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1. Introduction

In 1922, the polish mathematician, Banach [1], proved a theo-
rem which ensures, under appropriate conditions, the existence
and uniqueness of a fixed point. This principle has many gen-
eralizations in different ways which established and introduced
by several authors, for convenience we refer the reader to (see;
e.g., [2-24]. One such generalizations is a partial metric space
which introduced by Matthews [16]. In partial metric spaces,
self-distance of an arbitrary point need not to be equal zero.

Definition 1.1. A partial metric on a nonempty set X is a
function p: X x X — R",R":=[0,00), such that for all
X, y,z€ X:
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(p) x=y<=plx,x)=pxy)=p»y),
(P*)  plx,x) < p(x,p),

) p(x,y)=py,x),

") plx,y) <plx,2)+p(z,y) —p(z2).

A partial metric space is a pair (X,p) such that X is a non-
empty set and p is a partial metric on X.

On the other hand, Mustafa and Sims [17] introduced the
notation of generalized metric spaces that so-called G-metric
spaces and they extended Banach principle in G-metric spaces
as follows.

Definition 1.2. Let X be a non-empty set. Suppose that G : X'x
X x X — RT satisfies:

(@) G(x,y,z2) =0ifx=y =z,

(b) G(x,y,2z) > 0,Vx,y,z € X,x#y,

(©) G(x,x,y) < G(x,,2),Yx,y,z € X, y#z,

(d) G(x,y,2z) = G(x,z,y) = G(y,z,x) = ..., (symmetry in all
three variables),

(e) G(x,y,2z) < G(x,a,a) + G(a,y,z),Vx,y,z,a € X.
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Then G is called a G-metric on X and (X, G) is called a G-
metric space.

Recently, Zand and Nezhad [24] introduced a generaliza-
tion and unification of both partial metric space and G-metric
space, by giving the notation of G,-metric space in the follow-
ing way.

Definition 1.3. Let X be a non-empty set. Suppose that
G,: X x X x X — R satisfies:

(@) x=y=zif G,(x,x,x) = G,(y,»,¥) = G,p(z,2,2) Vx,y,z€ X,

(b) 0 < Gylx,x,x) < Gylx,x,y) < Gplx,»,2),¥x, 3,z € X,

(©) Gy(x,y,z) = G,(x,2,y) = Gy(y,z,x) = ..., (symmetry in
all three variables),

d) G,(x,y,z) < Gy(x,a,a) + G,(a,y,2) — G,(a,a,a),¥x,y,z,
aceX.

Then G, is called a G,-metric on X and (X, G,) is called a
G,-metric space.

Example 1.1 [24]. Let X =[0,00) and define G,(x,y,z) =
max{x, y,z} forall x.y.z € X Then (X, G,) is a G,-metric space,
Also, one can show that (X, G,) is not a G-metric space.

Proposition 1.1 [24]. Let (X,G,) is a G,-metric space, then for
any x,y,z € X and a € X,it follows that

(1) Gp(xvyvz) < Gp(x7x7y) + Gp(x7x72) - Gp(x7x7x)’
(11) Gp(x’yvy) < ZGﬂ(xvxvy) - Gp(x7x7x)’
(iii) G,(x,»,z) < G,(x,a,a) + G,(v,a,a) + G,(z,a,a)
-2G, (a,a,a),
(iv) Gy(x,y,2) < Gy(x,a,z) + G,(a,y,z) — Gy(a,a,a).

Proposition 1.2 [24]. Every G,-metric space (X,G,) defines a
metric space (X, Dg,) where

DG,;(x’y) = G/’('X7y’y) + Gﬂ(ya X, X) - G[,(X, X, X) - Gp(yvyvy)7
forall x,y € X.

Definition 1.4 [24]. Let (X,G,) be a Gp-metric space a
sequence {x,} is called a Gp convergent to x € X if
1imy, 0o G (X, X, %) = Gy (x, X, X).

