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Abstract This work is focused on the study of unsteady magnetohydrodynamics boundary-layer

flow and heat transfer for a viscous laminar incompressible electrically conducting and rotating

fluid due to a stretching surface embedded in a saturated porous medium with a temperature-depen-

dent viscosity in the presence of a magnetic field and thermal radiation effects. The fluid viscosity is

assumed to vary as an inverse linear function of temperature. The Rosseland diffusion approxima-

tion is used to describe the radiative heat flux in the energy equation. With appropriate transforma-

tions, the unsteady MHD boundary layer equations are reduced to local nonsimilarity equations.

Numerical solutions of these equations are obtained by using the Runge–Kutta integration scheme

as well as the local nonsimilarity method with second order truncation. Comparisons with previ-

ously published work have been conducted and the results are found to be in excellent agreement.

A parametric study of the physical parameters is conducted and a representative set of numerical

results for the velocity in primary and secondary flows as well as the local skin-friction coefficients

and the local Nusselt number are illustrated graphically to show interesting features of Darcy num-

ber, viscosity-variation, magnetic field, rotation of the fluid, and conduction radiation parameters.
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1. Introduction

Convective flows in porous media have been extensively stud-

ied during the last several decades, and they have included sev-
eral different physical effects. This interest is due to the many
practical applications which can be modeled or approximated
gyptian Mathematical Society. Open access under CC BY-NC-ND license.
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as transport phenomena in porous media. These flows appear
in a wide variety of industrial applications, as well as in many
natural circumstances such as geothermal extraction, storage

of nuclear waste material, ground water flows, industrial and
agricultural water distribution, oil recovery processes, thermal
insulation engineering, pollutant dispersion in aquifers, cool-

ing of electronic components, packed-bed reactors, food pro-
cessing, casting and welding of manufacturing processes, the
dispersion of chemical contaminants in various processes in

the chemical industry and in the environment, soil pollution,
fibrous insulation and even for obtaining approximate solu-
tions for flow through turbo-machinery. This topic is of vital
importance in all these applications, thereby generating the

need for a full understanding of transport processes through
porous media. Theories and experiments of thermal convec-
tion in porous media and the state-of-the-art reviews, with spe-

cial emphasis on practical applications have been presented in
the recent books by Ingham and Pop [1], Vafai [2] and Nield
and Bejan [3].

Moreover, the magnetohydrodynamic (MHD) rotating flu-
ids in the presence of a magnetic field are encountered in many
important problems in geophysics, astrophysics, and cosmical

and geophysical fluid dynamics. It can provide explanations
for the observed maintenance and secular variations of the
geomagnetic field. It is also relevant in the solar physics in-
volved in the sunspot development, the solar cycle, and the

structure of rotating magnetic stars. The effect of the Coriolis
force due to the Earth’s rotation is found to be significant as
compared to the inertial and viscous forces in the equations

of motion. The Coriolis and electromagnetic forces are of com-
parable magnitude, the former having a strong effect on the
hydromagnetic flow in the Earth’s liquid core, which plays

an important role in the mean geomagnetic field. Several inves-
tigations are carried out on the problem of hydrodynamic flow
of a viscous incompressible fluid in rotating medium consider-

ing various variations in the problem. Mention may be made
of the studies of Ahmed and Sajid [4], Khan and Ellahi [5],
Abelman et al. [6], Ellahi et al. [7], Hayat et al. [8], Husain
et al. [9] and Hayat et al. [10]. Takhar et al. [11] studied the

steady MHD flow and heat transfer on a stretching surface
in a rotating fluid. The unsteady flow due to an impulsively
stretching surface in a rotating fluid has been considered by

Nazar et al. [12]. Hayat et al. [13] studied the hydromagnetic
Couette flow of an Oldroyd-B fluid in a rotating system. Hayat
et al. [14] investigated the unsteady periodic flows of a magne-

tohydrodynamic fluid due to noncoxial rotations of a porous
disk. Hayat et al. [15] analyzed the effects of Hall current on
unsteady flow of a second grade fluid in a rotating system.
The steady flow of a rotating third grade fluid past a porous

plate has been analyzed by Asghar et al. [16]. Hayat and Mum-
taz [17] have examined the resonant oscillations of a plate in an
electrically conducting rotating Johnson–Segalman fluid.

