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Abstract In this paper we obtain some stability results for fixed point sets associated with a

sequence of multivalued mappings. We define multivalued a–w contractions and multivalued

a-admissible mappings. We use Hausdorff distance in our definition. We show that the fixed point

sets of uniformly convergent sequences of multivalued a–w contractions which are also assumed to

be multivalued a-admissible, are stable under certain conditions. The multivalued mappings we

define here are not necessarily continuous. We present two illustrative examples and one open

problem.
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1. Introduction and preliminaries

Stability is a concept in dynamical systems related to limiting

behaviors. There are various notions of stability both in dis-
crete and continuous dynamical systems [1,2]. In this paper
we consider such a problem of stability related to a sequence

of multivalued mappings on metric spaces. The limiting
behaviors of sequences of mappings have been considered in
a large number of papers in recent times as, for instances, in
[3,4]. Particularly, stability of fixed point sets for multivalued
mapping has been considered in [5–7].

Specially, we are interested in the limit of fixed point sets
for a convergent sequence of multivalued mappings, that is,
how they are related, in the limit, to the fixed point set of

the function to which the sequence converges. We say that
the fixed point sets are stable when they converge in the Haus-
dorff metric to the set of fixed points of the limiting function.
More often than not, in the above mentioned problem of sta-

bility, sequences of multivalued mappings are considered. One
of the reasons behind this is that multivalued mappings often
have more fixed points than their singlevalued counterparts.

For instance, in the theorem of Nadler [3], which is a multi-
valued generalization of the Banach contraction principle,
and, incidentally, which is also the first work appearing on

multivalued contractive fixed point studies, the fixed point is
not unique in contrast to the case of Banach’s contraction.
In those situations the fixed point set becomes larger and,
hence, more interesting for the study of stability. In this paper
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we consider the case of a–w contractions [8] which is a newly
introduced generalization of the Banach’s contraction. It
should be mentioned that Banach contraction mapping princi-

ple [9,10] plays an important role in nonlinear analysis. There
has been a large number of generalizations of this result over
the years [11–16].

We introduce a multivalued version of a–w contraction. We
show that for such a multivalued mapping on a complete met-
ric space, the fixed point set is nonempty. We then show that a

uniformly convergent sequence of such mappings on a com-
plete metric space has stable fixed point sets, that is, the fixed
point sets converge to the fixed point set of the limiting func-
tion with respect to the Hausdorff metric.

Throughout this paper CLðXÞ denotes the family of all
nonempty closed subsets of a metric space ðX; dÞ and PðXÞ
denotes the family of all nonempty subsets of X.

The Hausdorff metric H is defined on CLðXÞ by

HðA;BÞ ¼ max sup
x2B

dðx;AÞ; sup
x2B

dðx;BÞ
� �

;

where A;B 2 CLðXÞ and dðx;AÞ ¼ infy2Adðx; yÞ.
H is a metric when it is restricted to the set CBðXÞ, the set of

all closed and bounded subsets of X. Otherwise, on CLðXÞ, the
set of all closed subsets of X, all the properties of the metric
function is satisfied except that HðA;BÞ can be infinite when
either A or B is unbounded. The following is the well known
definition of fixed point for multivalued mappings.

Let T : X! PðXÞ be a multivalued mapping, a point z 2 X
is a fixed point of T whenever z 2 Tz.

Asl et al. [17] introduce the following definition;

Definition 1.1 [17]. Let ðX; dÞ be a metric space;
a : X� X! ½0;1Þ be a mapping and T : X! 2X be a closed
valued multifunction, where 2X = collection of all nonempty
subsets of X. Let w : ½0;1Þ ! ½0;1Þ be a nondecreasing and

continuous function with
P

wnðtÞ <1 and wðtÞ < t for each
t > 0. We say that T is an a�–w contractive multifunction
whenever

a�ðTx;TyÞHðTx;TyÞ 6 wðdðx; yÞÞ; for x; y 2 X; ð1:1Þ

where a�ðTx;TyÞ ¼ inffaða; bÞ : a 2 Tx; b 2 Tyg.

In the following we introduce the concept of multivalued
a–w contraction and multivalued a-admissible.

Definition 1.2 (Multivalued a–w contraction). Let ðX; dÞ be a
metric space, and a : X� X! ½0;1Þ; w : ½0;1Þ ! ½0;1Þ be
two mappings such that w is a nondecreasing and continuous
function with

P
wnðtÞ <1 and wðtÞ < t for each t > 0.