A point x € X is said to be limit point of the sequence {x,}
and written x,, — x.

Thus if x, — x in a G,-metric space (X,G,), then for any
€> 0, there exists /€ N such that |G,(x,x,,x,) — Gy(x, x,
x)| <e, forall n,m > 1.

Proposition 1.3 [24]. Let (X, G,) is a G,-metric space, Then, for
any sequence {x,} in X and a point x € X, the following are
equivalent that

(i) {x.} is G,-convergent to x;
(@) Gp(xp,x0,x) = Gp(x,x,x) as n — 00
(ii1) Gp(%xn,x,x) — G,(x,x,x) as n — oo.

Definition 1.5 [24]. Let G, be G,-metric space.

(i) A sequence {x,} is called a Gp-Cauchy if and only if
1im,, y—.00 Gy (X, X, Xn) €Xists (and is finite).

(i) A Gp-metric space (X, G,) is said to be Gp-complete if
and only if every GP-Cauchy sequence in X is GP-con-
vergent to x € X such that G,(x,x,x) =lim,,—«G,
(s Xy Xm ) -

Definition 1.6 [17]. The two classes of following mappings are
defined ¥ ={y: ¢ : [0,00) — [0,00) is continuous, nonde-
creasing and ~'(0) =0}, and & ={p: ¢:[0,00) — [0,00)
is lower semi-continuous, nondecreasing and ¢~!(0) = 0}.

Definition 1.7 [2]. Let (X, <) be a partially ordered set. Two
maps f,g: X — X are said to be weak increasing if fx < gfx
and gx < fgx forall x € X

Lemma 1.1 [6]. We note that if (X,G,) be G,-metric space,
Then

(@) If Gy(x,y,2) =0=>x=y =z,
(i) If x#y, then G,(x,»,y) > 0.

Abbas, Nazir and Radenovic [2] proved the following result.

Theorem 1.1. Let (X, =) be a partially ordered set and f and g
be weakly increasing self mapping on a complete G-metric space
X. Assume that there exist y € ¥ and ¢ € @ such that

V(G(x, gv,2y)) S Y(M(x,y,7)) — p(M(x,y,7)) (1.1)

for all comparable x,y € X where

M(x,y,y) = a\G(x,y,y) + &G(x,fx,fX) + a3G(y, gy, gY)
+ ai[G(x, gy, 8v) + G(y, /X, fx)]

where a; > 0 for i = {1,2,3,4} with a; + a> + a3 + 2a4 < 1 .if f
or g is continuous or for {x,} a nondecreasing sequence with
x, — z in X implies x, < z for all n € N, then f and g have a
common fixed point.

The aim of this paper is to generalize Theorem 1.1 to
G,-metric spaces. Also, in our result, the used contractive con-
dition generalize condition (1.1). Finally, we give an example
to support our result.

2. A main result

First we rewrite the continuity of maps in G,-metric space as
follows.

Definition 2.1. Let (X,G,) be a G,-metric space, partially
ordered and 7: X — X be a given mapping. We say that T is
continuous in xo € X if for every sequence x, in X, we have

(i) x, converges to x¢ in (X, G,) implies Tx, converges to Tx,
in (X,G,).

(ii) x, converges properly to xy in (X, G,) implies Tx, con-
verges properly to Tx, in (X, G,).
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If T is continuous on each point x, € X, then we say that T
is continuous on (X, G,).

Now, we state and prove our main result in the following
way.

Theorem 2.1. Let (X, =) be a partially ordered set and f and g
be weakly increasing self mapping on a complete G,-metric space
X. Assume that there exist Yy € ¥ and ¢ € ® such that

lﬁ(Gp(fx7 g}’,g)’)) < lP(M(XJJ)) - Q)(M(vavy)) (21)

for all comparable x,y € X where

M(X,y,y) = max{G,,(x,y,y)7 Gﬁ(xvjixmfx)a G/?(y7gy7gy)7
Gy (x, 8, 8y) + Gp(y.fx,/x)]/2}.

