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Abstract An efficient numerical method based on quintic nonpolynomial spline basis and high
order finite difference approximations has been presented. The scheme deals with the space contain-
ing hyperbolic and polynomial functions as spline basis. With the help of spline functions we derive
consistency conditions and high order discretizations of the differential equation with the significant
first order derivative. The error analysis of the new method is discussed briefly. The new method is
analyzed for its efficiency using the physical problems. The order and accuracy of the proposed

method have been analyzed in terms of maximum errors and root mean square errors.
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1. Introduction

We consider the nonlinear second order boundary value
problems
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{—:ﬁi%w(x,y.,%) =0 "
@) =y, y(b) =y,a<x<b

where the function @ is supposed to be sufficiently smooth in
order to a unique solution exists and y,, y, are finite constants.

The mathematical formulations of a wide variety of engi-
neering problems are modeled by nonlinear systems of differ-
ential equations depending upon second order derivative of
unknowns [1-4]. But we have limited scope of solving the vast
majority of differential equations in explicit, analytic form,
hence the design of suitable numerical algorithms for
accurately approximating solutions is essential. The ubiquity
of deferential equations throughout mathematics and its
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applications has driven the tremendous research efforts de-
voted to numerical solution schemes. Nowadays, one has the
luxury of choosing from a wide range of excellent software
packages that provide reliable and accurate results for a broad
range of systems, at least, for solutions over moderately long
time periods. However, all of these packages and the underly-
ing methods have their limitations. Explicit solutions, when
known, can also be used as test cases for tracking the reliability
and accuracy of a chosen numerical scheme.

We survey some of the computational techniques for solv-
ing second order boundary value problems. In [5], author con-
sidered spline scaling functions and wavelets for singularly
perturbed problems and discussed their convergence theory.
A numerical algorithm based on optimal monitor function
for mesh selection was developed for second order differential
equations in [6]. The quintic spline difference scheme for linear
boundary value problem was developed by [7]. In [8], author
had provided an exhaustive list of references based on spline
solution of two point boundary value problems in his review
article. In [9], exponential spline basis for the numerical solu-
tion of two point boundary value problems over a semi-infinite
range was discussed in detail. A quartic B-spline collocation
scheme for fifth order boundary value problems had been
developed by [10]. A uniformly convergent monotone iterative
method for nonlinear boundary value problems occurring in
population dynamics and heat conduction phenomenon were
discussed by [11,12]. Reference [13] had developed quintic non-
polynomial spline functions to obtain approximate solution of
boundary value problems with singular perturbation. Quintic
nonpolynomial spline function with polynomial and trigono-
metric parts to obtain numerical solution of second order dif-
ferential equations subject to the neumann boundary
conditions was discussed by [14]. In the recent past, researchers
have developed a C*-differentiable trigonometric and expo-
nential spline basis for the solution of second and higher order
differential equations. The detail study of nonpolynomial
spline basis for second and higher order differential equations
were presented by [15-17].

In the present paper, an efficient numerical algorithm based
on hyperbolic functions as nonpolynomial spline basis and fi-
nite difference approximations has been developed for solving
second order boundary value problems. The essence of the
method lies in the fact that it offers sixth order of accuracy
for differential equations with significant first order derivative.
The proposed method uses evaluations at two off steps nodes.
The frequency of the trigonometric parts in the nonpolynomial
spline basis optimizes the accuracy of the solution. The method
shows superiority in terms of order and accuracy over existing
methods because it provides continuous approximations for y
and dy/dx. Also the C* -differentiability of the trigonometric
part of nonpolynomial spline basis compensates for the loss of
smoothness inherited by the polynomial approximations func-
tions [18]. For practical purposes, we have solved both nonlin-
ear and linear problems. The resulting difference equations are
solved using standard Newton’s method in case of nonlinear prob-
lem while Gauss-elimination method is used for linear problems.

2. Nonpolynomial spline finite difference approximations

The numerical scheme has been developed on the domain of
integration Q = [a, b] with the partitions {a = xo <

x; < -+ < X,4+1 = b} using the uniform mesh step size
h = (b—a)(n+ 1), where n € Z,. The nonpolynomial spline
function spaces are more flexible than polynomials [19,20]. Our
approach includes the basis

3= {] y X5 X27 x37 Sinh(ﬂlx)7 COSh(:uZX)}
or 3, = {1,x,x*,x°, x*, X’} when (y,1,) — (0,0)
The basis J in the limiting case (1, o) — 0, is consistent with
the polynomial spline basis 3, and it can be easily investigated
using the series expansions of hyperbolic functions.