T : X! CLðXÞ be a multivalued mapping. We say that T is

a multivalued a–w contraction if

aðx; yÞHðTx;TyÞ 6 wðdðx; yÞÞ; for all x; y 2 X: ð1:2Þ

Remark 1.1. In (1.2) of our Definition 1.2 we consider aðx; yÞ
instead of a�ðTx;TyÞ which has been considered in (1.1) of
Definition 1.1. a�ðTx;TyÞ is defined as

a�ðTx;TyÞ ¼ inffaða; bÞ : a 2 Tx; b 2 Tyg; for x; y 2 X:

From the definition it is clear that a�ðTx;TyÞ is not necessarily
equal to aðx; yÞ, and also we cannot compare aðx; yÞ with
a�ðTx;TyÞ. Therefore Definition 1.2 is new and independent

of Definition 1.1.

Remark 1.2. If T is singlevalued in Definition 1.2, then it is an
a–w contraction as in [8].

Definition 1.3 (Multivalued a-admissible). Let X be any non-

empty set. T : X! PðXÞ and a : X� X! ½0;1Þ be two map-
pings. We say that T is multivalued a-admissible if, for
x; y 2 X,

aðx; yÞ > 1) aða; bÞ > 1; for all a 2 Tx and for all b 2 Ty:

Example 1.1. Let X ¼ R; a : R� R�!½0;1Þ. We define

aðx; yÞ ¼ x2 þ y2; where x; y 2 R:

Define T : R�!PðRÞ by,

Tx ¼
ffiffiffiffiffiffi
jxj

p
;�

ffiffiffiffiffiffi
jxj

pn o
:

Then T is multivalued a-admissible.
2. Main Result

We first prove that multivalued a–w contractions on complete

metric spaces have nonempty fixed point sets. In the proof
of the following theorem we make use of Lemma 8.1.3(c)
of [18].

Theorem 2.1. Let ðX; dÞ be a complete metric space and

T : X! CLðXÞ be a multivalued a–w contraction. Also T
satisfies the following:

(i) T is multivalued a-admissible;
(ii) For some x0 2 X ; aðx0; aÞ > 1 holds for all a 2 Tx0;
(iii) If fxng is a sequence in X such that

aðxn; xnþ1Þ > 1 for all n, where xnþ1 2 Txn and xn ! x as
n!1, then aðxn; xÞ > 1 for all n.

Then T has a fixed point.

Proof. Let x0 2 X be as in the statement of the theorem. By
(ii), we have x1 2 Tx0 such that, aðx0; x1Þ > 1. Then, since
x1 2 Tx0, we can choose x2 2 Tx1 such that,

dðx1; x2Þ 6 aðx0; x1ÞHðTx0;Tx1Þ. So, by (1.2), we have

dðx1; x2Þ 6 aðx0; x1ÞHðTx0;Tx1Þ 6 wðdðx0; x1ÞÞ: ð2:1Þ

Since x1 2 Tx0; x2 2 Tx1 and aðx0; x1Þ > 1, by (i), we have

aðx1; x2Þ > 1.

Again, for x2 2 Tx1;we can choose x3 2 Tx2 such that

dðx2; x3Þ 6 aðx1; x2ÞHðTx1;Tx2Þ:

Therefore, by (1.2), we have,

dðx2; x3Þ 6 aðx1; x2ÞHðTx1;Tx2Þ 6 wðdðx1; x2ÞÞ

6 w2ðdðx0; x1ÞÞ ðby ð2:1ÞÞ: ð2:2Þ

Also, since aðx1; x2Þ > 1; x2 2 Tx1 and x3 2 Tx2 we have
that aðx2; x3Þ > 1. Continuing this process we can construct
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a sequence fxng such that for all n P 1; xnþ1 2 Txn;
aðxn; xnþ1Þ > 1 and

dðxn; xnþ1Þ 6 aðxn�1; xnÞHðTxn�1;TxnÞ 6 wnðdðx0; x1ÞÞ: ð2:3Þ

Now, we have

X1
k¼1

dðxk; xkþ1Þ 6
X1
k¼1

wkðdðx0; x1ÞÞ ¼ Uðdðx0; x1ÞÞ

<1 ðby an assumption of the theoremÞ:

This implies that, fxng is a Cauchy sequence. Since X is
complete, there exists z 2 X such that fxng ! z as n!1.

Now we prove that z 2 Tz.

