

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

ORIGINAL ARTICLE

A common fixed point theorem for weak contractive maps in G_p -metric spaces

M.A. Barakat *, A.M. Zidan

Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

Received 23 April 2014; revised 2 June 2014; accepted 8 June 2014 Available online 23 July 2014

KEYWORDS

Common fixed point; Partially ordered G-metric space; G_p -metric space; Weakly increasing maps; Lower semi-continuous function **Abstract** In this paper, we prove a common fixed point theorem for weak contractive maps by using the concept of G_p -metric spaces which are generalized of G-metric spaces and partial metric spaces. An illustrative example is given to support our results.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 47H10; 54H25

© 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

1. Introduction

In 1922, the polish mathematician, Banach [1], proved a theorem which ensures, under appropriate conditions, the existence and uniqueness of a fixed point. This principle has many generalizations in different ways which established and introduced by several authors, for convenience we refer the reader to (see; e.g., [2–24]. One such generalizations is a partial metric space which introduced by Matthews [16]. In partial metric spaces, self-distance of an arbitrary point need not to be equal zero.

Definition 1.1. A partial metric on a nonempty set X is a function $p: X \times X \to R^+, R^+ := [0, \infty)$, such that for all $x, y, z \in X$:

E-mail addresses: barakat14285@yahoo.com (M.A. Barakat), zedan.math90@yahoo.com (A.M. Zidan).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

- (p^1) $x = y \iff p(x, x) = p(x, y) = p(y, y),$
- (p^2) $p(x,x) \leqslant p(x,y),$
- $(p^3) \quad p(x,y) = p(y,x),$
- (p^4) $p(x,y) \le p(x,z) + p(z,y) p(z,z).$

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.

On the other hand, Mustafa and Sims [17] introduced the notation of generalized metric spaces that so-called *G*-metric spaces and they extended Banach principle in *G*-metric spaces as follows.

Definition 1.2. Let *X* be a non-empty set. Suppose that $G: X \times X \times X \to R^+$ satisfies:

- (a) G(x, y, z) = 0 if x = y = z,
- (b) $G(x, y, z) > 0, \forall x, y, z \in X, x \neq y$,
- (c) $G(x, x, y) \leq G(x, y, z), \forall x, y, z \in X, y \neq z$,
- (d) G(x, y, z) = G(x, z, y) = G(y, z, x) = ..., (symmetry in all three variables),
- (e) $G(x, y, z) \leq G(x, a, a) + G(a, y, z), \forall x, y, z, a \in X$.

^{*} Corresponding author. Tel.: +20 1007971311.

M.A. Barakat, A.M. Zidan

Then G is called a G-metric on X and (X, G) is called a G-metric space.

Recently, Zand and Nezhad [24] introduced a generalization and unification of both partial metric space and G-metric space, by giving the notation of G_p -metric space in the following way.

Definition 1.3. Let X be a non-empty set. Suppose that $G_p: X \times X \times X \to \mathbb{R}^+$ satisfies:

- (a) x = y = z if $G_p(x, x, x) = G_p(y, y, y) = G_p(z, z, z) \ \forall x, y, z \in X$,
- (b) $0 \leqslant G_p(x,x,x) \leqslant G_p(x,x,y) \leqslant G_p(x,y,z), \forall x,y,z \in X$,
- (c) $G_p(x, y, z) = G_p(x, z, y) = G_p(y, z, x) = \dots$, (symmetry in all three variables),
- (d) $G_p(x,y,z) \leq G_p(x,a,a) + G_p(a,y,z) G_p(a,a,a), \forall x,y,z, a \in X.$

Then G_p is called a G_p -metric on X and (X, G_p) is called a G_p -metric space.

Example 1.1 [24]. Let $X = [0, \infty)$ and define $G_p(x, y, z) = \max\{x, y, z\}$ for all $x.y.z \in X$ Then (X, G_p) is a G_p -metric space, Also, one can show that (X, G_p) is not a G-metric space.

Proposition 1.1 [24]. Let (X, G_p) is a G_p -metric space, then for any $x, y, z \in X$ and $a \in X$, it follows that

- (i) $G_p(x, y, z) \leq G_p(x, x, y) + G_p(x, x, z) G_p(x, x, x)$,
- (ii) $G_p(x, y, y) \leq 2G_p(x, x, y) G_p(x, x, x)$,
- (iii) $G_p(x, y, z) \leq G_p(x, a, a) + G_p(y, a, a) + G_p(z, a, a) 2G_p(a, a, a),$
- (iv) $G_p(x, y, z) \leq G_p(x, a, z) + G_p(a, y, z) G_p(a, a, a)$.