Now, for each segment [xi, xx 1], £ = 0(D)n, let Si(x) be
the interpolating nonpolynomial function which interpolate
y(x) at x; defined as follows:

Si(x) = ag sinh(p, (x — x)) + by cosh(p, (x — xx))
+ e (x — xk)3 +di(x— x,()2 +er(x — xp) + fi (2)

where u; and p, are the frequency of hyperbolic part of the
spline basis and the coefficients ay, by, ¢, di, ¢, and f; are
obtained using the following relations

Si(x) = M, S{(Xix172)
S (xe) = Fi (3)

Sk(x) = yi,
= Mix1)2,
The algebraic manipulations yields the following expressions

2h4FkCOSh(02)(COSh(Uz) — 1) +/120§(2Mk+1/2 — Mk — Mk+|)
a, =
* 20762 sinh(v; ) (1 —cosh(vy))

4
b/( = h fk
02
o (W’ Fi(cosh(vy) — 1) + 03(My — M;,1)) sinh(0,)
e 6402 sinh(v; ) (1 — cosh(v,))
W F (1 — cosh(vy)) + 05 (M1 — My)
6h05(1 — cosh(v;))
M, — I’ F,
Ay = ——5——
20,
6h* Fy. (02 — 07)sinh(0,) 4 24* F, 03 (6 — 03) sinh (v, ) cosh (v, ) 4 24 F 03(0% — 6)
sinh(0;)cosh(v2) + (((6(yyr — i) 7112(2M,<‘ l/2+Mk))0;+(0%+6>h4Fk)0%
F61* (2Miy1 2 — My — Myt )03 +61* 05 Fy ) sinh () + (21 (M1 +2My.)
o F12(y = Vs )04 — 41 F (02 +3))03)sinh (v, )
= 121020 (cosh(v;) — 1)sinh(v; )
. Oy —I'Fy 0 0
i :%, 0 =huy, 0y=huy, vy :7], vy :32

Now, using the continuity conditions of first and third
derivatives, that is

{ S 1 (xk) = S ()

11050 = S1x0) @

Eliminating F; from Eq. (4), we obtain the following nonpoly-
nomial spline relation

Vier = 20+ Vi F (Moo + M) + BMy 4 y(Mi_i
+ Mii1)2)
=0 (5)
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where

o= —é(hz((u@g(cosh(uz) — 1) sinh(6;) + (607 (2 + 605 — 2

x cosh(0)) sinh(v;) + 07 (6 cosh(0,) — 6 — 205 cosh(v,)
— 03) + 120,03(1 — cosh(1,))))/(07603(2(cosh(vy) — 1)

x sinh(0;) 4+ 2(1 — cosh(6,)) sinh(v;) + 0, (1 — 2 cosh(v,)
+ cosh(6,))))))

B= —% (K ((12(65 — 67) sinh(0,) — 60705 sinh(v;) + 6, (6 + 03)
+120, (0, sinh(vy) — 03)) cosh(0,) + (605 (07 — 2) sinh(0;)
+40,05(3 — 07)) cosh(v,) + 1207 (sinh(0,) — sinh(v;))
—607))/(0705((0; — 2sinh(v;)) cosh(6,) + 2(sinh(0;)

— 0)) cosh(v,) + 2sinh(v;) + 6; — 2sinh(6;)))

y= f% (7 ((6sinh(6,) (6 — 63) + 0;(63 — 6)

+ 60,05) cosh(6,) — 307 sinh(0,)(2 + 65)

+ 6(9;((1 — 0,)sinh(0;)

+20(05 +3)))/(0;05((0, — 2sinh(v;)) cosh(0,)

+ 2(sinh(6;) — 6;) cosh(vy) + 2sinh(v;) + 6, — 2sinh(6;)))
When (u;, 1) — (0, 0) or equivalently (01, 0,) — (0, 0) and (v4,
v2) = (0, 0), we obtain (o, f8,7) — 7—[1 26, 16] and the non-
polynomial spline relation defined by (5) reduces into usual

quintic polynomial spline difference scheme.
Now consider the following approximations