Suppose that one of the following cases is satisfied:

(i) f or g is continuous,
(i) if a nondecreasing sequence {x,} converges to z € X
implies x, =< z for all n € N.

Then the maps f and g have a common fixed point.

Proof. Assume that u is a fixed point of f and G,(u,gu,
gu) > 0, then from (2.1) with x = y = u, we have

w(G[l(uvg%g”)) = W(Gp(ﬁ"»guvgu))
< l//(M(u7 u, u)) - QD(M(uv u, u))v (22)

where

M (u,u,u) = max{G,(u, u,u), G,(u, fu, fu), G,(u, gu, gu),
(G (u, gu, gu) + Gy (u, fu, fu)]/2}
= max{G,(u,u,u), G,(u,u,u), G,(u, gu, gu),
(G (u, gu, gu) + Gy (u, u, u)]/2}
= max{G,(u,u,u),G,(u,gu, gu)} = G,(u, gu, gu).

Hence we get

W(G,(u, gu, gu) = Y(G,(fu, gu, gu) < Y(G,(u, gu, gu)
— ¢o(G,(u, gu,gu) = @(G,(u, gu, gu) < 0.

a contradiction. Hence, G,(fu, gu,gu) =0. So, u is common
fixed point of f'and g. Similarly, if « is a fixed point of g, then
one can deduce that u is also fixed point of /. Now let x; be an
arbitrary point of X. if fx, = x,, then the proof is finished, so
we assume that fx,#xo.

Now, one can construct a sequence {x,} in X as follows:

X1 = fxo 3 8fXg = gx) = X2,
Xy = gx; =2 fgx; = fx, = X3,

Xn = Xpi1-

Now since x,, and x,,,; are comparable so we may assume
that G, (X2, X2ut1, X2041) > 0, for every neN. If not,
then x,, = x,,,; for some n. For all those n, using (2.1), we
obtain

l//(G['(XZYlJrl y X2n42,5 x2ﬂ+2)) = lp(Gp(fx2nagx2n+l y &Xon41 ))
S Y (M(X20, Xont1, Xout1))
— @(M(Xon, X2041, X2u11)), (2.3)

M (X2, X211, X2011)) = Max{ Gy (X, Xon1,Xans1), Gp (X2, X0, /%2, ),
Gp (X2n+1 y8X2141,8X 0041 )7
[Gp(XZMagx2n+l s 8Xont1 )+ Gp(X2n+1 S0 1%2,)1/2}
= max{G,(Xan, X201, X2041), Gp (X210, X201, X2041),
G (X2041,X2042,X2042) 5

[Gy (X2, Xonr2:X2n12) + Gy (X215 Xoni1, Xous1)] /2}

1
max{G,(xz+1 -,x2n+27X2n+2)7E (G (X, Xous15X2041)

+ Gy (X211, X212, X212) — Gp (X1, X20415 X2041)
+ Gp (erHrl s X2n4+15X2n+1 )]}

- Gp (X2n+1 3 X2n425 x2n+2)

N

Hence

IP(Gp (X2n+| y X2n42,s X2n+2)) < l//(Gp (X2n+1 y X2n+42,5 in+2))
- (P(Gp (X2n+l y X2n42, x2n+2))7

implies that @(G,(X2u41, X2042, X2n42)) = 0 and X401 = Xoupa.
Following the similar arguments, we obtain x,.» = X2,,3 and
hence x,, becomes a common fixed point of f and g.