Hayat [18] has presented the modeling and exact analytic solu-
tions for hydromagnetic oscillatory rotating flows of a Bur-
ger’s fluid. Abbas et al. [19] studied the unsteady MHD

boundary layer flow and heat transfer analysis in an incom-
pressible rotating viscous fluid over a stretching continuous
sheet. The problem of free convection heat with mass transfer

for MHD non-Newtonian Eyring–Powell flow through a por-
ous medium, over an infinite vertical plate is studied by Eldabe
et al. [20]. Mahmoud and Waheed [21] investigated the effects
of slip velocity and magnetic field on the flow and heat transfer
for micropolar fluid over a permeable stretching surface.
Elbashbeshy et al. [22] analyzed the effects of thermal radia-
tion and magnetic field on unsteady mixed convection flow

and heat transfer over an exponentially stretching surface.
In all the above studies, the viscosity of the fluid was as-

sumed to be constant. However, it is known that this physical

property may change significantly with temperature, and to
predict the flow behavior accurately, it may be necessary to
take into account viscosity variation for incompressible fluids.

Gray et al. [23], and Mehta and Sood [24] have found that the
flow characteristics substantially change compared with the
constant viscosity cases. Ling and Dybbs [25] presented theo-
retical investigation of temperature-dependent fluid viscosity

influence on the forced convection through a semi-infinite por-
ous medium bounded by an isothermal flat plate. EL-Hakiem
and Rashad [26] investigated the effect of temperature-depen-

dent viscosity on the non-Darcy natural convection flow over a
vertical cylinder saturated porous medium. The problem of
heat and mass transfer by non-Darcy free convection adjacent

to a vertical cylinder embedded in a saturated porous medium
in the presence of thermal radiation effect with temperature-
dependent viscosity is considered by Chamkha et al. [27].

The purpose of this work is to generalize the work of Nazar
et al. [12] through the inclusion of effects of temperature-
dependent viscosity and magnetic field on unsteady MHD
boundary layer flow and heat transfer in a rotating fluid due

to a stretching surface embedded in a saturated porous med-
ium where the radiation effect is included by invoking the
Rosseland diffusion approximation. In formulating the equa-

tions governing the flow, a formula for viscosity proportional
to an inverse linear function of temperature has been used, fol-
lowing Ling and Dybbs [25]. The parabolic partial differential

equations governing the unsteady MHD flow and heat transfer
have been solved numerically using the second-level local non-
similarity method. The second-level local nonsimilarity meth-

od is used to convert the nonsimilar equations into a system
of ordinary differential equations for the whole transient from
initial state (n = 0) to final steady-state flow (n = 1). The ef-
fects of Darcy number (permeability of porous medium), vis-

cosity-variation, magnetic field, rotation of the fluid, and
conduction radiation parameters on the unsteady MHD flow
and heat transfer have been presented graphically.

2. Formulation of the problem

Consider the unsteady motion of magnetohydrodynamics-

boundary layer flow and heat transfer for a viscous laminar
incompressible electrically conducting and rotating fluid due
to a stretching surface embedded in a saturated porous med-

ium. At time t= 0, the surface coincides with the plane
z = 0 and it is being stretched the x-direction in a rotating
fluid. The fluid is rotating with a constant angular velocity X
about the z-axis. The flow is three dimensional due to the pres-

ence of the Coriolis force. Fig. 1 shows the coordinate system,
where u, v, and w are the velocity components in the direction
of Cartesian axes x, y and z, respectively. A constant, trans-

verse magnetic field B is applied in the z-direction. Since the
flow is induced by stretching the surface in the x-direction
only, the velocity components, u, v, w, and the temperature

T depends only on x and z. The magnetic Reynolds number
Rem = l0rVL is assumed to be very small, where l0 is the
magnetic permeability, r is the electrical conductivity, and V
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Figure 1 Physical model and coordinate system.
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and L are the characteristic velocity and length, respectively.
Under these conditions, it is possible to neglect the induced
magnetic field in comparison with the applied magnetic field.