.}k 2h (yk+1 yk*l) (6)
L

Vix1 = 2 (£3ype1 Féy £ Vis1) (7)
fk+r = ¢(xk+‘f7yk+‘ﬂﬁ;(+1)7 T= 0’ +1 (8)

~ 1 "
Yix1/2 = 3_2(15)’/ci1 + 18y, — yig1) — o4 — (3Fu1 +4F,

— Fin1) ©)

=~

1
Vw2 = g (ES5Venr FO £ i) F I (3Fkil +8F,

+ Fin) (10)
A}kil/z = 4’<in1/2,)7ki1/2,}75<ﬂﬂ> (11)
Vit :ﬂig(2ﬁk+ﬁk;1) (12)
A}kil = (D(inhykih/y\';cil) (]3)

V=7 +h(61(]‘7k+1 - ﬁk—l) + 02 (Miy1 + My 1)
+ 03(Mii1)2 + Mi—12)) (14)

M, = <D(xk,yk,?2) (15)

where o1, g, and g3 are to be determined so as to satisfy the
approximations

My — My = O(h*) and My — Mo, = O(h'), o=1,1/2

Now, incorporating the above approximations into the Eq. (5),
we obtain the following nonpolynomial spline finite difference
scheme for k = 1(1)n

Vet = 20 + Vit + o(Myoy + M) + BM + P(Mi_i)2

+Z/‘;[k+l/2)
— o) (16)

where yo =y, and y,.1 =y, If we choose [o,f,7]=
—%[1,26, 16], the method (6) reduces to the method of
[22,23]. The method (16) has local truncation error of sixth or-
der. Since the difference scheme computes y;_q, yx and yi+q
and the resulting scheme has tri-diagonal iteration matrix,
the method is compact. Neglecting O(/*) and higher order
terms, the method is applicable to the numerical solution of
linear and nonlinear second order differential equation with
appropriate Dirichlet’s boundary conditions. For the nonlin-
ear problems, standard Newton’s method can be used with suf-
ficiently close initial guess and in case of linear problems
Gauss-elimination solver is used for computations.

3. Formulation of the difference scheme

In this section, we explain the formulation of the hyperbolic
spline finite difference method (16) and obtain its local trunca-
tion errors.

The series expansion yields the approximations (6) and (7)
as

e I
W, =)+ — — 7 + 0 17
Vi }k+6y +120y +O0(h°) (17)
Poa 0 w
- 1 (4 6
Vi1 :J//(¢)1 _gh Tk J 30}’k F 180)’/(() +O0(h°) (18)
_ 9 _ _0® _ P
Define P = 57 o 0, = W‘M’Rk =507l etc.

With the help of Eq. (8), we get

N K
My = M+~ Qky“) 365 +OU") (19)
_ LA
Mz =M, : 180 360
ekl K+l — Q/\}k 5 2% " 130% 360 @4
+O(H) 2
where

on = 3R (o) + 300 0: = 4005 + 00l
= 3(2008 + 500 + 10302 - Rl ) o
= (20, + 150 )31 + 120"y
+10(20" = Ry =28y )oY

With the help of series expansion, we obtain
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/’l (1) / ]‘13 ] (4) 5 = ~ ]13(,02 h5w4
Vemp =Vt 2}1( Ly 3 yk i@)’k +ﬁyk +O0(h) (21) Vi =Vt hor | My — My — ~ 180

h / h ht

m _ " n s 5
Vi 7yk ihyk + = 3 y by ; y “'ﬂJ’k +O(h) (23)
Further let,

Yier1/2 g1 012 013 014 015 06 Yk
Vi-1/2 021 Oxn 023 O Oz 0O Vw1
=

)

V12 031 03 033 034 035 036 Yi—1
i = Z
Y112 Oy Og 043 044 O45 Oy M
Vieat 051 Osy Os3 Os4 Os5  Osg M
Vi, 061 Op 063 Ot O6s 066 My

(24)

where o, I, m = 1(1)6 to be determined so as to obtain the
following approximations