Proposition 1.2 [24]. Every G_p -metric space (X, G_p) defines a metric space (X, D_{G_p}) where

$$D_{G_p}(x, y) = G_p(x, y, y) + G_p(y, x, x) - G_p(x, x, x) - G_p(y, y, y),$$

for all $x, y \in X$.

Definition 1.4 [24]. Let (X, G_p) be a G_P -metric space a sequence $\{x_n\}$ is called a G_P convergent to $x \in X$ if $\lim_{n,m\to\infty} G_p(x,x_m,x_n) = G_p(x,x,x)$.

A point $x \in X$ is said to be limit point of the sequence $\{x_n\}$ and written $x_n \to x$.

Thus if $x_n \to x$ in a G_p -metric space (X, G_p) , then for any $\epsilon > 0$, there exists $l \in N$ such that $|G_p(x, x_n, x_m) - G_p(x, x, x)| < \epsilon$, for all n, m > l.

Proposition 1.3 [24]. Let (X, G_p) is a G_p -metric space, Then, for any sequence $\{x_n\}$ in X and a point $x \in X$, the following are equivalent that

- (i) $\{x_n\}$ is G_p -convergent to x;
- (ii) $G_p(x_n, x_n, x) \to G_p(x, x, x)$ as $n \to \infty$
- (iii) $G_p(x_n, x, x) \to G_p(x, x, x)$ as $n \to \infty$.

Definition 1.5 [24]. Let G_p be G_p -metric space.

- (i) A sequence $\{x_n\}$ is called a G_P -Cauchy if and only if $\lim_{m,n\to\infty} G_p(x_n,x_m,x_m)$ exists (and is finite).
- (ii) A G_P -metric space (X, G_p) is said to be G_P -complete if and only if every GP-Cauchy sequence in X is GP-convergent to $x \in X$ such that $G_p(x, x, x) = \lim_{m,n \to \infty} G_p(x_n, x_m, x_m)$.

Definition 1.6 [17]. The two classes of following mappings are defined $\Psi = \{\psi : \psi : [0, \infty) \to [0, \infty) \text{ is continuous, nondecreasing and } \psi^{-1}(0) = 0\}$, and $\Phi = \{\varphi : \varphi : [0, \infty) \to [0, \infty) \text{ is lower semi-continuous, nondecreasing and } \varphi^{-1}(0) = 0\}$.

Definition 1.7 [2]. Let (X, \preceq) be a partially ordered set. Two maps $f, g: X \to X$ are said to be weak increasing if $fx \preceq gfx$ and $gx \preceq fgx$ for all $x \in X$

Lemma 1.1 [6]. We note that if (X, G_p) be G_p -metric space, Then

- (i) If $G_p(x, y, z) = 0 \Rightarrow x = y = z$,
- (ii) If $x\neq y$, then $G_p(x,y,y) > 0$.

Abbas, Nazir and Radenovic [2] proved the following result.

Theorem 1.1. Let (X, \preceq) be a partially ordered set and f and g be weakly increasing self mapping on a complete G-metric space X. Assume that there exist $\psi \in \Psi$ and $\varphi \in \Phi$ such that

$$\psi(G(fx, gy, gy)) \leqslant \psi(M(x, y, y)) - \varphi(M(x, y, y)) \tag{1.1}$$

for all comparable $x, y \in X$ where

$$M(x, y, y) = a_1 G(x, y, y) + a_2 G(x, fx, fx) + a_3 G(y, gy, gy)$$

+ $a_4 [G(x, gy, gy) + G(y, fx, fx)]$

where $a_i > 0$ for $i = \{1, 2, 3, 4\}$ with $a_1 + a_2 + a_3 + 2a_4 \leqslant 1$ if f or g is continuous or for $\{x_n\}$ a nondecreasing sequence with $x_n \to z$ in X implies $x_n \preceq z$ for all $n \in \mathbb{N}$, then f and g have a common fixed point.

The aim of this paper is to generalize Theorem 1.1 to G_p -metric spaces. Also, in our result, the used contractive condition generalize condition (1.1). Finally, we give an example to support our result.