For all n P 1; xnþ1 2 Txn. Therefore dðxnþ1;TzÞ 6
HðTxn;TzÞ. By (iii), aðxn; zÞ > 1 for all n P 1. Hence we have
for all n P 1, dðxnþ1;TzÞ 6 aðxn; zÞHðTxn;TzÞ 6 wðdðxn; zÞÞ.

Letting n!1 we have dðz;TzÞ 6 wð0Þ. Since wðtÞP 0
and wðtÞ < t, for all t P 0, we have that wð0Þ ¼ 0.

Therefore, we get dðz;TzÞ ¼ 0. Since Tz 2 CLðXÞ, it follows
that z 2 Tz.

Hence T has a fixed point. h

Example 2.1. Let X ¼ R: dðx; yÞ ¼ jx� yj. Define
T : R! CLðRÞ by

Tx ¼

f1; 1
4x
g; if x > 1;

f0; x
16
g; if 0 6 x 6 1;

f2; 3g; otherwise:

8>><
>>:

HðT0;TxÞ ¼ maxf2; 3g ¼ 3 > 1:

Hence, we observe that, the Nadler’s multivalued contrac-
tion principle [3] cannot be applied here.

Now, we define the mapping, a : R� R! ½0;1Þ by,

aðx; yÞ ¼
2; if x; y 2 ½0; 1�;
0; otherwise:

�

and let w : ½0;1Þ ! ½0;1Þ be that

wðtÞ ¼ 1

2
t:

Then T is multivalued a–w contraction as well as multi-
valued a-admissible.

Now, for x; y 2 ½0; 1� we have,

dð0;TyÞ ¼ inf 0;
y

16

n o
¼ 0;

d
x

16
;Ty

� �
¼ inf 0� x

16

��� ���; x

16
� y

16

��� ���n o
:

dð0;TxÞ ¼ inf 0;
x

16

n o
¼ 0;

d
y

16
;Tx

� �
¼ inf 0� y

16

��� ���; x

16
� y

16

��� ���n o
:

HðTx;TyÞ ¼ max sup
x2Tx

dðx;TyÞ; sup
y2Ty

dðy;TxÞ
� �

¼ max inf
x

16

��� ���; x

16
� y

16

��� ���n o
; inf

y

16

��� ���; y

16
� x

16

��� ���n on o

¼ x

16
� y

16

��� ���:
Now,

aðx; yÞHðTx;TyÞ ¼ 2� x

16
� y

16

��� ��� ¼ 1

8
jx� yj 6 jx� yj

2

¼ wðdðx; yÞÞ:

Hence we observe that T satisfies all the condition of the

above theorem, and T has fixed point at x ¼ 0.

Theorem 2.2. Let X be a complete metric space and
FðT1Þ;FðT2Þ are the fixed point sets of T1;T2 respectively where
Ti : X! CLðXÞ; i ¼ 1; 2. Each Ti is multivalued a–w contrac-

tion as defined in Theorem 2.1 with the same a and w. Also each
Ti satisfies the following:

(i) for any x 2 F ðT 1Þ, we have aðx; yÞ > 1 whenever y 2 T 2x,
and for any x 2 F ðT 2Þ, we have aðx; yÞ > 1 whenever
y 2 T 1x;

(ii) Each T i is multivalued a-admissible;
(iii) If fxng is a sequence in X such that aðxn; xnþ1Þ > 1 for all

n P 1 where xnþ1 2 T ixn; i ¼ 1; 2, and xn ! x as n!1,
then aðxn; xÞ > 1 for all n P 1.

Then HðF ðT 1Þ; F ðT 2ÞÞ 6 UðKÞ, where K ¼ supx2X HðT 1x; T 2xÞ.

Proof. By Theorem 2.1, FðT1Þ and FðT2Þ are nonempty. Let

q > 1 be any number. Choose x0 2 FðT1Þ. We can find
x1 2 T2x0 such that dðx0; x1Þ 6 qK. For any x0 2 FðT1Þ, and
x1 2 T2x0, we have by (i), aðx0; x1Þ > 1. Now, for x1 2 T2x0,

we can find x2 2 T2x1 such that,

dðx1; x2Þ 6 aðx0; x1ÞHðT2x0;T2x1Þ:

Therefore, by (1.2) and Theorem 2.1, we have,

dðx1; x2Þ 6 aðx0; x1ÞHðT2x0;T2x1Þ 6 wðdðx0; x1ÞÞ 6 wðqKÞ:

Since aðx0; x1Þ > 1; x1 2 T2x0 and x2 2 T2x1, we have by (ii),
aðx1; x2Þ > 1. For x2 2 T2x1 we can choose x3 2 T2x2 such

that, dðx2; x3Þ 6 aðx1; x2ÞHðT2x1;T2x2Þ. Therefore, by (1.2),
we have,

dðx2; x3Þ 6 aðx1; x2ÞHðT2x1;T2x2Þ 6 wðdðx1; x2ÞÞ
6 w2ðdðx0; x1ÞÞ 6 w2ðqKÞ:

Since x2 2 T2x1; x3 2 T2x2 and since aðx1; x2Þ > 1, then we
have, by (ii), that aðx2; x3Þ > 1.