Vks12 — Yiex12 = O(hs) (25)
y~;ci1/2 - }’221/2 = O(hs) (26)
My, = vidy = O(H') (27)

Using the approximations (19)—(23) in Eq. (24) and equating
the like powers of /i, we get the values of undermined coeffi-
cients oy, that satisfies the relations (9), (10) and (12), further
it leads to the following approximations

N "
Yix1/2 = Vix12 F 768 (5},]({5) _ 4w2)

- %:80 (3301 + 81 — ) + O (28)
Vi = ykil/2 5;160 (7)/(5) - 20602)
34]5560 (570 + 16(en — )
6
- 46]080y ¢ o) (29)
Aj[;dzl yl((li)l +% (4y —Sw >
5};0 (3yk + o - w3> - % W+ o) (30)

With the help of approximations (28)—(30), we may write the
equations (11) and (13) as follows:

. 4Q/ h5
T (7 B 20°°2> 34560 +001) (31)
- _ Q/\ h Wg

My = My + o (47 = 502) = o+ O(H) (32)
where

s = 45(5y;5> - 4w2>P,( n 6(7y< 20w7) m

+ (57y§f’) + 16(w; — (03))ka6

= 3(4y§(5) - 5602) Qﬁcl) + (3)/,((6) + w; — (,o3> O

Next, we obtain O(h*) approximations for ;;c, i.e.

Vi fy,((l) = O(h*). Using the approximations (20), (31) and
(32) in (14), we get

6

/ My — M;_
+ 102( k+1 k-1t 270)
5

P ws

+/10'3 (Mk+l/2 _Mk—l/Z 17280) +0(h7) (33)

With the help of relations (3), we can easily obtain
My — Moy =yl — e

_ K s 7
_2/1( +6} +120yk +O(h') (34)

2 2
Mo — My_1pp = y/il]/z yé )1/2

K h*
- Zh( w gt +%y§7>) +0()(35)

Applying the approximation (17), (34) and (35), we can rewrite
the Eq. (33) as follows:

. > it >
= 1 3 5 3 5
Fo=w+ 6y§<)+120y/»)+201h (y”+ 6y< >>

y I y K

+ 20,17 (yi) —O—Kyf) +a3h*(y ( )+ 24yk

+ O(h°) (36)
Form the Eq. (34), if

1

2(61+02)+63+6:0 (37)
Then, we obtain J, — yf(') = O(h*) and
h*
ylc:yl(cl)+ﬁo<( +40(O’1 +62)+503) —20016&)2)

+ O(h°) (38)
Now, with the help of Eq. (15), we get

4

120
+ O(h°) (39)

Using the finite difference approximations (31), (32) and (39)
in the hyperbolic spline relation (5), we obtain

M, =M, +— ((14+40(g, + 02) + 503)}’55) — 200 ;)

Viet = 20+ Vi H oMoy + M) + BM + P(Mi_1)2

+ Mi1)2)
4

~ 2880

(128a + 24(505 + 400, + 400, + 1)

h4
SO g Ba - 24pe

=90 (403" + 00l + o) (40)

The difference method (40) is to be of O(4®), if the coefficient
of 1° vanishes. Since «, f and y are O(/%), we must have

8o+ 24P — 7y =0 (41)
1280+ 24(505 +40(ay + 02) + ) =Ty =0 (42)
Solving the Egs. (37), (41) and (42) for 61, 05> and a3, we obtain
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o1 = —(8a —7)/(24p)
(1120 — 4B — 23y)/(720p) (43)
= (1280 — 568 — 77)/(360B)

]

Thus, the local truncation error becomes 0(118) and hence the
method is sixth order accurate.

4. Error analysis

In this section, we investigate the error of the hyperbolic spline
finite difference scheme. Consider the second order differential
equation

i d
~Sa ) by +g(x) =0, 0<x<] (44)

Applying the quintic nonpolynomial spline finite difference
technique (16) to the differential Eq. (44), we obtain the fol-
lowing difference equation:

PVt + @i + Vi = Re + Ty, k= 1(1)n (45)

where

1 (1204 h(8ay +9ay_1 — 6hby_1 — a1)) 2yhax +13p)ax_1 >
Pe= 1243
+(24+h(8ax — a1 —2hbi—y +3ar_,)) (2yhar — 13B) a1 /2
1 <(60+h(uk+1 +9a_y — 6hby_y +4ai)) (2yhar +13) b1 > )
—(—4+h(4ay —3ar —3ae_1 +2hbi_1)) 2yvhar — 13B)biy1 2