2. A main result

First we rewrite the continuity of maps in G_p -metric space as follows.

Definition 2.1. Let (X, G_p) be a G_p -metric space, partially ordered and $T: X \to X$ be a given mapping. We say that T is continuous in $x_0 \in X$ if for every sequence x_n in X, we have

- (i) x_n converges to x_0 in (X, G_p) implies Tx_n converges to Tx_0 in (X, G_p) .
- (ii) x_n converges properly to x_0 in (X, G_p) implies Tx_n converges properly to Tx_0 in (X, G_p) .

If T is continuous on each point $x_0 \in X$, then we say that T is continuous on (X, G_p) .

Now, we state and prove our main result in the following way.

Theorem 2.1. Let (X, \preceq) be a partially ordered set and f and g be weakly increasing self mapping on a complete G_p -metric space X. Assume that there exist $\psi \in \Psi$ and $\varphi \in \Phi$ such that

$$\psi(G_p(fx, gy, gy)) \leqslant \psi(M(x, y, y)) - \varphi(M(x, y, y))$$
for all comparable $x, y \in X$ where

$$M(x, y, y) = \max\{G_p(x, y, y), G_p(x, fx, fx), G_p(y, gy, gy),$$

$$[G_p(x, gy, gy) + G_p(y, fx, fx)]/2\}.$$

Suppose that one of the following cases is satisfied:

- (i) f or g is continuous,
- (ii) if a nondecreasing sequence $\{x_n\}$ converges to $z \in X$ implies $x_n \leq z$ for all $n \in \mathbb{N}$.

Then the maps f and g have a common fixed point.

Proof. Assume that u is a fixed point of f and $G_p(u, gu, gu) > 0$, then from (2.1) with x = y = u, we have

$$\psi(G_p(u, gu, gu)) = \psi(G_p(fu, gu, gu))$$

$$\leq \psi(M(u, u, u)) - \varphi(M(u, u, u)), \tag{2.2}$$

where

$$\begin{split} M(u,u,u) &= max\{G_p(u,u,u),G_p(u,fu,fu),G_p(u,gu,gu),\\ & [G_p(u,gu,gu)+G_p(u,fu,fu)]/2\}\\ &= max\{G_p(u,u,u),G_p(u,u,u),G_p(u,gu,gu),\\ & [G_p(u,gu,gu)+G_p(u,u,u)]/2\}\\ &= max\{G_p(u,u,u),G_p(u,gu,gu)\} = G_p(u,gu,gu). \end{split}$$

Hence we get

$$\psi(G_p(u, gu, gu)) = \psi(G_p(fu, gu, gu)) \leqslant \psi(G_p(u, gu, gu))$$

 $-\varphi(G_p(u, gu, gu)) \Rightarrow \varphi(G_p(u, gu, gu)) \leqslant 0.$

a contradiction. Hence, $G_p(fu, gu, gu) = 0$. So, u is common fixed point of f and g. Similarly, if u is a fixed point of g, then one can deduce that u is also fixed point of f. Now let x_0 be an arbitrary point of f. If $f(x_0) = f(x_0)$, then the proof is finished, so we assume that $f(x_0) \neq f(x_0)$.

Now, one can construct a sequence $\{x_n\}$ in X as follows:

$$x_1 = fx_0 \le gfx_0 = gx_1 = x_2,$$

 $x_2 = gx_1 \le fgx_1 = fx_2 = x_3,$
 \vdots
 $x_n \le x_{n+1}.$

Now since x_{2n} and x_{2n+1} are comparable so we may assume that $G_p(x_{2n}, x_{2n+1}, x_{2n+1}) > 0$, for every $n \in \mathbb{N}$. If not, then $x_{2n} = x_{2n+1}$ for some n. For all those n, using (2.1), we obtain

$$\psi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})) = \psi(G_p(f_{2n}, g_{2n+1}, g_{2n+1}))
\leq \psi(M(x_{2n}, x_{2n+1}, x_{2n+1}))
- \varphi(M(x_{2n}, x_{2n+1}, x_{2n+1})),$$
(2.3)