Continuing this process, we can construct a sequence fxng,
such that, xnþ1 2 T2xn for all n P 1. We have for all
n P 1; aðxn�1; xnÞ > 1, and also that,

dðxn; xnþ1Þ < aðxn�1; xnÞHðT2xn�1;T2xnÞ 6 wðdðxn�1; xnÞÞ
6 wnðdðx0; x1ÞÞ 6 wnðqKÞ:
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Now,

X1
k¼1

dðxk; xkþ1Þ 6
X1
k¼1

wkðdðx0; x1ÞÞ 6
X1
k¼1

wkðqKÞ ¼ UðqKÞ

<1 ðby the assumption of the Theorem 2:1Þ:

Therefore, fxng is a Cauchy sequence. SinceðX; dÞ is com-
plete, fxng converges to z.

Now, we prove that z 2 T2z.

For all n P 1; xnþ1 2 T2xn. Therefore, dðxnþ1;T2zÞ 6
HðT2xn;T2zÞ. By (iii), aðxn; zÞ > 1 for all n P 1. Hence we
have for all n P 1, dðxnþ1;T2zÞ 6 aðxn; zÞHðT2xn;T2zÞ 6
wðdðxn; zÞÞ.

Letting n!1, we get dðz;T2zÞ 6 wð0Þ. Since wðtÞP 0
and wðtÞ < t for all t P 0, therefore we have wð0Þ ¼ 0. Hence

dðz;T2zÞ ¼ 0 implies that z 2 T2z.

So z 2 FðT2Þ.

Now using triangular inequality,

dðx0; zÞ 6
Xn
i¼0

dðxi; xiþ1Þ þ dðxnþ1; zÞ 6
X1
i¼0

dðxi; xiþ1Þ

6

X1
i¼0

wiðdðx0; x1ÞÞ 6
X1
i¼0

wiðqKÞ ¼ UðqKÞ <1:

Thus, given arbitrary x0 2 FðT1Þ, we can find z 2 FðT2Þ for
which

dðx0; zÞ 6 UðqKÞ:

Reversing the roles of T1 and T2 we also conclude that for

each y0 2 FðT2Þ, there exists y1 2 T1y0 and w 2 FðT1Þ such
that, dðy0;wÞ 6 UðqKÞ.

Hence HðFðT1Þ;FðT2ÞÞ 6 UðqKÞ.

Letting q! 1 we get the result. h

Lemma 2.1. Let ðX; dÞ be a complete metric space. If fTng is a
sequence of multivalued a–w contractions uniformly convergent
to T, then T is multivalued a–w contraction with the same a
and w.

Proof. Since each Tn is multivalued a–w contraction, for all
n P 1, each Tn satisfies

aðx; yÞHðTnx;TnyÞ 6 wðdðx; yÞÞ; for all x; y 2 X:

Taking limit n!1, we get

aðx; yÞHðTx;TyÞ 6 wðdðx; yÞÞ; for all x; y 2 X:

Hence T is multivalued a–w contraction. h

Theorem 2.3. Let ðX; dÞ be a complete metric space. fTng is a
sequence of multivalued a–w contractions which are also
a�admissible, and is uniformly convergent to T. Let T be multi-

valued a-admissible with the same a. Further let the following
condition hold.
For all n P 1, for any x 2 FðTnÞ, we have aðx; yÞ > 1

whenever y 2 Tx and for any x 2 FðTÞ, we have aðx; yÞ > 1
whenever y 2 Tnx.

Then

HðFðTnÞ;FðTÞÞ ! 0 as n!1;

that is, the fixed point sets of Tn are stable.

