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0. Introduction

It is well known that metric and norm structures play a pivotal
role in functional analysis. So in order to develop functional
analysis one has to take care of the suitable generalization of
these structures. Historically, the problem of generalization
of the metric structure came first. Different authors introduced
ideas of quasi-metric space [1,2] generalized metric space [3,4],
generalized quasi-metric space [5], dislocated metric space [6],
fuzzy metric space [7-9], statistical metric space [10], two
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metric space [11], quasi-normed linear space[12], fuzzy normed
linear space [13], fuzzy Banach space[14], etc. Many authors
[15-21] study the stability of different types of functional equa-
tions in different directions.

In [2], Rano introduce the concepts of Cauchy sequence,
Convergent sequence, Open set, Closed set, etc. in a quasi-met-
ric space and established some basic theorems such as Cantor’s
intersection theorem and Baire’s category theorem in complete
quasi-metric spaces. We give the definition of Contraction
mapping and established some fixed point theorem with
uniqueness. In [13], some results on finite dimensional quasi-
normed linear spaces are established, the idea of equivalent
quasi-norm is introduced and Riesz’s lemma is proved in this
space.

In this paper, we define continuity and boundedness of lin-
ear operators in quasi-normed linear space. Quasi-norm linear
space of bounded linear operators is deduced. Concept of dual
space is developed.

The organization of the paper is as follows:

In Section 1, comprises some preliminary results.

In Section 2, we introduce the concept of continuity
and boundedness of linear operators in quasi-normed linear
space.

Space of bounded linear operators and dual space are
developed in Section 3.

In Section 4, we give some interesting open problems.

Throughout this paper straightforward proofs are omitted.

1. Some preliminary results

Definition 1.1 [12]. Let X be a linear space over the field F and
0 the origin of X. Let | - |, : X' — [0, 0o) satisfying the following
conditions:

(QN-1) |x], = 0iff x = 0;
(QN-2) |ex|, = |e||x|, for x € X and e € F;
(QN-3) there exists a K > 1 such that

x+yl, < K{|x|, + |y} forx,yeX.

Then (X,|-|,) is called a quasi-normed linear space (qnls) and
the least value of the constant K > 1 is called the index of the
quasi-norm | - |,.

The quasi-normed linear space (X,|-|,) is called a strong
quasi-normed linear space (sqnls) if it satisfies the following
additional condition:

(QN-4) There exists K > 1 such that

D x| < K{Z|x/q} Vx, € X, VneN.
i=1 q i=1

Note 1.1 [12]. In a quasi-normed linear space (X, |- |
quasi index K,

< K“{Z
q

;) with

X

n
g X
i=1

q} Vx;eX, VneN.

i=1

Note 1.2 [12]. If K = 1 then the quasi-norm |- |, is reduced to
a norm on X and (X,|-|,) a normed linear space.

Note 1.3 [12]. Every normed linear space is a quasi-normed
linear space but not conversely, which is justified by the follow-
ing examples.

Example 1.1 [12]. Let X = R’> be a linear space. For
X = (x1,x2) € X define

e, = (VIRT+vIl)

Then (X, |,) is a quasi-normed linear space but not a normed
linear space.

Definition 1.2 [12]. Let (X,|-|,) be a quasi-normed linear
space.

(i) A sequence {x,},-, C X is said
(a) to converge to x € X denoted by lim,_x, = x if
lim,, o0 |, — x|q =0;
(b)  to be a Cauchy sequence if lim,, ,—.oo|x, — xm|q =0.

(ii) A subset B C X is said to be complete if every Cauchy
sequence in B converges in B.

(iii) A subset 4 of X is said to be bounded if there exists a
real number M > 0 such that |x| <M Vx € 4.

(iv) A subset 4 of X is said to be closed if for any sequence
{x,} of points of 4 with lim,_...x, = x implies x € 4.

(v) A subset A4 of X is said to be compact if for any sequence
{x,} of points of 4 has a convergent subsequence which
converges to a point in 4.

Proposition 1.1 [12]. Let (X,|-|,) be a quasi-normed linear
space. Then

(a) the limit of a sequence {x,} in X if exists is unique;

(b) every subsequence of a convergent sequence converges to
the same limit;

(c) every convergent sequence in X is a Cauchy sequence.