$$\begin{split} M(x_{2n},x_{2n+1},x_{2n+1})) &= \max\{G_p(x_{2n},x_{2n+1},x_{2n+1}),G_p(x_{2n},fx_{2n},fx_{2n}),\\ &G_p(x_{2n+1},gx_{2n+1},gx_{2n+1}),\\ &[G_p(x_{2n},gx_{2n+1},gx_{2n+1})+G_p(x_{2n+1},fx_{2n},fx_{2n})]/2\}\\ &= \max\{G_p(x_{2n},x_{2n+1},x_{2n+1}),G_p(x_{2n},x_{2n+1},x_{2n+1}),\\ &G_p(x_{2n+1},x_{2n+2},x_{2n+2}),\\ &[G_p(x_{2n},x_{2n+2},x_{2n+2})+G_p(x_{2n+1},x_{2n+1},x_{2n+1})]/2\}\\ &\leqslant \max\{G_p(x_{2n+1},x_{2n+2},x_{2n+2})-\frac{1}{2}[G_p(x_{2n},x_{2n+1},x_{2n+1})\\ &+G_p(x_{2n+1},x_{2n+2},x_{2n+2})-G_p(x_{2n+1},x_{2n+1},x_{2n+1})\\ &+G_p(x_{2n+1},x_{2n+2},x_{2n+2})-G_p(x_{2n+1},x_{2n+1},x_{2n+1})\}\\ &=G_p(x_{2n+1},x_{2n+2},x_{2n+2}) \end{split}$$

Hence

$$\psi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})) \leqslant \psi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})) - \varphi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})),$$

implies that $\varphi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})) = 0$ and $x_{2n+1} = x_{2n+2}$. Following the similar arguments, we obtain $x_{2n+2} = x_{2n+3}$ and hence x_{2n} becomes a common fixed point of f and g.

Now, by taking $G_p(x_{2n}, x_{2n+1}, x_{2n+1}) > 0$ for n = 1, 2, 3, ..., consider

$$\psi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})) = \psi(G_p(fx_{2n}, gx_{2n+1}, gx_{2n+1}))
\leq \psi(M(x_{2n}, x_{2n+1}, x_{2n+1}))
- \varphi(M(x_{2n}, x_{2n+1}, x_{2n+1})),$$
(2.4)

$$\begin{split} M(x_{2n},x_{2n+1},x_{2n+1})) &= & \max\{G_p(x_{2n},x_{2n+1},x_{2n+1}),G_p(x_{2n},fx_{2n},fx_{2n}),\\ & G_p(x_{2n+1},gx_{2n+1},gx_{2n+1}),\\ & [G_p(x_{2n},gx_{2n+1},gx_{2n+1})+G_p(x_{2n+1},fx_{2n},fx_{2n})]/2\}\\ &= & \max\{G_p(x_{2n},x_{2n+1},x_{2n+1}),G_p(x_{2n},x_{2n+1},x_{2n+1}),\\ & G_p(x_{2n+1},x_{2n+2},x_{2n+2}),\\ & [G_p(x_{2n},x_{2n+2},x_{2n+2})+G_p(x_{2n+1},x_{2n+1},x_{2n+1})]/2\}\\ &\leqslant & \max\{G_p(x_{2n},x_{2n+1},x_{2n+1}),G_p(x_{2n+1},x_{2n+2},x_{2n+2}),\\ & [G_p(x_{2n},x_{2n+1},x_{2n+1})+G_p(x_{2n+1},x_{2n+2},x_{2n+2})\\ &-G_p(x_{2n+1},x_{2n+1},x_{2n+1})+G_p(x_{2n+1},x_{2n+2},x_{2n+2})\\ &\leqslant & \max\{G_p(x_{2n},x_{2n+1},x_{2n+1}),G_p(x_{2n+1},x_{2n+2},x_{2n+2})\}\\ &\leqslant & \max\{G_p(x_{2n},x_{2n+1},x_{2n+1})+G_p(x_{2n+1},x_{2n+2},x_{2n+2})\}\\ &= & \max\{G_p(x_{2n},x_{2n+1},x_{2n+1})+G_p(x_{2n+1},x_{2n+2},x_{2n+2})\}. \end{split}$$