Now, by taking Gp(X2n, Xons1, X2p41) > 0 for
n=1,2,3,..., consider

W(Gp(xznﬂ y X2n42, x2n+2)) = lp(Gp(fXvagXZnJrl ) gx2n+1 ))
< l//(M(XZMa Xont15 X2n+1 ))
- ¢(M(X2n7x2n+lyx2n+l))7 (24)

M (X, Xon1,X2n41)) = maX{Gp (X2ns X215 Xon 41 )7Gp (X203 /%2, X2,) 5

GII (XZHH 18X +1 7gx2n+l)7

(G (X20,8X0041,8%2u1) + G (X211 /X001 /%2,)] /2}

= maX{Gp (X2/17X2n+1 5 X241 )7Gp («‘sz-\’mH 7X2n+1)7

G]) (X2)1+1 :x2n+27x2n+2)7
[G) (x2n Xani2, X2n12) + Gy (X2ns1, X2ns 15 X2041)] /2}
max{Gp(Xan, Xan1,X2m11), Gp(Xont1, X242, X2n42),
[Gp (x2nX2ni1, X2n11) + Gy (X2ns1, X2m425 X2n42)
— Gy (Xani1,X2m 11, X2m41) + Gy (Xans1, X2ns1,X2041)]/2}

max{Gp (x2n-,x2/1+1 s X2n+1 ) ) Gp (x2n+l 1x2n+2-,x2/1+2)1

N

N

1
5[Gp()cZ,“xan s Xoni1) Gy (Xns1,Xon 12, X2m42) ]}
= max{G, (X, Xont1,%241), Gp(Xoni1, X242, X2n42) }-
Now if Gp (x2n+| y X2n42,4 x2n+2) = Gp (x2n7 X241, x2n+l) for some n
= 0,1,2,.. ,then M (X2, X2ui1, X2ni1) = Gp(X2nt1, X2n42, X2042)
and from (2.4), we have
l//(Gp (X2n+1 y Xon42, x2n+2)) < W(Gp (X2n+1 » Xont2, X2n+2))
- (p(Gp (x2n+l y Xon+2, x2n+2))

implies that @(G,(X2u41, X202, X2442)) = 0, a contradiction.
Therefore, for all n =0, G,(X241, X242, X2n42) < Gp(X20,
Xout1, Xoup1).  Similarly, we have G,(x2,, Xoui1, Xous1) < G,
(X2n—1, X2n, X2,) for all n = 0. Hence for alln > 0

Gp(xnﬂ y Xni2s Xnp2) < G, (Xs Xn1s Xn1)

and {G,(X,11, Xu2, Xu12) } is @ non-increasing sequence and so
there exists L > 0, such that lim,_...G,(X,11, Xpi2, Xui2) = L.
Then, by the lower semi continuity of ¢,
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(p(L) < lim inf(p(M(xn7xn+l7xn+l))'

n—oo
We claim that L = 0. By lower semi continuity of ¢ ,taking the
upper limit as n — oo on either side of
lp(Gp(anrl y Xn425 xn+2)) g W(M(xm Xnt1y Xnt1 ))
- d)(M(.X,,, Xnt1s xn+l))7

we have

Y(L) < Y(L) — lim inf (M (%, X1, Xue1)) < Y(L) — o(L),

n—o0

ie. (L) <0. Thus ¢(L) =0 and we conclude that

lim Gp (xn+1 > Xnt2y xn+2) =0. (25)

00
Now, we shall show that {x,} is a G,-Cauchy sequence. For
each n < m, and n,m € N we get
Gp (-Xnyxnnxm) < Gp(xm xn+17-xn+l) + Gp(xn+l7xn+27 xn+2)

+ Gp( X125 Xpt3, Xnp3) + - -

+ Gp(xm—hxrmxm) - {G1i(xn+17xn+17xn+1)

+ oo+ G X1, X1, X1 }

< Gp(-xm xn+17xn+l) + Gp(xn+ly-xl1+27 xn+2)

+ Gp(Xnt2s Xp43, Xup3) + - -

+ Gy (X1, X, Xin).-
By taking the limit as n,m — oo to both side of the above

inequality and from (2.5) we have

lim G,(x,, Xp, X) = 0.

n,m—oo

It follows that {x,} is a G,-Cauchy sequence and by G,-com-
pleteness of X, so there exist z € X such that {x,} converges to
zasn— oo.