Lemma 1.1 [12]. Let {x, X2, X3,...,X,} be a linearly indepen-
dent set of vectors in a quasi-normed linear space (X, | - |,). Then
3C > 0 such that for any choice of scalars A, 2y, ..., 7, we have

‘)lel —+ ;vzxz + - +/l,,x,,\q 2 C(|]1| + |;L2| + -4 M"ID

Definition 1.3 [12]. Let (X,|-]) be a quasi-normed linear
space. If X is a finite dimensional linear space then (X;|-|,)
is called a finite dimensional quasi-normed linear space.

2. Bounded linear operators in quasi-normed linear space

In this section we define continuous and bounded linear oper-
ators in quasi-normed linear spaces and study some properties
in this space.

Definition 2.1. Let (Xi,|-[,) and (X»,|-[,) be two quasi-
normed linear spaces and 7': X; — X, be an operator. Then T
is said to be continuous at x € X if for any sequence {x,} of
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X, with x, — x 1ie.
T(xn) — T(x).

with  lim,_ e |x, — x|ql =0 implies

ie. lim, .| T(xy) — T(x)|,, = 0. If T is continuous at each
point of X7, then T is said to be continuous on Xj.

Definition 2.2. Let X; and X, be any two linear space and
T: X, — X, be an operator. Then T is said to be a linear oper-
ator if for any Ay, 4, € F and for any x;,x, € X

T(}.]X] + 2.2)62) = ;,1 T(X]) + /IzT(Xz)

Proposition 2.1. Let (Xi,|-[,) and (X»,|-|,) be two quasi-
normed linear spaces and T : X1 — X, be a linear operator. If
T is continuous at a point x € Xy, then T is continuous every-
where on X;.

Definition 2.3. Let (X,|-[,) and (X»,|-[, ) be two quasi-
normed linear spaces and 7 : X; — X, be an operator. Then
T is said to be bounded if M > 0 such that

x

I7(x)],, < M

VXGXI.

a2 4

Example 2.1. Let (X,|-|,) be a quasi-normed linear spaces
and 7: X — X be an operator defined by 7(x) = 2x. Then T
is a bounded linear operator.

Theorem 2.1. Let (X,[-|,) and (X»,|-|,) be two quasi-
normed linear spaces and T : X1 — X, be a linear operator. Then

T is bounded iff T is continuous.

Proof. Let 7 be a bounded linear operator. Then IM > 0 such
that

1T(x)

LS M|x|,  Vxe X

q

Let {x,} be any sequence in X, with x, — x.

e lim,—|x, — x|q. =0.
Now
|T(xs) = T(x)],, = [T(x, = x)|,,
< Mx, — x|,
= lim |7 (x,) — T(x)|,, =0
n—o0 2

= {T(x,)} — T(x).
So T is continuous.

Conversely, suppose T is a continuous linear operator. We
have to prove that 7 is bounded. If possible suppose T is not
bounded linear operator. Then there exists a sequence {x,} in
X, such that

| T(x,)| ,>n

Xn

q q"

Clearly x, # 0 for any n. Let
P
n n|x,,|

q

Then

1
‘x/n\q, =
= lim|x[, = 0;
n—oo

= limx), = 0.

Since T is continuous, it follows that
lim 7(x)) = T(0);

n—oo

= lim|T(x))|, = 0.

n—oo ke

But |T(x;)|q2 > 1 Vn, which is a contradiction.
Hence T'is bounded. [

Theorem 2.2. Let (X,[-|,) and (X2,|-|,) be two quasi-
normed linear spaces and T : X1 — X, be a linear operator. If

X is of finite dimensional, then T is bounded (so continuous).

Proof. Let dimX, = n and {x,,x,,x3,...,x,} be a basis of Xj.

Let x = Aix; € X1, then

f(50)

By Note 1.1,

i/bl T(.’C,‘)

Let M = K"'lMax{|T(>cl)\q27 |T(x2)] 0

n
i=1

IT(x)],, =

a2

i),T(X,)

a2 Ll

n

<K 4 T(x)

i=1

9"

92

|T(x,)],,}, then

I T(x),, < MY |4l (2.1)
=1
By Lemma 1.1, 3C > 0 such that
|X|ql = Z)L,‘X,’ = CZl/L,| (22)
=1 " =1
From (2.1) and (2.2) we have
M
TG, < g,
Since Lemma 1.1 holds for any arbitrary scalars 4y, 4,,...,4,
we have

M
T, < Fldl, Vxex.

