kJrnzn � xnk ! 0. This together with kxn � znk ! 0
which implies that

lim
n!1
kzn � Jrnznk ¼ lim

n!1
kJzn � JJrn znk ¼ 0: ð3:6Þ

Again from (3.1) and (3.3) we have

ð1� anÞkJSnxn � Jxnk ¼ kJzn � Jxnk ! 0:

This implies that kJSnxn � Jxnk ! 0, and so

lim
n!1
kxn � Snxnk ¼ 0:

Since fSng1n¼0 is a countable family of uniformly closed rela-
tively quasi-nonexpansive mappings, we have p 2

T1
n¼0 FðSnÞ.

Next, let us show that p 2 T�10. Since xn ! p, from (3.3)
and (3.5) it follows that zn ! p, and Jrnzn ! p. Also, from (3.6)
and lim infn!1rn > 0, we derive

lim
n!1
kArnznk ¼ lim

n!1

1

rn
kJzn � JJrnznk ¼ 0:
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Let z� 2 Tz, then it follows from (1.1) and the monotonicity of

the operator T that

hz� Jrnzn; z
� � ArnzniP 0:

Letting n!1, we obtain hz� p; z�iP 0. Then the maximal-
ity of the operator T yields p 2 T�10.

Now we shall show that p 2 GMEPðF;uÞ. Since J is
uniformly norm-to-norm continuous on bounded subsets of
E, from (3.5) we have limn!1kJun � Jynk ¼ 0. From
lim infn!1rn > 0, it follows that

lim
n!1

kJun � Jynk
rn

¼ 0: ð3:7Þ

By the definition of un :¼ Krnyn, we have

Fðun; yÞ þ
1

rn
hy� un; Jun � JyniP 0; 8 y 2 C; ð3:8Þ

where

Fðun; yÞ ¼ fðun; yÞ þ uðyÞ � uðunÞ þ hAun; y� uni:

We have from (A2) that

1

rn
hy� un; Jun � JyniP �Fðun; yÞP Fðy; unÞ; 8 y 2 C:

Since y#fðx; yÞ þ uðyÞ � uðunÞ þ hAx; y� xi is convex and
lower semi-continuous. Letting n!1 in the last inequality,
from (3.7) and (A4) we have

Fðy; pÞ � 0; 8 y 2 C:

For t, with 0 < t < 1, and y 2 C, let yt ¼ tyþ ð1� tÞp. Since
y 2 C and p 2 C, then yt 2 C and hence Fðyt; pÞ � 0. So, from
(A1) we have 0 ¼ Fðyt; ytÞ 6 tFðyt; yÞ þ ð1� tÞFðyt; pÞ
6 tFðyt; yÞ. Dividing by t, we have Fðyt; yÞP 0; 8y 2 C. Let-

ting t! 0, from (A3) we can get Fðp; yÞP 0; 8y 2 C. So,
p 2 GMEPðF;uÞ. Therefore, we obtain that p 2 C.

Finally, we prove that p ¼ Pf
Cx0. In fact, put �x ¼ Pf

Cx0.

From xnþ1 ¼ Pf
Cnþ1

x0 and �x 2 C � Cnþ1, we have
Gðxnþ1; Jx0Þ 6 Gð�x; Jx0Þ; 8n P 0. We know that Gðn;uÞ is
convex and lower semi-continuous with respect to n when u is

fixed. This implies that

Gðp; Jx0Þ 6 lim inf
n!1

Gðxnþ1; Jx0Þ 6 lim sup
n!1

Gðxnþ1; Jx0Þ

6 Gð�x; Jx0Þ:

Since �x ¼ Pf
Cx0, so p ¼ �x. Hence, xn ! Pf

Cx0. h
4. Examples

In this section, two examples are given to support our results.