Proof. By Lemma 2.1, T is multivalued a–w contraction. Let
Kn ¼ supx2XHðTnx;TxÞ. Therefore,

lim
n!1

Kn ¼ lim
n!1

sup
x2X

HðTnx;TxÞ ¼ 0;

ðsince fTng converges to T uniformly on XÞ:

Therefore, from Theorem 2.2 we get

HðFðTnÞ;FðTÞÞ 6 UðKnÞ ! 0; as n!1
ðsince UðtÞ ! 0 as t! 0Þ:

This proves the theorem. h

Lemma 2.2. Let ðX; dÞ be a complete metric space. If fTng is a
sequence of multivalued a-admissible with the same a and is uni-

formly convergent to T, then T is multivalued a-admissible if the
following condition is satisfied.

aðxn; ynÞ > 1) aðx; yÞ > 1;

whenever fxng ! x andfyng ! y as n!1: ð2:4Þ

Proof. Let aðx; yÞ > 1, for some x; y 2 X. Let a 2 Tx and
b 2 Ty be arbitrary. Now, Tn ! T uniformly, which implies

that, there exist two sequences fxn 2 Tnxg and fyn 2 Tnyg such
that xn ! a and yn ! b as n!1. Each Tn is a-admissible.
Since aðx; yÞ > 1, it follows that aðxn; ynÞ > 1 for all n. Hence

by the assumption of (2.4), aða; bÞ > 1. Thus we have,

aðx; yÞ > 1) aða; bÞ > 1 for all a 2 Tx and for all b 2 Ty:

Hence, T is multivalued a-admissible. Hence the result. h

Theorem 2.4. Let ðX; dÞ be a complete metric space. If fTng is a
sequence of multivalued a–w contractions which are also multi-
valued a-admissible with the same a and w and is uniformly con-
vergent to T. Let a be such that

aðxn; ynÞ > 1) aðx; yÞ > 1; whenever fxng ! x and

fyng ! y as n!1:

Further let the following condition hold. For all n P 1, for
any x 2 FðTnÞ, we have aðx; yÞ > 1 whenever y 2 TðxÞ, and

for any x 2 FðTÞ, we have aðx; yÞ > 1 whenever y 2 Tnx. Then

HðFðTnÞ;FðTÞÞ ! 0 as n!1;

that is, the fixed point sets of Tn are stable.

Proof. By Lemmas 2.1 and 2.2, it follows that T is multivalued
a–w contraction and multivalued a-admissible. Then the
theorem follows by an application of Theorem 2.3. h
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Example 2.2. Let X ¼ R. dðx; yÞ ¼ jx� yj. Define

T : R! CLðRÞ by

Tnx ¼

1þ 1
n
; 1
4x
þ 1

n

� 	
; if x > 1;

1
n
; 1
n
þ x

16

� 	
; if 0 < x 6 1;

f0g; if x ¼ 0;

f2; 3g; otherwise:

8>>>>><
>>>>>:

Let the mapping a : R� R! ½0;1Þ be given by

aðx; yÞ ¼
2; if x; y 2 ð0; 1�;
0; otherwise:

�

Each Tn is multivalued a-admissible. Tn ! T as n!1.
The T is given by

Tx ¼
1; 1

4x

� 	
; if x > 1;

0; x
16

� 	
; if 0 < x 6 1;

f2; 3g; otherwise:

8>><
>>:

T is multivalued a-admissible. We define
w : ½0;1Þ ! ½0;1Þ by

wðtÞ ¼ 1

2
t:

Each Tn is multivalued a–w contraction, and T is also
multivalued a–w contraction. Let x; y 2 ð0; 1�;

HðTnx;TnyÞ¼max sup
x2Tx

dðx;TyÞ; sup
y2Ty

dðy;TxÞ
� �

¼max inf
x

16

��� ���; x

16
� y

16

��� ���n o
; inf

y

16

��� ���; y

16
� x

16

��� ���n on o

¼ x

16
� y

16

��� ���:
Therefore aðx; yÞHðTnx;TnyÞ 6 wðdðx; yÞÞ.

We observe that all the conditions of Theorem 2.3 are
satisfied. FðT1Þ ¼ f0; 1g and FðTnÞ ¼ f0g for n P 2.

FðTÞ ¼ f0g. Hence

HðFðTnÞ;FðTÞÞ ! 0 as n!1:

Remark 2.1. There is no assumption of continuity on the map-
ping we consider in this paper. In fact, Example 2.2 is a case

where the mapping is not continuous.

Open problem: A multivalued version of a–w contraction

was introduced in [17]. The definition of multivalued a–w con-
traction we introduce here is different from that in the above
mentioned work. It remains to be seen whether a–w contrac-

tions can be extended to the multivalued case in some other
ways also and in those cases whether the stability of fixed point
sets still holds.
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