312h—156a(ag1 +ar—1) + 104ahay (a5, — a,‘+|)+1569</zaA |
1

+3121 — 104k’ ay_ by |+52,¢/1(a,\+]+6b, 1)+ yhag (3ak_, + 5a,+1)

+291 ay (b1 + @ (@ + ey ) + 9 ar (3a}_, —ag,,) = 2pa( I a_1by_y +78)

Be= 312/1(+(h(ak+1—3ak | —4hby) —36) (2phay + 13B)ar_1 >
((h(3ak+] —2hb+ak_1) +18) (2vhar — 13 ) bjs1
416 h(3ag_1 +2hby+ ax.1) — 18) 2yhar + 138)bi_1 >
520(ar, +ai_;)+78( /bk—2)
78 —( h b +2) (apsr +ar—y ) ax +vhag (i, —ai_)) )

(h(3ak+1 —4hbk—ak_1) 36)(2)1/’1511(— ]3ﬁ ak+1/2 )

1 52]10( ak“ —dj_ |)bk

(h(9ays1 +6hbi iy +8ar — ag—1 ) — 120) (2phay — 13 B) i1 2 )
=

1248]’1 (+ 3Uk+1 +2]’lb/\+1 +8a — 3ay_ 1) 24)(2yhak+ 13[)’)&/(,1/2
((h 90y 41 + 6hbyyy +4ax +ag_y) — 60) (2yhay — 13f)byy1 2 )

(4ar —3ak—1 —33agc1 — 2hbiy1 ) +4) 2vha +13) b1

1
664
—1560(ays1 + ax—1) + 104ohay (ar_y — ax 1) — 52eh (a}_, +3a, )
1 — 1040 @i brsy —3120(1 +abk+1)+2(h 1 by —T8)ya
312h —yhay(3ay,1 +5ax,) + 9@ (2 — a_y) +9h 4 (2a
+3al,, 4+ 2ara,-)

—h
Ry = 624((881( + ko1 +38s1) (2vha — 13B) a1 )2

+ (881 +gus1 +3841) Rvhac+13B)a 1 12)
e
3 = (4 +3gu1 — g 1) (2vhak —13B)brir 2

— (48 — i1 +385 1) (2vhar +13B)bi_12)
+(2vha /13 = B)gri1 /2 — (2vhac/ 13+ B)gi_1 />

29( aaar —78)8y + vhar (g1 — 1) — 156(gi) +841)
+R +1040h(ar—1 — ak1)gx
+52eth(a-18 1 — A1 8rir) T VR A (@1 Gy + 20118+ A1 81y

and T, = O(h®).

Incorporating the boundary values, the system of algebraic
equations given by (45) in matrix notations can be written as

Py+J+T=0 (46)
where

q i O R —=yop I

P 9 n R, T,
P=| . =(f;j)m,J= : ,T=|"

Pn1 p T R, :

O Py Ry =Yl T,
Let ¥ =[x, ¥(x2, -0 Y& 2y =Dy 220 onn 2’
satisfies
PY+J=0 (47)

Let & = |y — y(x) be the discretization errors at the grid
point x; and & = [e1, &, ..., &,]° be the error vector. With
the help of Eqgs. (46) and (47), we obtain the error equation

Pe+T=0 (48)
Let

A=min{|ar|,|aper ], |arer 2|}
B= mink{\bkL |bki1 |7 |b/¢1/2|}

G =min{|g;l,|gee1 ], |g/d:1/2|}

A =max{a], [ae |, | o]},
B=maxi{|b], [besa, b1 o]},
G = maxi{|gel. g |, [gs1 o1}
Then, for k = 1(1)n

2 - iy —
YLy (;’9 B+2—a—&—ﬁ>A B

Pl < 1
| A,k+l| 52 32

+ (Zg+a> k+<ﬂ)}2 —9}1—6(13[34—8;'—32a)1§+21—h(2a+2[?+y)> 4
For k = 2(1)n

yh~ o - " 2
[Prgot| < 1— 52A1 (—B+ ————— )A - B

i - i’ h ~ 1
+(ﬁ+“>3+< 104 (1%/3+8 32«)37E(2zx+2ﬂ+,)>A

Since «, f and y are all O(h%), hence, for sufficiently small /4 and
0;, v, i = 1, 2, we obtain

|P/<,k+1‘ < l,k = l(l)l’l —1 and |Pk,k—l‘ < l,k = 2(1)1’!