Since no applied or polarization voltage is imposed on the flow
field, the electric field E

!¼~0. This corresponds to the case
where no energy is added to or extracted from the fluid by elec-

trical means. The surface is electrically insulated. Hence, the
Lorenz magnetic force depends only on the magnetic field.
The variations of fluid properties are limited and constant, ex-

cept for the fluid viscosity depends on temperature (see Ling
and Dybbs [25]). For the flow in the porous medium, we adopt
the Darcy model proposed by Khaled and Vafai [28]. The fluid
is considered to be a gray, absorbing-emitting radiation but

nonscattering, medium, and the Rosseland approximation is
used to describe the radioactive heat flux in the energy equa-
tion. The viscous dissipation, Joule heating, and the Hall effect

are neglected. The surface temperature and the fluid tempera-
ture at the edge of the boundary layer are all constant. Under
the foregoing assumptions, the boundary layer equations in

the rotating frame of Nazar et al. [12] are given by:
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The initial and boundary conditions are respectively defined
as follows:

t< 0 : uðx;y;z;tÞ¼ vðx;y;z; tÞ¼wðx;y;z;tÞ¼ 0; Tðx;y;z; tÞ¼T1;

tP 0 : uðx;y;0;tÞ¼ ax; vðx;y;0;tÞ¼wðx;y;0; tÞ¼ 0; Tðx;y;0;tÞ¼Tw; ð6Þ
uðx;y;1; tÞ¼ vðx;y;1;tÞ¼wðx;y;1;tÞ¼ 0; Tðx;y;1;tÞ¼T1;
where p is the pressure, q1 is the density of the fluid, K is the

permeability of porous medium, T is the temperature of the
fluid in the boundary layer and the porous medium which
are in local thermal equilibrium; Tw is the wall temperature;

T1 is the ambient temperature. k and Cp are the thermal con-
ductivity and the specific heat at constant pressure, respec-
tively. qr is the radiative heat flux in the z-direction, where a
(>0) is constant and represents the stretching rate.

In addition, the radiative heat flux qr is described according
to the Rosseland approximation such that:

qr ¼ � 4r1

3v
@T4

@z
; ð7Þ

where r1 and v are the Stefan–Boltzmann constant and the
mean absorption coefficient, respectively. As done by Raptis
[29], the fluid-phase temperature differences within the flow

are assumed to be sufficiently small, so that T4 may be ex-
pressed as a linear function of temperature. This is done by
expanding T4 in a Taylor series about the free-stream temper-

ature T1 and neglecting higher-order terms to yield

T4 ¼ 4T3
1T� 3T4

1; ð8Þ
By using Eqs. (6) and (7) in the last term of Eq. (3), we obtain

@qr

@z
¼ � 16r1T

3
1

3v
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@z2
: ð9Þ

The viscosity of the fluid is assumed to be an inverse linear
function of temperature, and it can be expressed as following

Ling and Dybbs [25]:

l ¼ l1
ð1þ cðT� T1ÞÞ

; ð10Þ

where c is a constant and l1 is the viscosity of the ambient
fluid. We shall now proceed to transform Eqs. (1)–(5) to a
form amenable for numerical solution. To do this, we follow
Nazar et al. [12] and introduce the variables:

g¼ða=t1Þ1=2n�1=2z; u¼ axf0ðn;gÞ; v¼ axhðn;gÞ; w¼�ðat1Þ1=2n1=2fðn;gÞ;
n¼ 1� e�s;

s¼ at; t1 ¼l1=q1; h¼ðT�T1Þ=ðTw�T1Þ; Da¼Ka=t1;

k¼X=a; M¼Ha2x=Rex; Ha2x ¼ rB2x2=l1; Rex ¼ðaxÞx=t1; hr ¼ cðTw�T1Þ;
Pr¼l1Cp=k; Rd ¼ r1T