Hence T is bounded (so continuous). [J

3. Space of bounded linear operators

Let (X1,[-],) and (X3,[-[,) be two quasi-normed linear
spaces. We denote by L(X|, X;) the set of all linear operators
from (Xy,[-|, ) to (X2,]-],,). Then L(X}, X) is a linear space.
We shall show that the set of all bounded linear operators from
(X1,]1,,) to (X2,]-],,) is also a linear space.

Theorem 3.1. Let (Xy,|-|,) and (X2,[-|,) be two quasi-
normed linear spaces. We denote by B(X1,X,) the set of all
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bounded linear operators from (Xi,|-|,) to (Xa,|-|, ). Then
B(X1, X>) is also a linear space.

Proof. Let Ty, 7T, € B(X}, X;) and for x € X,
(T1 + Tz)(x) = TI(X) + Tz(x),

(2 T)(x) = Ty (x).

Since 7} and T, are bounded, IM >0, N >0 such that
Vx € Xl

|71 (x)

< M,

0
and |T5(x)|,, < NIx], -
Now |(ki T\ + k2 T») (x)]

X

= ki (T1(x)) + ko (T2(x))|
=T (ki(x)) + Ta(ka(x))],,
< K{|Ti(kix)],, + |T2(kax)|,, }-

(5] a2

Thus |(k1 Tl +k2T2)(.X)| ) < MK‘kl.XLh +NK|k2x|q1

= K(Mlki| + Nlka[)|xl,, ;

q’

q.

= (ki T) + ke To) ()], < Plx],,

where P = K(M|k,| + M|k,]|).

q

Thus (k]T] +k2T2) € B(Xl,Xz), O

Theorem 3.2. Let (Xy,[-|,) and (X2,]-|,) be two quasi-
normed linear spaces. For T € B(X\, X») we define

,= "\

x(#0)eX,

17(x)

5]

qu

Then (B(X\, X2),1-|,) is a quasi-normed linear space.
Proof. Clearly |7], > 0 and conditions (QN-1) and (QN-2)
are directly followed from definition.

For (QN-3), let 7, T>» € B(X1, X2), then

R

x(A0)eX, [xl,,
Ly B nw,
- X(#0)ex, [xl,,
- I T1(x)],, + | T2(x)],
- x(0)ex, 1],
<V K\T‘l)(j)L,z+ V |T|2)(CT)L,2.
X(#0)ex, 0 X(#0)ex, 0

So [T\ + Tol, < K{|Til, + |Tal, -
Hence (B(X1, X2),||,) is a quasi-normed linear space. [

Remark 3.1. In Theorem 3.2, we can also define

7, = VA7)

xeXj

o |x|l]| < 1}'

Then (B(X), X2),| - |,) is a quasi-normed linear space and two
quasi-norm in two cases are same.
Again

|T(x)|,, < I[T1,Ixl,, Vxe€X.

Lemma 3.1. Let (X,|-|,) be a quasi-normed linear space and
{x,} be a sequence in X such that

limx, = x ie. lim|x, — x\q =0.
n—oo n—oo

Then |x\q = \limnﬂwxnb <K lim,,ﬂc|x,,|q.
Proof. By (QN-3),

¥, < K{lx = xal, + 3l 5

= ‘x|q < VIILIIDIOK{lx - x"lq + ‘x”‘q} = K’}Lrg‘x”‘q7

= |x|, = |}Ln;x,,|q < K}erlo|x,,\‘1. O

Theorem 3.3. Let (X1,|-|, ) be a quasi-normed linear space and
(X2,1-1,,) be a complete quasi-normed linear space. Then
(B(X1,X2),]-|,) is a complete quasi-normed linear space.

Proof. By Theorem 3.2, (B(X;,X),|-|,) is a quasi-normed
linear space. Next we shall prove it is complete.