Example 1. Let E ¼ l2, where

l2 ¼ fn ¼ ðn1; n2; n3; . . . ; nn; . . .Þ :
X1
n¼1
jxnj2 <1g;

knk ¼
X1
n¼1
jnnj2

 !1
2

; 8 n 2 l2;

hn; gi ¼
X1
n¼1

nngn; 8n ¼ fnng; g ¼ fgng 2 l2; n 2 N:
It is well known that, l2 is a Hilbert space, so that ðl2Þ� ¼ l2.
Let fxng � E be a sequence defined by

x0 ¼ ð1; 0; 0; 0; . . .Þ; x1 ¼ ð1; 1; 0; 0; . . .Þ

x2 ¼ ð1; 0; 1; 0; 0; . . .Þ; x3 ¼ ð1; 0; 0; 1; 0; 0; . . .Þ

. . . . . . . . . . . . . . . . . . . . . . . . :; xn ¼ ðnn;1; nn;2; nn;3; . . . ; nn;k; 	 	 	Þ

where for all n P 1,

nn;k ¼
1; if k ¼ 1; nþ 1;

0; if k–1; k–nþ 1:

� �
Define a countable family of mappings Sn : E! E as fol-

lows, for all n P 0,

SnðxÞ ¼
n

nþ1 xn; if x ¼ xn;

�x; if x–xn:

� �

Conclusion 4.1. Sn has a unique fixed point 0, that is
FðSnÞ ¼ f0g–;; 8n P 0.

Proof. The conclusion is obvious. h

Conclusion 4.2. fSng1n¼0 is a countable family of relatively
quasi-nonexpansive mappings in the sense of functional G.

Proof. We only need to show that Gð0; JSnxÞ 6 Gð0; JxÞ;
8x 2 E. Note that E ¼ l2 is a Hilbert space, for any n P 0
we can derive

Gð0; JSnxÞ 6 Gð0; JxÞ 8x 2 E; () /ð0;SnxÞ 6 /ð0; xÞ;

() k0� Snxk2 6 k0� xk2; () kSnxk2 6 kxk2:

This imply that Conclusion 4.4 holds. h

Conclusion 4.3. fSng1n¼0 is not a countable family of relatively
nonexpansive mappings in the sense of functional G.

Proof. Obviously, fxng converges weakly to x0, and

kxn � Snxnk ¼ k
n

nþ 1
xn � xnk ¼

1

nþ 1
kxnk ! 0;

as n!1, so x0 is an asymptotic fixed point of fSng1n¼0.
Joining with Conclusion 4.3, we can obtain

T1
n¼0FðSnÞ–bFðfSng1n¼0Þ. h

Conclusion 4.4. fSng1n¼0 is a countable family of uniformly
closed relatively quasi-nonexpansive mappings.

Proof. In fact, for any strong convergent sequence fzng � E
such that zn ! z0 and kzn � Snznk ! 0 as n!1, there exists

sufficiently large nature number N such that zn–xm, for any
n;m > N (since xn is not a Cauchy sequence, then it cannot
converges to any element in E). Then Snzn ¼ �zn for n > N,

it follows from kzn � Snznk ! 0 that 2zn ! 0 and hence
zn ! z0 ¼ 0.
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Above all, we prove that fSng1n¼0 is a countable family of

uniformly closed relatively quasi-nonexpansive mappings but
not a countable family of relatively nonexpansive mappings in
the sense of functional G. h

Now, we give an example which is a countable family of
uniformly closed quasi-nonexpansive mappings but not satis-

fied condition UARC.

Example 2. Let X ¼ R2. For any complex number
x ¼ reih 2 X, define a countable family of nonexpansive
mappings as follows,

Tn : reih ! rei hþnp
2ð Þ; n 2 N:

Proof. It is easy to see that
T1

n¼1FðTnÞ ¼ f0g.

We first prove that Tn is uniformly closed. In fact, for any
strong convergent sequence fxng � X such that xn ! x0 and
kxn � Tnxnk ! 0 as n!1, there must be x0 ¼ 0 2

T1
n¼1FðTnÞ.

Otherwise, if xn ! x0–0, and kx4nþ1 � T4nþ1x4nþ1k ! 0,
since T1 is continuous, we have kx4nþ1 � T4nþ1x4nþ1k ¼
kx4nþ1 � T1x4nþ1k ! kx0 � T1x0k–0. This is a contradiction.
Therefore, Tn is uniformly closed.

Besides, take a sequence xn ¼ rne
ihn . For any given m, by

the definition of Tn, we have

kTnxn � Tmxnk ¼ f0; n ¼ 4km; k ¼ 0;
1;
2; . . . ; rn; n

¼ 4kmþ 1; 4kmþ 3; 2rn; n ¼ 4kmþ 2:g

So, for any xn90, we have kTnxn � Tmxnk90; as n!1.

That is to say Tn does not satisfied condition UARC. h
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