Now if $G_p(x_{2n+1}, x_{2n+2}, x_{2n+2}) \ge G_p(x_{2n}, x_{2n+1}, x_{2n+1})$ for some n = 0,1,2,...,then $M(x_{2n}, x_{2n+1}, x_{2n+1}) = G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})$ and from (2.4), we have

$$\psi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})) \leq \psi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})) - \varphi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2}))$$

implies that $\varphi(G_p(x_{2n+1}, x_{2n+2}, x_{2n+2})) = 0$, a contradiction. Therefore, for all $n \ge 0$, $G_p(x_{2n+1}, x_{2n+2}, x_{2n+2}) \le G_p(x_{2n}, x_{2n+1}, x_{2n+1})$. Similarly, we have $G_p(x_{2n}, x_{2n+1}, x_{2n+1}) \le G_p(x_{2n-1}, x_{2n}, x_{2n})$ for all $n \ge 0$. Hence for all $n \ge 0$

$$G_p(x_{n+1}, x_{n+2}, x_{n+2}) \leqslant G_p(x_n, x_{n+1}, x_{n+1})$$

and $\{G_p(x_{n+1},x_{n+2},x_{n+2})\}$ is a non-increasing sequence and so there exists $L \geqslant 0$, such that $\lim_{n\to\infty} G_p(x_{n+1},x_{n+2},x_{n+2}) = L$. Then, by the lower semi continuity of φ ,

$$\varphi(L) \leqslant \lim_{n \to \infty} \inf \varphi(M(x_n, x_{n+1}, x_{n+1})).$$

We claim that L=0. By lower semi continuity of φ ,taking the upper limit as $n\to\infty$ on either side of

$$\psi(G_p(x_{n+1}, x_{n+2}, x_{n+2})) \leqslant \psi(M(x_n, x_{n+1}, x_{n+1})) - \phi(M(x_n, x_{n+1}, x_{n+1})),$$

we have

$$\psi(L) \leqslant \psi(L) - \lim_{n \to \infty} \inf \varphi(M(x_n, x_{n+1}, x_{n+1})) \leqslant \psi(L) - \varphi(L),$$

i.e. $\varphi(L) \leq 0$. Thus $\varphi(L) = 0$ and we conclude that

$$\lim_{n \to \infty} G_p(x_{n+1}, x_{n+2}, x_{n+2}) = 0. \tag{2.5}$$

Now, we shall show that $\{x_n\}$ is a G_p -Cauchy sequence. For each $n \le m$, and $n, m \in N$ we get

$$G_{p}(x_{n}, x_{m}, x_{m}) \leq G_{p}(x_{n}, x_{n+1}, x_{n+1}) + G_{p}(x_{n+1}, x_{n+2}, x_{n+2})$$

$$+ G_{p}(x_{n+2}, x_{n+3}, x_{n+3}) + \dots$$

$$+ G_{p}(x_{m-1}, x_{m}, x_{m}) - \{G_{p}(x_{n+1}, x_{n+1}, x_{n+1})$$

$$+ \dots + G_{p}(x_{m-1}, x_{m-1}, x_{m-1})\}$$

$$\leq G_{p}(x_{n}, x_{n+1}, x_{n+1}) + G_{p}(x_{n+1}, x_{n+2}, x_{n+2})$$

$$+ G_{p}(x_{n+2}, x_{n+3}, x_{n+3}) + \dots$$

$$+ G_{p}(x_{m-1}, x_{m}, x_{m}).$$

By taking the limit as $n, m \to \infty$ to both side of the above inequality and from (2.5) we have

$$\lim_{n,m\to\infty}G_p(x_n,x_m,x_m)=0.$$

It follows that $\{x_n\}$ is a G_p -Cauchy sequence and by G_p -completeness of X, so there exist $z \in X$ such that $\{x_n\}$ converges to z as $n \to \infty$.

Now we will distinguish the cases (i) and (ii) of Theorem 2.1.

- (i) Suppose g is continuous, since $x_{2n+1} \to z$, we obtain that $x_{2n+2} = g(x_{2n+1}) = g(z)$. But $x_{2n+2} \to z$. (as a subsequence of $\{x_n\}$) It follows that g(z) = z, and from the beginning of the prove we get g(z) = z = f(z). The proof, assuming that f is continuous, is similar to above.
- (ii) Suppose that $G_p(z, gz, gz) > 0$ and for $\{x_n\}$ and a nondecreasing sequence with $x_n \to z$ in X implies that $x_{2n+1} \preceq z$ for all $n \in \mathbb{N}$. Now from (2.1)