3
1=3kv: ð11Þ

Substituting variables (11) into Eqs. (2)–(5), we get:

1
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@n
: ð14Þ

where the primes denote the differential with respect to g, f0 is
the primary flow velocity (i.e., velocity in x direction) and h is
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the secondary flow velocity (i.e., velocity in y direction); t1 is

the kinematic viscosity at ambient medium, M is the magnetic
parameter; Ha is the Hartmann number; Rex is the local Rey-
nolds number; Da is the Darcy number (permeability of med-

ium); k is the rotation of the fluid parameter; Pr is the Prandtl
number; Rd is the conduction–radiation parameter. Here, hr is
the viscosity-variation parameter. From (10), it can be seen
clearly that the dimensionless viscosity l/l1 lies in the range

1/(1 + hr) and 1; its value decreasing with increasing tempera-
ture when hr > 0. The boundary conditions (6) now become

fðn; 0Þ ¼ 0; f0ðn; 0Þ ¼ 1; hðn; 0Þ ¼ 0; hðn; 0Þ ¼ 1;

f0ðn;1Þ ¼ 0; hðn;1Þ ¼ 0; hðn;1Þ ¼ 0: ð15Þ

Eqs. (12)–(14) represent general equations that include various

special cases. For example, by formally setting all of M, Da�1,
hr and Rd equal to 0, Eqs. (9) and (10) reduce to those reported
earlier by Nazar et al. [12] in their work concerning unsteady
boundary layer flow due to a stretching surface in a rotating

fluid. In addition, in the absence of permeability of porous
medium Da�1 = 0, thermal radiation effects Rd = 0, and with
constant viscosity hr = 0.

The quantities of physical interest are the skin friction coef-
ficients and heat transfer coefficient. The local skin friction
coefficients in x- and y-directions are given by:

Cfx ¼ ðl=q1Þð@u=@zÞz¼0=ðaxÞ
2 ¼ Re�1=2x n�1=2ð1þ hrÞ�1

f00ðn; 0Þ;
Cfy ¼ ðl=q1Þð@v=@zÞz¼0=ðaxÞ

2 ¼ Re�1=2x n�1=2ð1þ hrÞ�1

h0ðn; 0Þ: ð16Þ
Similarly, the local heat transfer coefficient in terms of the lo-
cal Nusselt number can be expressed as:

Nux ¼ �xð@T=@zÞz¼0=ðTw � T1Þ

¼ �Re1=2x n�1=2ð1þ 4Rd=3Þh0ðn; 0Þ: ð17Þ

3. Solution

3.1. Initial unsteady solution at n = 0

For n = 0 (initial unsteady flow), corresponding to s = 0, we
have from (12)–(14);

1

1þ hrh
f000 � hrh

ð1þ hrhÞ2
f00h0 þ 1

2
gf00 ¼ 0; ð18Þ

1

1þ hrh
h00 � hrh

ð1þ hrhÞ2
h0h0 þ 1

2
gh0 ¼ 0; ð19Þ

1

Pr
1þ 4Rd

3

� �
h00 þ 1

2
gh0 ¼ 0: ð20Þ

subject to

fð0Þ ¼ 0; f0ð0Þ ¼ 1; hð0Þ ¼ 0; hð0Þ ¼ 1

f0ð1Þ ¼ 0; hð1Þ ¼ 0; hð1Þ ¼ 0: ð21Þ
3.2. Steady state solution at n = 1

For n = 1 (final steady flow), corresponding to s fi1, Eqs.
(12)–(14) give

1

1þ hrh
f000 � hrh

ð1þ hrhÞ2
f00h0 � 1

ð1þ hrhÞDa
þM
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f0

þ ðff00 � f02 þ 2khÞ ¼ 0; ð22Þ
1

1þ hrh
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� �
h
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1

Pr
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3

� �
h00 þ fh0 ¼ 0: ð24Þ

(24) subject to (21).