Thus, P is irreducible and monotone [21]. Consequently, we
find P! exists and P~! > 0.

Now, let
qi + Tk,
Pr T q + 1k,
Pt auk=n
From the error Eq. (48), we obtain the error bound

lell < (P~H1-I1 71| (49)

If P! be the (i, j)th element of P~
vector norms as

k=1
Sk: k:2(1)n—1

and we define the matrix-

1P| = maxlgig,,Z)P;I and || 7] = max,c,|T}| (50)
=

Also, from the theory of matrix, we have

> PlS; =1,i=1(1)n (51)
j=1
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With the help of Taylor’s expansion, for i = 1(1)n, we obtain

| 2h A
P;' < ‘ h +O(h) (52)

Kl €S 77—
Sl‘ (20426 +7)

ol 1 2hB
< <

Pl < | — < +O(I) (53)
ij .
& [ S| w2
1 2h A
1 2
DS | S 4
" S, 2a+2/3+y+0(h) (54)
With the help of Egs. 48 and (52)—(54), we obtain
lell < {5+ OUR) | O() (55)
2004+2p+ 7y

Also, we have 2o + 28 + y = —h* Hence, it follows that
lell < O(A®). The error analysis of nonlinear problems can be
investigated in a similar manner and we conclude above results
in the following theorem:

Theorem 4.1. The hyperbolic spline finite difference method
defined by (16) for solving the second order boundary value
problems, with sufficiently small h and (u;, p) gives a sixth
order convergent solution.

5. Computational illustrations

In this section, we have implemented our method for solving
some of the problems arising in population dynamics, first or-
der equation in chemical reactor, heat transfer and convection-
diffusion problems. We compute the maximum absolute er-
rors: L” (¢) and root mean square errors: Lj(¢) using the fol-
lowing formula

L7 (&) = maXicecnlye —y(xi)l, - L5(e)

n

| 1/2
== (Zlyk - y(xk)|2>

k=1

The numerical accuracy are obtained using following three
approaches

(a) Sixth order finite difference method.
(b) Hyperbolic spline finite difference method (u; = ).
(c) Hyperbolic spline finite difference method (u; # 1p).

The symbols L7 () and L}"(e) represents the estimates of
L’ (¢) and Lj(¢) in case of hyperbolic spline finite difference
method (; = pp) while L2 (&) and L™ (&) represents the esti-
mates of L’ (&) and Lj(e) in case of sixth order polynomial
spline finite difference method.

-3

x 10
1.4 T
Numerical solution
*  Analytical solution
1.2 R
1 L 4
[%2]
S
=< 08 1
>
c
ie]
5 o6} .
S
%]
04f .
0.2 i
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1
x—grids
Figure 1  Numerical solution vs. analytical solution for Problem
5.1.

Problem 5.1. Consider the convection-dominated equation
(see [24])

{—i‘;ﬂ(%ﬂ—l)—o

dx
y0)=p(1)=0, 0<x<1

The analytical solution is give by

1-/1+4/4 ESVAEEIN 14+/1+4/2 17‘/1+4/;,Y
e 2 —1)e 277 c 4 1 —e¢ 27 e 27

1+/114/7 1—/174/7
e 0 —e 7%

y(x) =1

+

The numerical results comprising maximum absolute errors
and root mean square errors are reported in Table 1 for vari-
ous mesh arrangements corresponding to 4 = 0.01 and opti-
mum frequency parameter (y;, pp). The numerical solution
obtained using hyperbolic spline finite difference scheme clo-
sely approximate the analytical solution. Fig. 1 illustrate the
comparison of numerical solution and analytical solution val-
ues at n = 80. The proposed numerical solution gives almost
overlapping behavior with the corresponding exact solution
values.