$$\psi(G_p(x_{2n+1}, gz, gz)) = \psi(G_p(fx_{2n}, gz, gz))$$

$$\leq \psi(M(x_{2n}, z, z)) - \varphi(M(x_{2n}, z, z)),$$

where

$$\begin{split} M(x_{2n},z,z) &= max\{G_p(x_{2n},z,z),G_p(x_{2n},fx_{2n},fx_{2n}),\\ G_p(z,gz,gz),[G_p(x_{2n},gz,gz)\\ &+ G_p(z,fx_{2n},fx_{2n})]/2\}\\ &= max\{G_p(x_{2n},z,z),G_p(x_{2n},x_{2n+1},x_{2n+1}),\\ G_p(z,gz,gz),[G_p(x_{2n},gz,gz)\\ &+ G_p(z,x_{2n+1},x_{2n+1})]/2\} \end{split}$$

and on taking limit as $n \to \infty$, implies $\lim_{n \to \infty} M(x_{2n}, z, z) = G_p(z, gz, gz)$. Thus

$$\psi(G_p(z, gz, gz)) = \lim_{n \to \infty} \sup \psi(G_p(fx_{2n}, gz, gz))$$

$$\leq \lim_{n \to \infty} \sup [\psi(M(x_{2n}, z, z)) - \varphi(M(x_{2n}, z, z))]$$

$$\leq \psi(G_p(z, gz, gz)) - \varphi(G_p(z, gz, gz))$$

a contradiction. Thus $G_p(z, gz, gz) = 0$ and so z = fz = gz. \square

Put $\psi(t) = t$ in Theorem 2.1, we obtain the following.

Corollary 2.1. Let (X, \preceq) be a partially ordered set and f and g be weakly increasing self mapping on a complete G_p -metric space X. Assume that there exist $\varphi \in \Phi$ such that

$$G_p(fx, gy, gy) \le M(x, y, y) - \varphi(M(x, y, y))$$
(2.6)

for all comparable $x, y \in X$ where

$$M(x, y, y) = max\{G_p(x, y, y), G_p(x, fx, fx), G_p(y, gy, gy), \\ [G_p(x, gy, gy) + G_p(y, fx, fx)]/2\}.$$

Suppose that one of the following cases is satisfied:

- (i) f or g is continuous,
- (ii) if a nondecreasing sequence $\{x_n\}$ converges to $z \in X$ implies $x_n \leq z$ for all $n \in \mathbb{N}$.

Then the maps f and g have a common fixed point.

The following corollary is G_p -metric spaces version of Theorem 1.1.

Corollary 2.2. Let (X, \preceq) be a partially ordered set and f and g be weakly increasing self mapping on a complete G_p -metri space X. Assume that there exist $\psi \in \Psi$ and $\varphi \in \Phi$ such that

$$\psi(G_p(fx, gy, gy)) \leqslant \psi(M(x, y, y)) - \varphi(M(x, y, y)) \tag{2.7}$$

for all comparable $x, y \in X$ where

$$M(x, y, y) = a_1 G_p(x, y, y) + a_2 G_p(x, fx, fx) + a_3 G_p(y, gy, gy)$$

+ $a_4 [G_p(x, gy, gy) + G_p(y, fx, fx)]$

where $a_i > 0$ for $i = \{1, 2, 3, 4\}$ with $a_1 + a_2 + a_3 + a_4 \le 1$. Then of the following two cases is satisfied:

- (i) f or g is continuous,
- (ii) if a nondecreasing sequence {x_n} converges to z ∈ X implies x_n ≤ z for all n ∈ N.

Then the maps f and g have a common fixed point.

If we set $\psi(t) = t$ in Corollary 2.2, we get the following.

Corollary 2.3. Let (X, \preceq) be a partially ordered set and f and g be weakly increasing self mapping on a complete G_p -metric space X satisfying

$$G_p(fx, gy, gy) \leqslant M(x, y, y) - \varphi(M(x, y, y))$$
(2.8)

for all comparable $x, y \in X$ where $\varphi \in \Phi$ and

$$\begin{split} M(x,y,y) &= a_1 G_p(x,y,y) + a_2 G_p(x,fx,fx) + a_3 G_p(y,gy,gy) \\ &+ a_4 [G_p(x,gy,gy) + G_p(y,fx,fx)] \end{split}$$

where $a_i > 0$ for i = 1,2,3,4 with $a_1 + a_2 + a_3 + 2a_4 \le 1$. Suppose that one of the following cases is satisfied:

- (i) f or g is continuous,
- (ii) if a nondecreasing sequence {x_n} converges to z ∈ X implies x_n ≤ z for all n ∈ N.