3.3. Solution for small n (or s)

A second-level local similarity method introduced by Minko-

wycz and Sparrow [30] in this case can be used to convert
the nonsimilar equations into a system of ordinary differential
equations. Introducing new functions G= of/on, x = oh/on
and u = oh/on. The second level of truncation Eqs. (12)–(14)
can be expressed in the following form:
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Differentiating the above equations with respect to n and
neglecting the terms involving the derivative functions of G,

u and x with respect to n, one may easily find the following:
1
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1

Pr
1þ 4Rd

3

� �
u00 þ 1

2
gð1� nÞu0 � 1

2
gh0 þ fh0 þ nðGh0

þ fu0Þ
¼ ð1� 2nÞu: ð30Þ

subject to

fðn; 0Þ ¼ 0; f0ðn; 0Þ ¼ 1; hðn; 0Þ ¼ 0; hðn; 0Þ ¼ 1;

f0ðn;1Þ ¼ 0; hðn;1Þ ¼ 0; hðn;1Þ ¼ 0;

Gðn; 0Þ ¼ 0; G0ðn; 0Þ ¼ 0; xðn; 0Þ ¼ 0; uðn; 0Þ ¼ 0;

G0ðn;1Þ ¼ 0; xðn;1Þ ¼ 0; uðn;1Þ ¼ 0: ð31Þ
0.6

0.7

0.8

0.9

1.0

M= 0.0
M= 2.0
M= 4.0
4. Results and discussion

The numerical results for the dimensionless velocity profiles of
the rotating fluid in x and y directions, as well as the local skin
friction coefficients and the local Nusselt number are obtained

using two distinct solution techniques, namely, the fourth or-
der Runge–Kutta scheme and local nonsimilarity methodology
having Prandtl number Pr equal to 0.7 (suitable for air), while
the representative values of the magnetic parameter M ranging

from 0.0 to 2.0, the Darcy number Da ranging from 1.0 to 1010

(i.e.,1), the fluid rotation parameter k ranging from 0.0 to 1.0,
the dimensionless time n ranging from 0.0 to 1.0, the viscosity-

variation parameter hr ranging from 0.0 to 0.4, and the con-
duction–radiation parameter Rd ranging from 0.0 to 1.0. In
order to assess the accuracy of the numerical method, we have

compared our numerical results with those of Nazar et al. [12]
in the absence of magnetic field, permeability of porous med-
ium, and radiation effects when the fluid viscosity is constant.
The comparison is found to be in good agreement was shown

in Table 1.
The effect of increase in the viscosity variation parameter

hr, for different values of magnetic parameter M on the dimen-

sionless velocity profiles in x and y directions (f0(n,g)and
h(n,g)), respectively, at the final steady state flow n = 1 is de-
picted in Figs. 2 and 3, respectively. Application of a uniform

magnetic field in the z-direction to an electrically-conducting
fluid gives rise to a flow resistive force called the Lorentz force
in both the x- and y-directions, which supports the motion in y

direction, but opposes the motion in x direction. This retarda-
tion effect is accompanied by an appreciable decrease in values
of the velocity profiles in x direction f0(n,g), but an increase in
the values of the velocity profiles in y direction h(n,g). More-

over, the fluid hydrodynamic boundary layer thickness become
thicker as the magnetic parameter M increases. These behav-
iors are clearly depicted in Figs. 2 and 3. Also, an increase in

the viscosity-variation parameter hr leads to the decrease in
Table 1 Comparison for various values of �f00(0) and �h0(0)
for various values of k for (Da�1 = M= Rd = hr = 0) at

n = 1.0 (final steady-state flow).

K Nazar et al. [12] Present results

�f00(0) �h0(0) �f00(0) �h0(0)
0 1.0000 0.000 1.00000 0.0000

0.5 1.1384 0.5128 1.13843 0.51282

1.0 1.3250 0.8371 1.32502 0.83714

2.0 1.6523 1.2873 1.65233 1.28731
velocity profiles in x-direction, while the opposite behaviors
with velocity profiles in y-direction. Thus, the increase in vis-
cosities accelerates the fluid motion in y-direction and reduces

it in x-direction along the wall. Moreover, it is seen that the
fluid hydrodynamic boundary layer thickness gradually re-
duces when the viscosity parameter hr increases.