Now we will distinguish the cases (i) and (ii) of Theorem
2.1.

(i) Suppose g is continuous, since x,;; — z, we obtain that
Xonp2 = g(x2,11) = g(2). But xp,42 — z. (as a subsequence
of {x,}) It follows that g(z) = z, and from the beginning
of the prove we get g(z) = z = f(z).The proof, assuming
that f'is continuous, is similar to above.

(ii) Suppose that G,(z, gz,gz) > 0 and for {x,} and a nonde-
creasing sequence with x, — z in X implies that x,,,; <z
for all n € N .Now from (2.1)

l//(Gp(XZn+17gzng)) = lJ/(GP(f:XZrngZ’gZ))
< lp(M(x2717Z7 Z)) - QD(M(XZWL Z))v

where

M(x2, 2, 2) = max{G,(xm, z,2), Gy (Xou, X5, fX2,)
G)(2,42,82), [Gp(xm, 87, 87)
+ Gp(2, [, %2,)] /2}
= max{Gy(Xa, 2, 2), Gp(X2, X2u115 X2n11),
G)(2,42,82), [Gp(xm, 87, 87)
+ Gp(z, X115 Xn11)]/2}

and on taking limit as n — oo, implies lim,_.,M(x2,,z,2) =
G,(z,8z,8z). Thus

V(G)y(2,82,22)) = lim sup §/(G, (/x,,, &7, 82))
< lim Suply (M (2,2, 2)) — 9(M(x2,7,)
<Y(Gp(z,82,82)) — 9(Gy(2, 87, 82))
a contradiction. Thus G,(z,gz,gz) =0andso z =fz = gz. O
Put y(7) = ¢ in Theorem 2.1, we obtain the following.
Corollary 2.1. Let (X, <) be a partially ordered set and f and g

be weakly increasing self mapping on a complete G,-metric space
X. Assume that there exist ¢ € ® such that

G,(fx,gy,8y) < M(x,y,y) — @(M(x,,y)) (2.6)

for all comparable x,y € X where

M(x,p,y) = max{G,(x,,y), G, (x,1x,/x), G, (v, 8y, &),
(G, (x,gv,8p) + G, (v, fx,/x)]/2}.

Suppose that one of the following cases is satisfied:
(1) f or g is continuous,
(i) if a nondecreasing sequence {x,} converges to z€ X
implies x, < z for all n € N.
Then the maps f and g have a common fixed point.
The following corollary is G,-metric spaces version of The-

orem 1.1.

Corollary 2.2. Let (X, <) be a partially ordered set and f and g
be weakly increasing self mapping on a complete G,-metri space
X. Assume that there exist Yy € ¥ and ¢ € ® such that

V(G (fx,g,8¥)) S YM(x,p,7)) = ¢(M(x,, 7)) (2.7)

for all comparable x,y € X where

M(x7y7y) = ale(x7y7y) + azG,,(x,fx,fx) + a3G/7(yagy7gy)
+ @G, (x,8v,8Y) + G, (y.fx,/x)]
where a; > 0 for i = {1,2,3,4} with a; + a» + a3 + as < 1.

Then of the following two cases is satisfied.:

(1) for g is continuous,
(i) if a nondecreasing sequence {x,} converges to z€ X
implies x,, = z for all n € N.
Then the maps f and g have a common fixed point.
If we set y(7) = ¢ in Corollary 2.2, we get the following.
Corollary 2.3. Let (X, <) be a partially ordered set and f and g

be weakly increasing self mapping on a complete G,-metric space
X satisfying

Gy(fx, 8v,87) < M(x,,y) = o(M(x,,)) (2.8)

for all comparable x,y € X where ¢ € ® and

M(x,p,y) = ai1Gy(x,2,¥) + @G, (x,fx,fx) + 3G, (v, 8, 2y)
+ a4[Gy(x, 2y, 2y) + G, (v, 1, fx)]



Fixed point theorem for weak contractive maps

313

where a; > 0 for i=1,2,3,4 with ay + a, + a3 + 2a, < 1.
Suppose that one of the following cases is satisfied:

(1) for g is continuous,
(i) if a nondecreasing sequence {x,} converges to z€X
implies x, < z for all n € N.