Then the maps f and g have a common fixed point.

Corollary 2.4. Let (X, \preceq) be a partially ordered set and f and g be weakly increasing self mapping on a complete G_p -metric space X satisfying

$$G_p(fx, gy, gy) \le kmax\{G_p(x, y, y), G_p(x, fx, fx), G_p(y, gy, gy), [G_p(x, gy, gy) + G_p(y, fx, fx)]/2\},$$
 (2.9)

for all comparable $x, y \in X$.

Suppose that one of the following cases is satisfied:

- (i) f or g is continuous,
- (ii) if a nondecreasing sequence $\{x_n\}$ converges to $z \in X$ implies $x_n \leq z$ for all $n \in \mathbb{N}$. Then the maps f and g have a common fixed point.

Proof. Define $\varphi, \psi : [0, \infty) \to [0, \infty)$ by $\psi(t) = t$ and $\varphi(t) = (1 - k)t$ for all $t \in [0, \infty)$, where $k \in [0, 1)$. Then it is clear that $\psi \in \Psi$ and $\varphi \in \Phi$. The result follows from Theorem 3.2. \square

Corollary 2.5. Let (X, \preceq) be a partially ordered set and f and g be weakly increasing self mapping on a complete G_p -metric space X satisfying

$$\psi(G_p(fx, gy, gy)) \leqslant \psi(G_p(x, y, y)) - \varphi(G_p(x, y, y)) \tag{2.10}$$

for all comparable $x, y \in X$ where $\psi \in \Psi, \varphi \in \Phi$. Suppose that one of the following cases is satisfied:

- (i) f or g is continuous,
- (ii) if a nondecreasing sequence $\{x_n\}$ converges to $z \in X$ implies $x_n \leq z$ for all $n \in \mathbb{N}$. Then the maps f and g have a common fixed point.

Corollary 2.6. Let (X, \preceq) be a partially ordered set and f and g be weakly increasing self mapping on a complete G_p -metric space X satisfying

$$G_p(fx, gy, gy) \leqslant \frac{G_p(x, y, y)}{1 + G_p(x, y, y)}$$

$$\tag{2.11}$$

for all comparable $x, y \in X$.

Suppose that one of the following cases is satisfied:

- (i) f or g is continuous,
- (ii) if a nondecreasing sequence $\{x_n\}$ converges to $z \in X$ implies $x_n \leq z$ for all $n \in \mathbb{N}$. Then the maps f and g have a common fixed point.

Example 2.1. Let X = [0,1] be a set endowed with order $x \leq y \iff y \leqslant x$. let $G_p(x,y,z) = max\{x,y,z\}$ be a G_p -metric space on X Define by $f,g:X \to X$ by $f(x) = \frac{x}{12} \forall x \in X$,

$$g(x) = \begin{cases} \frac{x}{6}; & x \in [0, \frac{1}{2}), \\ \frac{x}{3}; & x \in [\frac{1}{2}, 1). \end{cases}$$

it's clear that f is continuous and g is not continuous. and the pair $(f \cdot g)$ is weakly increasing. f, g is commuting at $x = \frac{1}{2}$ $y = \frac{x}{12}, \psi(t) = t^2$ and $\phi(t) = \frac{t^2}{25}, t \in R^+$, then we have from Theorem 2.1

$$\psi(G_p(fx, gy, gy)) \leqslant \psi(M(x, y, y)) - \varphi(M(x, y, y))$$
since $\psi(G_p(fx, gy, gy)) = \psi([max\{fx, gy, gy\})) = \psi(\max(\frac{x}{12}, \frac{y}{6}, \frac{y}{6}))$

$$= \psi(\frac{x}{12}) = (\frac{x}{12})^2 = \frac{1}{288} = 0.0034$$
since $y = \frac{x}{12}$

$$\begin{split} M(x,y,y) &= & \max\{G_p(x,y,y), G_p(x,fx,fx), G_p(y,gy,gy), \\ &= & [G_p(x,gy,gy) + G_p(y,fx,fx)]/2\} \\ &= & \max\{\max\{x,y,y\}, \max\{x,fx,fx\}, \max\{y.gy.gy\}, \\ &\frac{1}{2}[\max\{x,gy,gy\} + \max\{y,fx,fx\}\} \\ &= & \max\left\{x,x,y,\frac{1}{2}\left[x + \frac{x}{12}\right]\right\} = x \end{split}$$