The effects of Darcy number Da and the rotation of fluid
parameter k on the velocity in primary and secondary flows
f0(n,g) and h(n,g) are depicted in Figs. 4 and 5. The presence

of porous medium in the flow has the tendency to increase
the resistance to the motion of the fluid along the sheet. As
the result of this flow behavior, it can be seen that the velocity
profiles in x-direction f0(n,g) increases as the Darcy number Da

increases, whereas the opposite behavior happens with the
velocity in y-direction h(n,g). This means that the presence
of porous medium causes higher restriction to the fluid, which

enhances the primary fluid flow and reduces the secondary of
the fluid flow. On other hand, as the rotation of fluid k in-
creases, the velocity profiles in x-direction decreases, and the

decrease in the velocity for large values of k is oscillatory, while
the velocity profiles in y-direction, h(n,g) increases and both
the fluid hydrodynamic boundary layers decrease. This is be-

cause the rotation parameter represents the Coriolis force
which leads to accelerate the fluid motion. It can be also no-
ticed that for zero and small values of k, the velocities decay
monotonically exponentially, while for large values of k, the
decay is oscillatory (k = 0 the flow is governed by Blasius
equation).

Figs. 6 and 7 show the effects of varying the conduction–

radiation parameter Rd and the dimensionless time n on the
velocity profiles in x- and y-directions f0(n,g) and h(n,g) respec-
tively. Increases in the values of Rd have a tendency to decrease

the dimensionless on the velocity profiles in x-direction,
whereas the opposite behavior occurs with the velocity profiles
in y-direction. This result is expected because the presence of

thermal radiation works as a heat source and so the quantity
of heat added to the flow causes the motion of the rotating
fluid to accelerate. In addition, increases in the value of the
radiation parameter Rd cause a slight reduction in the fluid

hydrodynamic boundary layer thickness and, hence, in the
thermal boundary layer thicknesses. On other hand, it can be
seen that increases in the dimensionless time n tend to reduce
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both the velocity profiles in x-and y-directions. This causes a
decrease in both the fluid hydrodynamic flow boundary layers
thickness in x- and y-directions.

Figs. 8–10 display the variation of the skin friction coeffi-
cients in x- and y-directions (�f00(n, 0) and � h0(n, 0)) and the
local Nusselt number �h0(n, 0) with the dimensionless time n
for various values of the magnetic parameter M and Darcy

number Da. It can be seen that the skin friction coefficient in
the x-direction increases with the increase in the magnetic
parameter M or decreasing the Darcy number Da, whereas

the opposite trend occurs with both the skin friction coefficient
in the y-direction and the local Nusselt number. The reason for
this trend is attributed to the fact that the presence of porous

medium represents additional resistance to flow field, thus
slowing the fluid flow. This flow resistance has the same effect
as that produced by the application of a magnetic field. More-

over, this results in higher skin friction coefficient in x-direc-
tion, but lower skin friction coefficient in y-direction.

The effects of the viscosity-variation parameter hr, the
rotation of fluid parameter k and the conduction–radiation



0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

3.6

M = 4.0

M = 2.0

M = 0.0

Da =1.0
Da =10.0

- f
'' (

ξ,
0)

ξ

Figure 8 Local skin friction coefficient in x-direction for

different values of Darcy number Da and magnetic parameter M.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M = 2.0

M = 4.0

M = 0.0

Da =1.0
Da =10.0

- h
' (

ξ ,
0)

ξ

Figure 9 Local skin friction coefficient in y-direction for

different values of Darcy number Da and magnetic parameter M.

0.0 0.2 0.4 0.6 0.8 1.0
0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

M = 4.0

M = 0.0M = 2.0

Da =1.0
Da =10.0

- θ
'  (

ξ,
0)

ξ

Figure 10 Local Nusselt number for different values of Darcy

number Da and magnetic parameter M.