Then the maps f and g have a common fixed point.

Corollary 2.4. Let (X, <) be a partially ordered set and f and g
be weakly increasing self mapping on a complete G,-metric space
X satisfying

G,(fx, gy, gy) < kmax{G,(x,y,y),

Gy(x, fx, fx),
G,(v,87,85),[Gp(x,2y,8v)
+ Gy (v, fx,x)]/2}, (2.9)

for all comparable x,y € X.
Suppose that one of the following cases is satisfied:

(i) f or g is continuous,

(i) if a nondecreasing sequence {x,} converges to z€X
implies x, < z for all n € N.Then the maps f and g have
a common fixed point.

Proof. Define ¢,y : [0,00) — [0,00) by ¥(r) =t and ¢(1) =
(1 —k)tforallz € [0,00), where k € [0,1). Then it is clear that
Y € ¥ and ¢ € @. The result follows from Theorem 3.2. O

Corollary 2.5. Let (X, <) be a partially ordered set and f and g
be weakly increasing self mapping on a complete G,-metric space
X satisfying

lp(G[l(f-Xugy?gy)) < W(G[)(xmy?y)) - (p(Gp(x7y7y))

for all comparable x,y € X where y € ¥, p € ©.
Suppose that one of the following cases is satisfied:

(2.10)

(1) for g is continuous,

(i) if a nondecreasing sequence {x,} converges to z € X
implies x, <z for all n € N.Then the maps f and g have
a common fixed point.

Corollary 2.6. Let (X, =) be a partially ordered set and f and g
be weakly increasing self mapping on a complete G,-metric space
X satisfying

Gp(x,,9)

1+ Gy(x,,¥) 210

Gy(fx,gy,8y) <
for all comparable x,y € X.
Suppose that one of the following cases is satisfied:

(i) for g is continuous,

(i) if a nondecreasing sequence {x,} converges to z € X
implies x, <z for all n € N.Then the maps f and g have
a common fixed point.

Example 2.1. Let X =[0,1] be a set endowed with order
X 2y <= y<x let Gy(x,y,z) = max{x,y,z} be a G,-metric
space on X Define by f,g: X — X by f(x) = 5Vx € X,

£ xel0,),
g(x) =171 L
3 X € [5, 1)
it’s clear that f'is continuous and g is not continuous. and the
pcur (f-g) is weakly 1ncreds1ng f,g is commuting at x =1
=X,9() =7 and (1) =%,1€ R", then we have frorn
Theorem 2.1

W(G,(fx, 8, 2y)) < Y(M(x,y,»)) — o(M(x,y,y))

since Y(G (fvzgy gy)) = Y([max{fx,gy.gv}) =
—'P(lxz) ( ) 288 = 0.0034

since y = {5

max(, 3.

M(x,y,y) = max{G,(x,,), G,(x,fx,fx), G, (», 8V, &V),
(G, (x,8v,2y) + G, (y,/fx,[x)]/2}
= max{max{x, y, y}, max{x, fx, fx}, max{y.gy.gy},

Jlmax{e, gy, @} -+ max{y. . /) }

= max{x,x,y,%[x—l—%]} =X

Therefor

Y(M(x,y,¥)) — o(M(x,7,¥)) = ¢(x) — o(x)
=09 (53)
24,
= 2—5x

24\ (1
- (35)(3) —o
then W(Gﬂ(fxagyagy)) zgg =0. 0034 l/’( (x,y7y)) -
(M(x,y,y)) = 0.24 Hence all the conditions of Theorem 2.1

are satisfied. Moreover, 0 is the common fixed point.
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