Therefor

$$\psi(M(x, y, y)) - \varphi(M(x, y, y)) = \psi(x) - \varphi(x)$$

$$= (x^{2}) - \left(\frac{x^{2}}{25}\right)$$

$$= \frac{24}{25}x^{2}$$

$$= \left(\frac{24}{25}\right)\left(\frac{1}{4}\right) = 0.24$$

then $\psi(G_p(fx,gy,gy)) = \frac{1}{288} = 0.0034 \leqslant \psi(M(x,y,y)) - \varphi$ (M(x,y,y)) = 0.24 Hence all the conditions of Theorem 2.1 are satisfied. Moreover, 0 is the common fixed point.

Acknowledgment

The authors are thankful to the anonymous referees for their critical remarks, valuable comments and suggestions which helped to improve the presentation of the paper.

References

- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux équations integrales, Fund. Math. J. 3 (1922) 133– 181.
- [2] M. Abbas, T. Nazir, S. Radenovic, Common fixed point of generalized weakly contractive maps in partially ordered Gmetric spaces, Appl. Math. Comput. 218 (2012) 9383–9395.
- [3] M.A. Ahmed, Fixed point theorems in fuzzy metric spaces, J. Egypt. Math. Soc. 22 (2014) 59–62.
- [4] M.A. Ahmed, Some fixed point theorems, Int. J. Geom. Methods Modern Phys. 8 (1) (2011) 1–8.
- [5] I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. 2010 (2010) 17 (Article ID 621492).
- [6] H. Aydi, E. Karapinar, P. Salimi, Some fixed point results in G_p-metric spaces, J. Contemp. Appl. Math. 24 (2011) 86–93.
- [7] A. Branciari, A fixed point theorem for mapping satisfaying a general contractive condation of integral tyb, Int. J. Math. Sci. 10 (2002) 531–536.

- [8] M. Abbas, AR. Khan, T. Nazir, T: Coupled fixed point results in two generalized metric spaces, Appl. Math. Comput. 217 (2011) 6328–6336.
- [9] M. Abbas, T. Nazir, S. Radenovic, Som periodic point results in generalized metrice spaces, Appl. Math. Comput. 217 (2010) 4094–4099.
- [10] T. Abedelljawad, E. Karapinar, K. Tas, Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math Lett. 24 (2011) 1894–1899.
- [11] H. Aydi, E. Karapinar, W. Shatanawi, Coupled fixed point results for (ψ, φ) -weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62 (2011) 4449–4460.
- [12] R. Chugh, T. Kadian, A. Rani, Property P in G-metrice space, Fixed Point Theory Appl. 2010 (2010) 12 (Article ID 401684).
- [13] B.C. Dhage, Generalized D-metric spaces and multi-valued contraction mappings, An. Stiint. Univ. Al.I. Cuza Iasi. Mat(N.S) 44 (1998) 179–200.
- [14] E. Karbinar, Generalizations of Caristi Kirk's theorem on partial metric spaces, Fixed Point Theory Appl. 2011 (4) (2011), http://dx.doi.org/10.1186/1687-1812-2011-4.
- [15] Z. Golubovic, Z. Kadelbur, g Coupled coincidence points of mappings in ordered partial metric spaces (2012) Article ID 192581, doi: http://dx.doi.org/10.1155/2012/192581.
- [16] S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., vol. 728, 1994, pp. 183–197.

- [17] Z. Mustafa, S. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anl. 7 (2) (2006) 289–2663.
- [18] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, in: Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia, Spain, July 2003, pp. 189– 198
- [19] Z. Mustafa, A New Structure for Generalized Metric Spaces with Applications to Fixed Point Theory, Ph.D. Thesis, The University of Newcastle, Callaghan, Australia, 2005.
- [20] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mappings on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008) (Article ID 189870).
- [21] S. Radenovic, Z. Kadelburg, Generalized weak contraction in partially ordered metric space, Comput. Math. Appl. 60 (2010) 1776–1783.
- [22] R. Saadati, S.M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Model. 52 (5-6) (2010) 797–801.
- [23] J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory, MIT Press, Cambridge, 1981.
- [24] M.R.A. Zand, A. D Nezhad, A generalization of partial metric spaces, J. Contemp. Appl. Math. 24 (2011) 86–93.