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

λ =1.0,2.0

M  =2.0
Da =1.0
Pr =0.7

λ=1.0,2.0

θ
r
= 0.0

θ
r
= 2.0

Rd=0.0
Rd=2.0 

- f
'' (

ξ ,
0)

ξ

Figure 11 Local skin friction coefficient in x-direction for

different values of the viscosity-variation parameter hr, rotation
of fluid parameter k, and conduction–radiation parameter Rd.

140 A.M. Rashad
parameter Rd on the skin friction coefficients and Nusselt num-
ber are displayed in Figs. 11–13. An increase in the viscosity var-
iation parameter hr leads to an increase in the values of skin

friction coefficient in x- and y-directions, while a decrease in
the values of the local Nusselt number. This qualitative effect
arises because the fluid is able to move more easily close to the

sheet surface since its viscosity is lower relative to the constant
viscosity case and hence decreased the local Nusselt number.
This is an expected result because as the viscosity variation
parameter increases, fluid hydrodynamic boundary layer thick-

ness reduces. This causes the value of the wall velocity gradient
to increase, whereas the negative values of the wall temperature
gradients decrease yielding corresponding decreases in the local

skin friction coefficients and increases in the Nusselt number.
Furthermore, it can be noticed that an increase in the conduc-
tion–radiation parameter Rd leads to a decrease in the skin fric-

tion coefficients and the local Nusselt number. This may be
attributed to the fact that the increase in the values of Rd pro-
duces a reduction in the fluid hydrodynamic boundary layer

thickness and hence implies less interaction of radiation with
both the momentum and thermal boundary layers. Obviously,
for hr = 0.0 (the case of a fluid with a constant viscosity),
changes in the values of Rd will cause no changes in the profiles

of velocity in primary and secondary flows. That is because Eqs.
(12) and (13) uncoupled from Eq. (14) at hr = 0.0. Finally, as
seen earlier from Figs. 4 and 5, it is found that the Coriolis force

assists the fluid motion and reduce the hydrodynamic boundary
layers which results in an increase in the velocity gradients in the
primary and secondary flows and hence in the skin friction coef-

ficients for the primary and secondary flows. Thus, the skin-fric-
tion coefficients increase while the local Nusselt number
decreases considerably as the rotation parameter k increases.

These behaviors are clearly shown in Figs. 11–13.

5. Conclusions

In this paper, the effects of temperature-dependent viscosity
and magnetic field on unsteady MHD boundary layer flow
and heat transfer in a rotating fluid due to a radiating stretch-
ing surface embedded in a saturated porous medium were
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investigated. The fluid viscosity is assumed to vary as an in-
verse linear function of temperature and the Rosseland diffu-
sion approximation is used to describe the radiative heat flux

in the energy equation. Comparison with previously published
work was performed, and the results are found to be in excel-
lent agreement. Numerical results for the velocity in primary

and secondary flows as well as the local skin-friction coeffi-
cients and the local Nusselt number were reported graphically.
It has been found that the surface skin-friction coefficient in x-
direction and the Nusselt number increase with the increase in

magnetic field, but the skin friction coefficient in y-direction
decreases, whereas the opposite behaviors were predicted as
the Darcy number increases. In addition, the effects of the

magnetic field and the permeability of porous medium are
more pronounced on the skin friction coefficients than on
the Nusselt number. Moreover, it is apparent that decreasing

the conduction–radiation parameter enhances the local Nus-
selt number, whereas it has a weakly effect on the skin-friction
coefficients. In addition, the Nusselt number decreases,

whereas the skin friction coefficients for both the primary
and secondary flows increase significantly with the increase
in the rotation parameter, and the skin friction coefficient
for the secondary flow is strongly dependent on it. Finally,

an increase in the viscosity variation parameter leads to an in-
crease in the values of skin friction coefficient in x- and y-direc-
tions, whereas the opposite behavior with the local Nusselt

number. It is hoped that the present work will serve as a moti-
vation for future experimental work which seems to be lacking
at the present time.
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