Now we consider an arbitrary Cauchy sequence {7,} in
(B(X1,X>),] - |,) and show that {7, } converges to an operator
in (B(X1,X2),-|,)- Since {7, } is Cauchy sequence

lim |T, — T,,,|q =0.

mn—o00

So corresponding to any € > 0 there exists a positive integer
N(e) such that

|T) — Tl, <€ Vm,n = N(e).
For all x € X, and m,n > N(e),
|T,(x) — Z’7(x)‘q2 = (T, - Tm)(x)|q2 < T, — Tm|q‘x|ql

< elx],, - (3.1)
Now for any fixed x € X; we see that {T,(x)} is a Cauchy
sequence in (X», |-, ). Since (Xa,[-|, ) is complete, {7, (x)}
converges, say, lim,_.7T,(x) =y. Clearly, the limit y € X,
depends on the choice of x € X;. This defines an operator
T:(Xy,[],)— (X2,]],), where y=T(x). We shall show

that the operator 7 is linear.
Let o, f € F then,

T(ox + pz) = lim T, (ex + fz) = lim T, (ax) + T, (fz).

Now
lim |(T,(ax) + T,,(Bz)) — (aTx + pTz)|

n—oo a2

< Jim K{|o|T,(x) = T, + |BIT(2) = T()],. } =0.

Hence T(oax + fz) = aT(x) + BT(z).
Next we have to show that 7T'is bounded and lim,,_,,, 7, = T
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From (2.1) we have

|T,,(X) -

T(x), = IT.(x) ~ lim T,,(x)],

< Klim |T,(x) = Tu(x)] [by Lemma 3.1]

4’

< Klm |T, - T, |x],,
m—oo

< Kelx|, Vn = N(e), VxeX.

Since Ty is bounded, there exists My > 0 such that

| Tv (X),, < Mylx],, Vx € X
Thus
|T(x)],, = [T(x) = T (x) + T ()],
< K|T(x) = T (%), + K| Ty (x)],, Vx € X
< Kelx|, + KMylx], Vxe X,
= (K*e+ KMy()|x|, Vx € X,

So T is bounded.
Now

|T”7T|q: \/

x(#0)eX;

= lim|T, - 7T, =
n—oc

q

= 1lim7,=T7. O

n—oo

Definition 3.1. Let (X,| [, ) and (X5,|-[,) be two quasi-
normed linear spaces. For 7' € B(X;, X») we define

703,
= Vo

x(#0)eX, |x|q|

Then (B(Xi,X2),|-|,) is a quasi-normed linear space. The
space (B(X1,X>),|-|,) is called the Dual space of (Xi,]-], )
if X, = Rand ||, =|-| Wedenote the set of all bounded lin-
ear functional deﬁned on (X;|-|,) by B(X,|-|,) which is the
Dual space of (X, |-],).

Example 3.1. Let X=R> be a
x = (x1,x,) € X define

( i + |x2).

Then (X, |- |,) is a quasi-normed linear space. Let f: X — X be
an operator defined by f(x) = x-a = x1a; + x2a,. Then Tis a
bounded linear functional.

linear space. For

Proof
Now MW _ Ixia1 + o [x1]|ai] + |x2|]a|
- o<
Il ( [xi] 4+ /|xa] ) (b =+ [xal 4+ 24/]x1[x2])
|x1[]an] |x2| a2

= +
(bl + Pl +2y/Ballel) (1l + bl +2y/all)

< (la] +az]) = X)) < (Jan| + |az])|x], YVxeX. O

Remark 3.2. In Example 3.1, (X, |- |,) is a quasi-normed linear
space for quasi index K = 2 but not a normed linear space (see
[12]). Therefore there exists such type of function which are
quasi-norm but not a norm.

Theorem 3.4. Let (X, |- |,) be a quasi-normed linear space. Then
the Dual space B(X,|-1,) of (X,|-|q) is a complete normed lin-
ear space.

Proof. Proof follows from Theorem 3.3. [

4. Open problems-questions

(Q1) A question naturally arises that, what will be the forms
of fundamental theorems of functional analysis in this
setting?

(Q2) Is this space Reflexive?

(Q3) Which type of Topology is associated with this space?

(Q4) How much it generalized the normed linear space?

(Q5) What will be the fuzzy version of this function i.e. what
will be the form of quasi-fuzzy normed linear space in
this contest?
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