Problem 5.2. Consider the heat transfer in a thin wire with the
given temperatures 4 > 0 and B > 0 at two ends. The temper-
ature distribution y(x) in the thin wire based on Boltzmann
fourth power law is given by

Table 1 The maximum absolute error and root mean square error for Problem 5.1.

n W 2 Ly(e) W= Ly (&) Ly (e)

10 0.010 0.110 1.02¢—03 0.0400 1.68e—02 1.88¢—02
20 0.010 2.760 2.96e—05 0.0500 4.77e—04 1.76e—03
30 2.290 0.030 3.69¢e—06 0.1430 2.71e—05 2.86e—04
40 0.860 0.098 5.11e—08 0.2039 1.08¢—06 6.61e—05
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Table 2 The maximum absolute error and root mean square error for Problem 5.2.
n #1 i L (2) L3(e) L2 (o) 1 (s)
10 3.680 0.010 1.23e—06 7.80e—07 2.17e—06 1.55¢e—06
20 0.503 0.303 1.65e—08 9.08e—09 5.41e—08 3.65e—08
40 3.281 1.282 2.84e—10 1.54e—10 1.02e—09 6.78¢—10
80 6.046 6.000 4.98e—12 2.53e—12 1.74e—11 1.15e—11
Table 3 The maximum absolute error and root mean square error for Problem 5.3.
n H t2 L7 (¢) L;(e) L (e) Ly (e)
10 0.200 0.100 1.60e—07 1.25e—07 overflow overflow
20 3.200 0.100 7.18e—09 5.45¢e—09 overflow overflow
40 4.600 0.800 9.45e—11 7.08e—11 overflow overflow
80 8.000 2.200 5.71e—12 4.25¢—12 overflow overflow
Table 4 The maximum absolute error and root mean square error for Problem 5.4.
n t Ha L3 (¢) Ly (e) L3 (e) Ly (&)
10 0.2 0.1 8.43e—07 6.52e—07 overflow overflow
20 32 0.1 2.62e—08 1.98e—08 overflow overflow
40 4.6 0.8 2.14e—10 1.59¢e—10 overflow overflow
80 8.0 2.2 3.12e—12 2.3le—12 overflow overflow

d 1 d
(e ) e =it 3O =4, 3(1) =B
where 4 > 0 is a constant and g(x) denotes the surrounding
temperature (see [1]). The proposed method is tested for the
solution of above problem using exact solution y(x) = sin(mx).
The function g(x) may be obtained from analytical solution as
a test procedure. The maximum absolute errors are obtained in
Table 2 from the presented method corresponding to 4 = 1
and optimum value of frequency (u;, ().

Problem 5.3. Consider the logistic equation in population
dynamics

— 4 (tan~'(») %) = y(1 = y) +g(x)
y0)=y(1)=0, 0<x<]1,

where A is a positive constant and g(x) > 0 is an internal
source (see [4,11]). The analytical solution of the problem is gi-
ven by p(x) = x — x* The problem is solved using proposed
method using standard Newton’s solver with 1 = 1. Table 3
presents the numerical accuracy of computed solution with er-
ror tolerance of 10>, The method takes very little iteration to
converge the desired accuracy.

Problem 5.4. Consider the nonlinear problem arising in chem-
ical reactor with first order equation (see [2,12])

{ i <\/1—+—J’5d?) = (1 = p)e™/) + g(x)
y0)=1, y(1)=1/2, 0<x<1

The analytical solution of the problem is y(x) =1 7‘77 The

computational results are shown in Table 4 for A =1,
v = 0.5 and various values of n.

The tabulated results show that two parameter hyperbolic
spline finite difference method shows superiority over single
parameter method and classical finite difference technique. In
case of nonlinear problems, the finite difference method gives
divergent solution. The proposed method can be extended to
nonlinear elliptic problems.

6. Conclusion

The proposed method is sixth order accurate using two param-
eter hyperbolic nonpolynomial spline basis for the numerical
treatment of two point boundary value problems with signifi-
cant first order derivative. The significance of two parameters
has been shown while solving convection dominated equa-
tions. Proposed method provides the convergent solution to
the problems related with logistic equation in population
dynamics and chemical reactor theory, compared with classical
finite difference method. The graphical illustration of numeri-
cal results shows that the proposed method maintains a very
high accuracy for dealing with the solution.
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